This replaces the memory map code for both pc and pc64
kernels with a unified implementation using the new
portable memory map code.
The main motivation is to be robust against broken
e820 memory maps by the bios and delay the Conf.mem[]
allocation after archinit(), so mp and acpi tables
can be reserved and excluded from user memory.
There are a few changes:
new memreserve() function has been added for archinit()
to reserve bios and acpi tables.
upareserve() has been replaced by upaalloc(), which now
has an address argument.
umbrwmalloc() and umbmalloc() have been replaced by
umballoc().
both upaalloc() and umballoc() return physical addresses
or -1 on error. the physical address -1 is now used as
a sentinel value instead of 0 when dealing with physical
addresses.
archmp and archacpi now always use vmap() to access
the bios tables and reserve the ranges. more overflow
checks have been added.
ramscan() has been rewritten using vmap().
to handle the population of kernel memory, pc and pc64
now have pmap() and punmap() functions to do permanent
mappings.
This is a generic memory map for physical addresses. Entries
can be added with memmapadd() giving a range and a type.
Ranges can be allocated and freed from the map. The code
automatically resolves overlapping ranges by type priority.
Fix the inconsistent use of ether->mem. Always use physical
addresses. Let ether8390 convert to virtual addresses using
KADDR() when we have to copy data in/out.
the previous mkfile had a sneaky hack that would use
sed to delete the first 2 lines of hex output to strip
the 32 byte long a.out header for apbootstrap and rebootcode.
use 8l -H3 flag to strip the header from the output file.
the rc & operator changes stdin to /dev/null, so we
have to do the <[0=1] inside the {}
this never showed up as an issue because many
fileservers just read 9p messages from standard
output.
when the control mountpoint side gets removed, close
mount channel immediately. this is usefull for implementing
automatic cleanup with ORCLOSE create mode.
allow reading the control file of a process and return
its pid number. if the process has exited, return an error.
this can be usefull as a way to test if a process is
still alive. and also makes it behave similar to
network protocol directories.
another side effect is that processes who erroneously
open the ctl file ORDWR would be allowed todo so as
along as they have write permission and the process is
not a kernel process.
progarg[0] can be assigned to elem directly as it is a
copy in kernel memory, so the char proelem[64] buffer
is not neccesary.
do the close-on-exit outside of the segment lock. there
is no reason to keep the segment table locked.
the user buffer could be changed while we parse it resulting
in a different number of watchpoints than initially calculated.
so add a check to the parse loop so we wont overflow the
watchpoint array.
in case the calling process changes its arguments under us, it could
happen that the final argument string lengths become bigger than
initially calculated. this is fine as we still make sure we wont
overflow the stack segment, but we could overrun into the tos
structure at the end of the stack. so change the limit to the
base of the tos, not the end of the stack segment.
writes to /proc/n/notepg and /proc/n/note should be able to write
at ERRMAX-1 bytes, not ERRMAX-2.
simplify write to /proc/n/args by just copying to local buf first
and then doing a kstrdup(). the value of Proc.nargs does not matter
when Proc.setargs is 1.
devproc assumes that when we hold the Proc.debug qlock,
the process will be prevented from exiting. but there is
another race where the process has already exited and
the Proc* slot gets reused. to solve this, on process
creation we also have to acquire the debug qlock while
initializing the fields of the process. this also means
newproc() should only initialize fields *not* protected
by the debug qlock.
always acquire the Proc.debug qlock when changing strings
in the proc structure to avoid doublefree on concurrent
update. for changing the user string, we add a procsetuser()
function that does this for auth.c and devcap.
remove pgrpnote() from pgrp.c and replace by static
postnotepg() in devproc.
avoid the assumption that the Proc* entries returned by
proctab() are continuous.
fixed devproc permission issues:
- make sure only eve can access /proc/trace
- none should only be allowed to read its own /proc/n/text
- move Proc.kp checks into procopen()
pid reuse was not handled correctly, as we where only
checking if a pid had a living process, but there still
could be processes expecting a particular parentpid or
noteid.
this is now addressed with reference counted Pid
structures which are organized in a hash table.
read access to the hash table does not require locks
which will be usefull for dtracy later.
replace machine specific userinit() by a portable
implemntation that uses kproc() to create the first
process. the initcode text is mapped using kmap(),
so there is no need for machine specific tmpmap()
functions.
initcode stack preparation should be done in init0()
where the stack is mapped and can be accessed directly.
replacing the machine specific userinit() allows some
big simplifications as sysrfork() and kproc() are now
the only callers of newproc() and we can avoid initializing
fields that we know are being initialized by these
callers.
rename autogenerated init.h and reboot.h headers.
the initcode[] and rebootcode[] blobs are now in *.i
files and hex generation was moved to portmkfile. the
machine specific mkfile only needs to specify how to
build rebootcode.out and initcode.out.
to prevent deadlock on media unbind (which is called with
the interface wlock()'ed), the medias reader processes
that unbind was waiting for used to discard packets when
the interface could not be rlocked.
this has the unfortunate side effect that when we change
addresses on a interface that packets are getting lost.
this is problematic for the processing of ipv6 router
advertisements when multiple RA's are getting received
in quick succession.
this change removes that packet dropping behaviour and
instead changes the unbind process to avoid the deadlock
by wunlock()ing the interface temporarily while waiting
for the reader processes to finish. the interface media
is also changed to the mullmedium before unlocking (see
the comment).
comparing m with MACHP() is wrong as m is a constant on 386.
add procflushothers(), which flushes all processes except up
using common procflushmmu() routine.
procflushmmu() returns once all *OTHER* processors that had
matching processes running on them flushed ther tlb/mmu state.
the caller of procflush...() takes care of flushing "up" by
calling flushmmu() later.
if the current process matched, then that means m->flushmmu
would be set, and hzclock() would call flushmmu() again.
to avoid this, we now check up->newtlb in addition to m->flushmmu
in hzclock() before calling flushmmu().
we also maintain information on which process on what processor
to wait for locally, which helps making progress when multiple
procflushmmu()'s are running concurrently.
in addition, this makes the wait condition for procflushmmu()
more sophisticated, by validating if the processor still runs
the selected process and only if it matchatches, considers
the MACHP(nm)->flushmmu flag.
the change to support no-execute bits broke the original
raspberry pi1, as it uses backwards compatible page table
format.
to use the XN bit, subpage AP bits have to be disabled
using the XP bit in CP15 Control Register c1 Bit 23.
when a process does an exec syscall, procsetup() is called and
we have to disable the debug watchpoint registers. just clearing
p->dr is not enougth as we are not going thru a procsave() and
procrestore() cycle which would disable and reload the saved
debug registers.
instead of clearing debug registers in procfork(), we should
clear the saved debug registers before a process goes to die
(pexit() calls sched() with up->state = Moribund) as the Proc
structure can get reused for kernel processes (kproc) which
never call procfork() and would therefore have debug registers
loaded.