the temporary stack segment used to be at a fixed address above or
below the user stack. these days, the temp stack is mapped dynamically
by sysexec so TSTKTOP is obsolete.
between being commited to a machno and having acquired the lock, the
scheduler could come in an schedule us on a different processor. the
solution is to have dtmachlock() take a special -1 argument to mean
"current mach" and return the actual mach number after the lock has
been acquired and interrupts being disabled.
using ~IP_DF mask to select offset and "more fragments" bits
includes the evil bit 15. so instead define a constant IP_FO
for the fragment offset bits and use (IP_MF|IP_FO). that way
the evil bit gets ignored and doesnt cause any useless calls
to ipreassemble().
tested on a t43 with igfx and a 1600x1200 t43p screen
what works: lvds, blanking
what doesn't: hwgc (not visible), snarfing edid
untested: vga
based on realemu traces.
unfraglen() had the side effect that it would always copy the
nexthdr field from the fragment header to the previous nexthdr
field. this is fine when we reassemble packets but breaks
fragments that we want to just forward unchanged.
given that we now keep the block size consistent with the
ip packet size, the variable header part of the ip packet
is just: BLEN(bp) - fp->flen == fp->hlen.
fix bug in ip6reassemble() in the non-fragmented case:
reload ih after ip header was moved before writing ih->ploadlen.
use concatbloc() instead of pullupblock().
some protocols assume that Ip4hdr.length[] and Ip6hdr.ploadlen[]
are valid and not out of range within the block but this has
not been verified. also, the ipv4 and ipv6 headers can have variable
length options, which was not considered in the fragmentation and
reassembly code.
to make this sane, ipiput4() and ipiput6() now verify that everything
is in range and trims to block to the expected size before it does
any further processing. now blocklen() and Ip4hdr.length[] are conistent.
ipoput4() and ipoput6() are simpler now, as they can rely on
blocklen() only, not having a special routing case.
ip fragmentation reassembly has to consider that fragments could
arrive with different ip header options, so we store the header+option
size in new Ipfrag.hlen field.
unfraglen() has to make sure not to run past the buffer, and hadle
the case when it encounters multiple fragment headers.
all screen implementations use a Memimage* internally
for the framebuffer, so we can return a shared reference
to its Memdata structure in attachscreen() instead of
a framebuffer data pointer.
this eleminates the softscreen == 0xa110c hack as we
always use shared Memdata* now.
Under the normal close sequence, when we receive a FIN|ACK, we enter
TIME-WAIT and respond to that LAST-ACK with an ACK. Our TCP stack would
send an ACK in response to *any* ACK, which included FIN|ACK but also
included regular ACKs. (Or PSH|ACKs, which is what we were actually
getting/sending).
That was more ACKs than is necessary and results in an endless ACK storm
if we were under the simultaneous close sequence. In that scenario,
both sides of a connection are in TIME-WAIT. Both sides receive
FIN|ACK, and both respond with an ACK. Then both sides receive *those*
ACKs, and respond again. This continues until the TIME-WAIT wait period
elapses and each side's TCP timers (in the Plan 9 / Akaros case) shut
down.
The fix for this is to only respond to a FIN|ACK when we are in TIME-WAIT.
always start the pager kproc in swapinit(), simplifying kickpager().
allow zero conf.nswap and conf.nswppo. avoid allocating the reference
map and iolist arrays in that case.
use ulong for ioptr and iolist indices.
don't panic when writing pages out to the swapfile fails. just
requeue the page in the io transaction list so we will try
again next time executeio() is run or just free the page when
the swap reference was dropped.
remove unused pagersummary() function.
the FCA registers 0x28, 0x2C have been reassigned to
to FEXTNVM on i217, i218 and i219 so add Fnofca flag
and avoid writing the registers.
make link detection more robust on i217 by delaying the
phy status read after link status change by 150ms. we'd
otherwise get a "phy wedged" (power saving state?) and
not update the link status until the next link change.
the max packet size is configured in 1K increments on these chips,
which can result in the card receiving a 10K packet but the
driver having only allocated 9.5K of buffer. this actually caued
pool corruption with i210, i217, i218, i219, i350.
for 82598 and x550, we explicitely round rbsz to avoid similar bugs
in the future, even tho the Rbsz constant was already a multiple of
1K and is not affected by the bug.
segclock() has to be called from hzclock(), otherwise
only processes running on cpu0 would catche the interrupt
and the time delta would be wrong.
lock the segment when allocating Seg->profile as
profile ctl might be issued from multiple processes.
Proc->debug qlock is not sufficient.
Seg->profile can never be freed or reallocated once
set as the timer interrupt accesses it without any
locking.
instead of having application processors spin in mpshutdown()
with mmu on, and be subject to reboot() overriding kernel text
and modifying page tables, park the application processors in
rebootcode idle loop with the mmu off.
linux will send small, unpadded arp packets which may arrive over
wifi, so allow small packets into the bridge and pad any packets that
are too small when going out.
coproc.c generated the instrucitons anew each time,
requiering a i+d cache flush for each operation.
instead, we can speed this up like this:
given that the coprocessor registers are per cpu, we can
assume that interrupts have already been disabled by
the caller to prevent a process switch to another cpu.
we cache the instructions generated in a static append
only buffer and maintain separate end pointers for each
cpu.
the cache flushes only need to be done when new
operations have been added to the buffer.
reference: https://github.com/raspberrypi/firmware/issues/542
procsave(Proc* p)
{
uvlong t;
cycles(&t);
p->pcycles += t;
// TODO: save and restore VFPv3 FP state once 5[cal] know the new registers.
fpuprocsave(p);
/*
* Prevent the following scenario:
* pX sleeps on cpuA, leaving its page tables in mmul1
* pX wakes up on cpuB, and exits, freeing its page tables
* pY on cpuB allocates a freed page table page and overwrites with data
* cpuA takes an interrupt, and is now running with bad page tables
* In theory this shouldn't hurt because only user address space tables
* are affected, and mmuswitch will clear mmul1 before a user process is
* dispatched. But empirically it correlates with weird problems, eg
* resetting of the core clock at 0x4000001C which confuses local timers.
*/
if(conf.nmach > 1)
mmuswitch(nil);
}
- clean dcache before turning off caches and mmu (rebootcode.s)
- use WFE and inter-core mailboxes for cpu startup (rebootcode.s)
- disable SMP during dcache invalidation before enabling caches and mmu (in armv7.s)
- synchronize rebootcode installation
- handle the 1MB identity map in mmu.c (mmuinit1())
- do not overlap CONFADDR with rebootcode, the non boot
processors are parked there.
- make REBOOTADDR physical address
- disable local clock on interrupt to prevent accidents when reenabling
- always regitster local clock interrupt handler, even for cpu0
- simplify microdelay()
- don't mess with watchdog
when clering smi enable bits in the legacy control/status register,
preserve the reserved bits. clear the RW1C bits.
linux code claims intel xhci controller needs a 1ms delay before
accessing any register after reset.
pcienable() puts a device in fully powered on state
and does some missing initialization that UEFI might
have skipped such as I/O and Memory requests being
disabled.
pcidisable() is ment to shutdown the device, but
currently just disables dma to prevent accidents.
on Samsung ATIV Smart PC Pro XE00T1C-A01CL, the EHCI handoff
causes the system to freeze in UEFI mode as soon as we assert
the os semaphore bit.
until a general solution is found, provide these parameters to
disable the handoff for now as it seems to otherwise work fine.
when a prefix is added with the onlink flag clear, packets
towards that prefix needs to be send to the default gateway
so we omit adding the interface route.
when the on-link flag gets changed to 1 later, we add the
interface route.
the on-link flag is sticky, so theres no way to clear it back
to zero except removing and re-adding the prefix.
Once a second rebalance() is called on cpu0 to adjust priorities,
so cpu-bound processes won't lock others out. However it was only
adjusting processes which were running on cpu0. This was observed
to lead to livelock, eg when a higher-priority process spin-waits
for a lock held by a lower priority one.
syntax: reboot!bootfile[!method...]
this echos bootfile to /dev/reboot, causing bootfile kernel
to be started.
when method is given, we first connect to the filesystem and
set bootargs so that bootfile can be loaded from the target
network or local fileserver.
note, when no bootfile is given, this causes the kernel to
reboot to bios.
the end condition port < offset+n could never become
false when offset truncated to 32 bit signed port is
negative. change the condition variables to unsigned
int.
msr's are not byte addressible, so advance reads by
one instead of 8.
sending multicast was broken when ipconfig assigned the 0
address for dhcp as they would wrongly classified as Runi.
this could happen when we do slaac and dhcp in parallel,
breaking the sending of router solicitations.
now handle the supported rates element properly, only
providing the intersecting set of rates that the bss
advertises and what the driver supports, putting the
basic rates first.
also avoid using usupported rates.
nobody passes us the "RSD PTR " address when doing multiboot/kexec
on UEFI systems. so we search for it manually in the ACPI reserved
area as indicated in the e820 memory map.
we did not apply the special case to store 0xFFFF (-0)
in the checksum field when the checksum calculation
returned zero. we survived this for v4 as RFC768 states:
> If the computed checksum is zero, it is transmitted as
> all ones (the equivalent in one's complement arithmetic).
>
> An all zero transmitted checksum value means that the
> transmitter generated no checksum (for debuging or for
> higher level protocols that don't care).
for ipv6 however, the checksum is not optional and receivers
would drop packets with a zero checksum.
during dhcp, ipconfig assigns the null address :: which makes
ipforme() return Runi for any destination, which can trigger
arp resolution when we attempt to reply. so have v4local()
skip the null address and have sendarp() check the return
status of v4local(), avoing the spurious arp requests.
closeconv() calls ipifcremmulti() like:
while((mp = cv->multi) != nil)
ipifcremmulti(cv, mp->ma, mp->ia);
so we have to defer freeing the entry after doing:
if((lifc = iplocalonifc(ifc, ia)) != nil)
remselfcache(f, ifc, lifc, ma);
which accesses the otherwise free'd ia and ma arguments.
on HZ 100 systems like pc and pc64, the minium sleep time
was 10ms, which is quite high. the cap isnt really needed
as arch specific timerset() enforces its own limit, but on
a higher resolution.
background:
from Charles Forsyth:
I haven't really got an opinion on it. The 10ms interval was first used on
machines that were much slower.
I thought someone did set HZ to a bigger value, partly to support better
in-kernel timing. I haven't done it because I never had a need for it.
If I were doing (say) protocol implementation in user mode, I'd certainly
reconsider. Sleep itself forces at best ms granularity,
and for some applications that's too big.
initial mail from qwx raising the issue:
> Hello,
>
> I found out recently that sleep(2)'s resolution on 386 and 9front's amd64
> kernel is 10 ms rather than 1 ms. The reason is that on those kernels,
> HZ is set to 100 rather than say 1000. In syssleep, we get 1 tich every
> 10 ms.
>
> What is unclear is why.
>
> To paraphrase cinap_lenrek's answer to my question:
>
> In syssleep:
> if(ms < TK2MS(1))
> ms = TK2MS(1);
> tsleep(&up->sleep, return0, 0, ms);
>
> "TK2MS(1)" can be replaced with just "1", and the arch specific
> timerset() routine would do its own capping of the period if it's too
> small for the timer resolution, and make better decisions based on what
> the minimum timer period should be given the latency overhead of the
> given arch's interrupt handling and performance characteristics.
>
> Alternatively, HZ could be raised to 500 or 1000.
>
> It seems it's just trying to prevent excessive context switches and
> interrupts, but it seems somewhat arbitrary. A ton of syscalls can be
> done in 1 ms, and it's the lowest we can go without changing the unit.
>
>
> What do you think?
>
> Thanks in advance,
>
> qwx
devdir internally replicates the qid in ther perm stat field
already and the practice of explicitely passing just causing
confusion when done inconsistently.
this driver makes regions of physical memory accessible as a disk.
to use it, ramdiskinit() has to be called before confinit(), so
that conf.mem[] banks can be reserved. currently, only pc and pc64
kernel use it, but otherwise the implementation is portable.
ramdisks are not zeroed when allocated, so that the contents are
preserved across warm reboots.
to not waste memory, physical segments do not allocate Page structures
or populate the segment pte's anymore. theres also a new SG_CHACHED
attribute.
fpurestore() unconditionally changed fpstate to FPinactive when
the kernel used the FPU. but in the FPinit case, the registers are
not saved by mathemu(), resulting in all zero initialized registers
being loaded once userspace uses the FPU so the process would have
wrong MXCR value.
the index overflow check was wrong with using shifted value.
there appears to be confusion about the refresh flag of arpenter().
when we get an arp reply, it makes more sense to just refresh
waiting/existing entries instead creating a new one as we do not
know if we are going to communicate with the remote host in the future.
when we see an arp request for ourselfs however, we want to always
enter the senders address into the arp cache as it is likely the sender
attempts to communicate with us and with the arp entry, we can reply
immidiately.
reject senders from multicast/broadcast mac addresses. thats just silly.
we can get rid of the multicast/broadcast ip checks in ethermedium and
do it in arpenter() instead, checking the route type for the target to
see if its a non unicast target.
enforce strict separation of interface's arp entries by passing a
rlock'd ifc explicitely to arpenter, which we compare against the route
target interface. this makes sure arp/ndp replies only affect entries for
the receiving interface.
handle neighbor solicitation retransmission in nbsendsol() only. that is,
both ethermedium and the rxmitproc just call nbsendsol() which maintains
the timers and counters and handles the rotation on the re-transmission
chain.