Added a ver= field to the filter to distinguish the ip version.
By default, a filter is parsed as ipv6, and after parsing
proto, src and dst fields are converted to ipv4. When no
ver= field is specified, a ip version filter is implicitely
added and both protocols are parsed.
This change also gets rid of the fast compare types as the
filed might not be aligned correctly in the packet.
This also fixes the ifc= filter, as we have to check any
local address.
We used to just return the first address of the incoming
interface regardless of if the address matches the source
ip type and scope.
This change tries to find the best interface address that
will match the source ip so it can be used as a source
address when replying to the packet.
the page attribute table was initialized in mmuinit(), which is
too late for bootscreen(). So now we check for PAT support and
insert the write-combine entry early in cpuidentify().
this might have been the cause of some slow EFI framebuffers on
machines with overlapping or insufficient MTRR entries.
ipiput4() and ipiput6() are called with the incoming interface rlocked
while ipoput4() and ipoput6() also rlock() the outgoing interface once
a route has been found. it is common that the incoming and outgoing
interfaces are the same recusive rlocking().
the deadlock happens when a reader holds the rlock for the incoming interface,
then ip/ipconfig tries to add a new address, trying to wlock the interface.
as there are still active readers on the ifc, ip/ipconfig process gets queued
on the inteface RWlock.
now the reader finds the outgoing route which has the same interface as the
incoming packet and tries to rlock the ifc again. but now theres a writer
queued, so we also go to sleep waiting four outselfs to release the lock.
the solution is to never wait for the outgoing interface rlock, but instead
use non-queueing canrlock() and if it cannot be acquired, discard the packet.
do not touch s->map on SG_PHYSICAL type segments as they do
not have a pte map (s->mapsize == 0 && s->map == nil).
also remove the SG_PHYSICAL switch in freepte(), this is never
reached.
the calculation for the control endpoint0 output device context
missed the context size scaling shift, resulting in botched
stall handling as we would not read the correct endpoint status
value.
note, this calculation only affected control endpoint 0, which
was handled separately from all other endpoints.
spectacular bug. cmpswap() had a sign extension bug
using sign extending MOV to load the old compare
value and LDXRW using zero extension while the CMP
instruction compared 64 bit registers.
this caused cmpswap with negative old value always
to fail.
interestingly, libc's version of this function was
fine.
when reclaiming pages from an image, always reclaim all
the hash chains equally. that way, we avoid being biased
towards the chains at the start of the Image.pghash[] array.
images can be in two states: active or inactive. inactive
images are the ones which are not used by program while
active ones aare.
when reclaiming pages, we should try to reclaim pages
from inactive images first and only if that set becomes
exhausted attempt to release text pages and attempt to
reclaim pages from active images.
when we run out of Image structures, it makes only sense
to reclaim pages from inactive images, as reclaiming pages
from active ones will never free any Image structures.
change putimage() to require a image already locked and
make it unlock the image. this avoids many pointless
unlock()/lock() sequences as all callers of putimage()
already had the image locked.
looks like linux changed the device tree names for
the memory node:
4b17654f51 (diff-ac03c9402b807c11d42edc9e8d03dfc7)
this fixes the memory size detection with latest firmware
on raspberry pi4-b (4GB) for kenji.