mirror of
https://github.com/Stability-AI/stablediffusion.git
synced 2024-12-22 07:34:58 +00:00
Add Replicate Demo
This commit is contained in:
parent
47b6b607fd
commit
95d65454df
3 changed files with 197 additions and 0 deletions
|
@ -175,6 +175,8 @@ After [downloading the weights](https://huggingface.co/stabilityai/stable-diffus
|
|||
python scripts/gradio/superresolution.py configs/stable-diffusion/x4-upscaling.yaml <path-to-checkpoint>
|
||||
```
|
||||
|
||||
or try it on Replicate online demo <a href="https://replicate.com/arielreplicate/stable_diffusion2_upscaling"><img src="https://replicate.com/arielreplicate/stable_diffusion2_upscaling/badge"></a>
|
||||
|
||||
or
|
||||
|
||||
```
|
||||
|
|
30
cog.yaml
Normal file
30
cog.yaml
Normal file
|
@ -0,0 +1,30 @@
|
|||
build:
|
||||
gpu: true
|
||||
cuda: "11.3"
|
||||
python_version: 3.8
|
||||
system_packages:
|
||||
- libgl1-mesa-glx
|
||||
- libglib2.0-0
|
||||
python_packages:
|
||||
- torch==1.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
|
||||
# - torchvision==0.13.1+cu113--extra-index-url https://download.pytorch.org/whl/cu113
|
||||
- albumentations==1.3.0
|
||||
- open-clip-torch==2.7.0
|
||||
- opencv-python==4.6.0.66
|
||||
- imageio==2.22.2
|
||||
- opencv-python==4.6.0.66
|
||||
- imageio-ffmpeg==0.4.2
|
||||
- pytorch-lightning==1.7.7
|
||||
- omegaconf==2.1.1
|
||||
- test-tube==0.7.5
|
||||
- einops==0.3.0
|
||||
- transformers==4.19.2
|
||||
- webdataset==0.2.5
|
||||
- kornia==0.6
|
||||
# - open_clip_torch==2.0.2
|
||||
- invisible-watermark==0.1.5
|
||||
# - streamlit-drawable-canvas==0.8.0
|
||||
- torchmetrics==0.10.2
|
||||
|
||||
|
||||
predict: "scripts/replicate/predict.py:Predictor"
|
165
scripts/replicate/predict.py
Normal file
165
scripts/replicate/predict.py
Normal file
|
@ -0,0 +1,165 @@
|
|||
import subprocess
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
import typing
|
||||
from PIL import Image
|
||||
from omegaconf import OmegaConf
|
||||
from einops import repeat, rearrange
|
||||
from pytorch_lightning import seed_everything
|
||||
from imwatermark import WatermarkEncoder
|
||||
|
||||
from scripts.txt2img import put_watermark
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.ddpm import LatentUpscaleDiffusion, LatentUpscaleFinetuneDiffusion
|
||||
from ldm.util import exists, instantiate_from_config
|
||||
|
||||
torch.set_grad_enabled(False)
|
||||
|
||||
|
||||
from cog import BasePredictor, Path, Input
|
||||
|
||||
class Predictor(BasePredictor):
|
||||
def setup(self):
|
||||
subprocess.run(["mkdir", "/root/.cache/huggingface"])
|
||||
subprocess.run(["mkdir", "/root/.cache/huggingface/hub"])
|
||||
subprocess.run(["cp", "-r", "models--laion--CLIP-ViT-H-14-laion2B-s32B-b79K", "/root/.cache/huggingface/hub"])
|
||||
subprocess.run(["pip3", "install", "-e", "."])
|
||||
config = OmegaConf.load('configs/stable-diffusion/x4-upscaling.yaml')
|
||||
model = instantiate_from_config(config.model)
|
||||
model.load_state_dict(torch.load('x4-upscaler-ema.ckpt')["state_dict"], strict=False)
|
||||
|
||||
device = torch.device("cuda:0")
|
||||
model = model.to(device)
|
||||
self.sampler = DDIMSampler(model)
|
||||
|
||||
def predict(
|
||||
self,
|
||||
input_image: Path = Input(default="Image to upscale (Currently memory is not sufficient for 512x512 inputs)"),
|
||||
# scale: float = Input(description="Number of denoising steps", ge=0.1, le=4.0, default=4.0),
|
||||
ddim_steps: int = Input(description="Number of denoising steps", ge=2, le=250., default=50),
|
||||
ddim_eta: float = Input(description="Upscale factor", ge=0., le=1.0, default=0.),
|
||||
seed: int = Input(description="Integer seed", default=0),
|
||||
) -> typing.List[Path]:
|
||||
torch.cuda.empty_cache()
|
||||
ddim_steps = int(ddim_steps)
|
||||
ddim_eta = float(ddim_eta)
|
||||
seed = int(seed)
|
||||
num_outputs = 1
|
||||
scale = 9.0
|
||||
|
||||
image = Image.open(str(input_image))
|
||||
w, h = image.size
|
||||
width, height = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
|
||||
image = image.resize((width, height))
|
||||
|
||||
noise_level = None
|
||||
if isinstance(self.sampler.model, LatentUpscaleDiffusion):
|
||||
# TODO: make this work for all models
|
||||
noise_level = 20 # , min_value=0, max_value=350, value=20)
|
||||
noise_level = torch.Tensor(num_outputs * [noise_level]).to(self.sampler.model.device).long()
|
||||
|
||||
self.sampler.make_schedule(ddim_steps, ddim_eta=ddim_eta, verbose=True)
|
||||
|
||||
scaling_prompt = "a high quality professional photograph"
|
||||
result = paint(
|
||||
sampler=self.sampler,
|
||||
image=image,
|
||||
prompt=scaling_prompt,
|
||||
seed=seed,
|
||||
scale=scale,
|
||||
h=height, w=width, steps=ddim_steps,
|
||||
num_samples=num_outputs,
|
||||
noise_level=noise_level,
|
||||
eta=ddim_eta
|
||||
)
|
||||
|
||||
outputs = []
|
||||
for i, image in enumerate(result):
|
||||
path = f"output-{i}.png"
|
||||
outputs.append(Path(path))
|
||||
image.save(path)
|
||||
return outputs
|
||||
|
||||
|
||||
def make_batch_sd(
|
||||
image,
|
||||
txt,
|
||||
device,
|
||||
num_samples=1,
|
||||
):
|
||||
image = np.array(image.convert("RGB"))
|
||||
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
||||
batch = {
|
||||
"lr": rearrange(image, 'h w c -> 1 c h w'),
|
||||
"txt": num_samples * [txt],
|
||||
}
|
||||
batch["lr"] = repeat(batch["lr"].to(device=device), "1 ... -> n ...", n=num_samples)
|
||||
return batch
|
||||
|
||||
|
||||
def make_noise_augmentation(model, batch, noise_level=None):
|
||||
x_low = batch[model.low_scale_key]
|
||||
x_low = x_low.to(memory_format=torch.contiguous_format).float()
|
||||
x_aug, noise_level = model.low_scale_model(x_low, noise_level)
|
||||
return x_aug, noise_level
|
||||
|
||||
|
||||
def paint(sampler, image, prompt, seed, scale, h, w, steps, num_samples=1, callback=None, eta=0., noise_level=None):
|
||||
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
model = sampler.model
|
||||
seed_everything(seed)
|
||||
prng = np.random.RandomState(seed)
|
||||
start_code = prng.randn(num_samples, model.channels, h , w)
|
||||
start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)
|
||||
|
||||
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
|
||||
wm = "SDV2"
|
||||
wm_encoder = WatermarkEncoder()
|
||||
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
|
||||
with torch.no_grad(),\
|
||||
torch.autocast("cuda"):
|
||||
batch = make_batch_sd(image, txt=prompt, device=device, num_samples=num_samples)
|
||||
c = model.cond_stage_model.encode(batch["txt"])
|
||||
c_cat = list()
|
||||
if isinstance(model, LatentUpscaleFinetuneDiffusion):
|
||||
for ck in model.concat_keys:
|
||||
cc = batch[ck]
|
||||
if exists(model.reshuffle_patch_size):
|
||||
assert isinstance(model.reshuffle_patch_size, int)
|
||||
cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
|
||||
p1=model.reshuffle_patch_size, p2=model.reshuffle_patch_size)
|
||||
c_cat.append(cc)
|
||||
c_cat = torch.cat(c_cat, dim=1)
|
||||
# cond
|
||||
cond = {"c_concat": [c_cat], "c_crossattn": [c]}
|
||||
# uncond cond
|
||||
uc_cross = model.get_unconditional_conditioning(num_samples, "")
|
||||
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
|
||||
elif isinstance(model, LatentUpscaleDiffusion):
|
||||
x_augment, noise_level = make_noise_augmentation(model, batch, noise_level)
|
||||
cond = {"c_concat": [x_augment], "c_crossattn": [c], "c_adm": noise_level}
|
||||
# uncond cond
|
||||
uc_cross = model.get_unconditional_conditioning(num_samples, "")
|
||||
uc_full = {"c_concat": [x_augment], "c_crossattn": [uc_cross], "c_adm": noise_level}
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
shape = [model.channels, h, w]
|
||||
samples, intermediates = sampler.sample(
|
||||
steps,
|
||||
num_samples,
|
||||
shape,
|
||||
cond,
|
||||
verbose=False,
|
||||
eta=eta,
|
||||
unconditional_guidance_scale=scale,
|
||||
unconditional_conditioning=uc_full,
|
||||
x_T=start_code,
|
||||
callback=callback
|
||||
)
|
||||
with torch.no_grad():
|
||||
x_samples_ddim = model.decode_first_stage(samples)
|
||||
result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
|
||||
return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]
|
Loading…
Reference in a new issue