mirror of
https://github.com/Stability-AI/stablediffusion.git
synced 2025-01-05 14:18:19 +00:00
165 lines
No EOL
6.6 KiB
Python
165 lines
No EOL
6.6 KiB
Python
import subprocess
|
|
|
|
import torch
|
|
import numpy as np
|
|
import typing
|
|
from PIL import Image
|
|
from omegaconf import OmegaConf
|
|
from einops import repeat, rearrange
|
|
from pytorch_lightning import seed_everything
|
|
from imwatermark import WatermarkEncoder
|
|
|
|
from scripts.txt2img import put_watermark
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
from ldm.models.diffusion.ddpm import LatentUpscaleDiffusion, LatentUpscaleFinetuneDiffusion
|
|
from ldm.util import exists, instantiate_from_config
|
|
|
|
torch.set_grad_enabled(False)
|
|
|
|
|
|
from cog import BasePredictor, Path, Input
|
|
|
|
class Predictor(BasePredictor):
|
|
def setup(self):
|
|
subprocess.run(["mkdir", "/root/.cache/huggingface"])
|
|
subprocess.run(["mkdir", "/root/.cache/huggingface/hub"])
|
|
subprocess.run(["cp", "-r", "models--laion--CLIP-ViT-H-14-laion2B-s32B-b79K", "/root/.cache/huggingface/hub"])
|
|
subprocess.run(["pip3", "install", "-e", "."])
|
|
config = OmegaConf.load('configs/stable-diffusion/x4-upscaling.yaml')
|
|
model = instantiate_from_config(config.model)
|
|
model.load_state_dict(torch.load('x4-upscaler-ema.ckpt')["state_dict"], strict=False)
|
|
|
|
device = torch.device("cuda:0")
|
|
model = model.to(device)
|
|
self.sampler = DDIMSampler(model)
|
|
|
|
def predict(
|
|
self,
|
|
input_image: Path = Input(default="Image to upscale (Currently memory is not sufficient for 512x512 inputs)"),
|
|
# scale: float = Input(description="Number of denoising steps", ge=0.1, le=4.0, default=4.0),
|
|
ddim_steps: int = Input(description="Number of denoising steps", ge=2, le=250., default=50),
|
|
ddim_eta: float = Input(description="Upscale factor", ge=0., le=1.0, default=0.),
|
|
seed: int = Input(description="Integer seed", default=0),
|
|
) -> typing.List[Path]:
|
|
torch.cuda.empty_cache()
|
|
ddim_steps = int(ddim_steps)
|
|
ddim_eta = float(ddim_eta)
|
|
seed = int(seed)
|
|
num_outputs = 1
|
|
scale = 9.0
|
|
|
|
image = Image.open(str(input_image))
|
|
w, h = image.size
|
|
width, height = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
|
|
image = image.resize((width, height))
|
|
|
|
noise_level = None
|
|
if isinstance(self.sampler.model, LatentUpscaleDiffusion):
|
|
# TODO: make this work for all models
|
|
noise_level = 20 # , min_value=0, max_value=350, value=20)
|
|
noise_level = torch.Tensor(num_outputs * [noise_level]).to(self.sampler.model.device).long()
|
|
|
|
self.sampler.make_schedule(ddim_steps, ddim_eta=ddim_eta, verbose=True)
|
|
|
|
scaling_prompt = "a high quality professional photograph"
|
|
result = paint(
|
|
sampler=self.sampler,
|
|
image=image,
|
|
prompt=scaling_prompt,
|
|
seed=seed,
|
|
scale=scale,
|
|
h=height, w=width, steps=ddim_steps,
|
|
num_samples=num_outputs,
|
|
noise_level=noise_level,
|
|
eta=ddim_eta
|
|
)
|
|
|
|
outputs = []
|
|
for i, image in enumerate(result):
|
|
path = f"output-{i}.png"
|
|
outputs.append(Path(path))
|
|
image.save(path)
|
|
return outputs
|
|
|
|
|
|
def make_batch_sd(
|
|
image,
|
|
txt,
|
|
device,
|
|
num_samples=1,
|
|
):
|
|
image = np.array(image.convert("RGB"))
|
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
|
batch = {
|
|
"lr": rearrange(image, 'h w c -> 1 c h w'),
|
|
"txt": num_samples * [txt],
|
|
}
|
|
batch["lr"] = repeat(batch["lr"].to(device=device), "1 ... -> n ...", n=num_samples)
|
|
return batch
|
|
|
|
|
|
def make_noise_augmentation(model, batch, noise_level=None):
|
|
x_low = batch[model.low_scale_key]
|
|
x_low = x_low.to(memory_format=torch.contiguous_format).float()
|
|
x_aug, noise_level = model.low_scale_model(x_low, noise_level)
|
|
return x_aug, noise_level
|
|
|
|
|
|
def paint(sampler, image, prompt, seed, scale, h, w, steps, num_samples=1, callback=None, eta=0., noise_level=None):
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
|
model = sampler.model
|
|
seed_everything(seed)
|
|
prng = np.random.RandomState(seed)
|
|
start_code = prng.randn(num_samples, model.channels, h , w)
|
|
start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)
|
|
|
|
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
|
|
wm = "SDV2"
|
|
wm_encoder = WatermarkEncoder()
|
|
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
|
|
with torch.no_grad(),\
|
|
torch.autocast("cuda"):
|
|
batch = make_batch_sd(image, txt=prompt, device=device, num_samples=num_samples)
|
|
c = model.cond_stage_model.encode(batch["txt"])
|
|
c_cat = list()
|
|
if isinstance(model, LatentUpscaleFinetuneDiffusion):
|
|
for ck in model.concat_keys:
|
|
cc = batch[ck]
|
|
if exists(model.reshuffle_patch_size):
|
|
assert isinstance(model.reshuffle_patch_size, int)
|
|
cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
|
|
p1=model.reshuffle_patch_size, p2=model.reshuffle_patch_size)
|
|
c_cat.append(cc)
|
|
c_cat = torch.cat(c_cat, dim=1)
|
|
# cond
|
|
cond = {"c_concat": [c_cat], "c_crossattn": [c]}
|
|
# uncond cond
|
|
uc_cross = model.get_unconditional_conditioning(num_samples, "")
|
|
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
|
|
elif isinstance(model, LatentUpscaleDiffusion):
|
|
x_augment, noise_level = make_noise_augmentation(model, batch, noise_level)
|
|
cond = {"c_concat": [x_augment], "c_crossattn": [c], "c_adm": noise_level}
|
|
# uncond cond
|
|
uc_cross = model.get_unconditional_conditioning(num_samples, "")
|
|
uc_full = {"c_concat": [x_augment], "c_crossattn": [uc_cross], "c_adm": noise_level}
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
shape = [model.channels, h, w]
|
|
samples, intermediates = sampler.sample(
|
|
steps,
|
|
num_samples,
|
|
shape,
|
|
cond,
|
|
verbose=False,
|
|
eta=eta,
|
|
unconditional_guidance_scale=scale,
|
|
unconditional_conditioning=uc_full,
|
|
x_T=start_code,
|
|
callback=callback
|
|
)
|
|
with torch.no_grad():
|
|
x_samples_ddim = model.decode_first_stage(samples)
|
|
result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
|
result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
|
|
return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result] |