Add Replicate Demo

This commit is contained in:
ariel 2022-12-23 10:16:09 +02:00
parent 47b6b607fd
commit 95d65454df
3 changed files with 197 additions and 0 deletions

View file

@ -175,6 +175,8 @@ After [downloading the weights](https://huggingface.co/stabilityai/stable-diffus
python scripts/gradio/superresolution.py configs/stable-diffusion/x4-upscaling.yaml <path-to-checkpoint>
```
or try it on Replicate online demo <a href="https://replicate.com/arielreplicate/stable_diffusion2_upscaling"><img src="https://replicate.com/arielreplicate/stable_diffusion2_upscaling/badge"></a>
or
```

30
cog.yaml Normal file
View file

@ -0,0 +1,30 @@
build:
gpu: true
cuda: "11.3"
python_version: 3.8
system_packages:
- libgl1-mesa-glx
- libglib2.0-0
python_packages:
- torch==1.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
# - torchvision==0.13.1+cu113--extra-index-url https://download.pytorch.org/whl/cu113
- albumentations==1.3.0
- open-clip-torch==2.7.0
- opencv-python==4.6.0.66
- imageio==2.22.2
- opencv-python==4.6.0.66
- imageio-ffmpeg==0.4.2
- pytorch-lightning==1.7.7
- omegaconf==2.1.1
- test-tube==0.7.5
- einops==0.3.0
- transformers==4.19.2
- webdataset==0.2.5
- kornia==0.6
# - open_clip_torch==2.0.2
- invisible-watermark==0.1.5
# - streamlit-drawable-canvas==0.8.0
- torchmetrics==0.10.2
predict: "scripts/replicate/predict.py:Predictor"

View file

@ -0,0 +1,165 @@
import subprocess
import torch
import numpy as np
import typing
from PIL import Image
from omegaconf import OmegaConf
from einops import repeat, rearrange
from pytorch_lightning import seed_everything
from imwatermark import WatermarkEncoder
from scripts.txt2img import put_watermark
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.ddpm import LatentUpscaleDiffusion, LatentUpscaleFinetuneDiffusion
from ldm.util import exists, instantiate_from_config
torch.set_grad_enabled(False)
from cog import BasePredictor, Path, Input
class Predictor(BasePredictor):
def setup(self):
subprocess.run(["mkdir", "/root/.cache/huggingface"])
subprocess.run(["mkdir", "/root/.cache/huggingface/hub"])
subprocess.run(["cp", "-r", "models--laion--CLIP-ViT-H-14-laion2B-s32B-b79K", "/root/.cache/huggingface/hub"])
subprocess.run(["pip3", "install", "-e", "."])
config = OmegaConf.load('configs/stable-diffusion/x4-upscaling.yaml')
model = instantiate_from_config(config.model)
model.load_state_dict(torch.load('x4-upscaler-ema.ckpt')["state_dict"], strict=False)
device = torch.device("cuda:0")
model = model.to(device)
self.sampler = DDIMSampler(model)
def predict(
self,
input_image: Path = Input(default="Image to upscale (Currently memory is not sufficient for 512x512 inputs)"),
# scale: float = Input(description="Number of denoising steps", ge=0.1, le=4.0, default=4.0),
ddim_steps: int = Input(description="Number of denoising steps", ge=2, le=250., default=50),
ddim_eta: float = Input(description="Upscale factor", ge=0., le=1.0, default=0.),
seed: int = Input(description="Integer seed", default=0),
) -> typing.List[Path]:
torch.cuda.empty_cache()
ddim_steps = int(ddim_steps)
ddim_eta = float(ddim_eta)
seed = int(seed)
num_outputs = 1
scale = 9.0
image = Image.open(str(input_image))
w, h = image.size
width, height = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
image = image.resize((width, height))
noise_level = None
if isinstance(self.sampler.model, LatentUpscaleDiffusion):
# TODO: make this work for all models
noise_level = 20 # , min_value=0, max_value=350, value=20)
noise_level = torch.Tensor(num_outputs * [noise_level]).to(self.sampler.model.device).long()
self.sampler.make_schedule(ddim_steps, ddim_eta=ddim_eta, verbose=True)
scaling_prompt = "a high quality professional photograph"
result = paint(
sampler=self.sampler,
image=image,
prompt=scaling_prompt,
seed=seed,
scale=scale,
h=height, w=width, steps=ddim_steps,
num_samples=num_outputs,
noise_level=noise_level,
eta=ddim_eta
)
outputs = []
for i, image in enumerate(result):
path = f"output-{i}.png"
outputs.append(Path(path))
image.save(path)
return outputs
def make_batch_sd(
image,
txt,
device,
num_samples=1,
):
image = np.array(image.convert("RGB"))
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
batch = {
"lr": rearrange(image, 'h w c -> 1 c h w'),
"txt": num_samples * [txt],
}
batch["lr"] = repeat(batch["lr"].to(device=device), "1 ... -> n ...", n=num_samples)
return batch
def make_noise_augmentation(model, batch, noise_level=None):
x_low = batch[model.low_scale_key]
x_low = x_low.to(memory_format=torch.contiguous_format).float()
x_aug, noise_level = model.low_scale_model(x_low, noise_level)
return x_aug, noise_level
def paint(sampler, image, prompt, seed, scale, h, w, steps, num_samples=1, callback=None, eta=0., noise_level=None):
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = sampler.model
seed_everything(seed)
prng = np.random.RandomState(seed)
start_code = prng.randn(num_samples, model.channels, h , w)
start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
wm = "SDV2"
wm_encoder = WatermarkEncoder()
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
with torch.no_grad(),\
torch.autocast("cuda"):
batch = make_batch_sd(image, txt=prompt, device=device, num_samples=num_samples)
c = model.cond_stage_model.encode(batch["txt"])
c_cat = list()
if isinstance(model, LatentUpscaleFinetuneDiffusion):
for ck in model.concat_keys:
cc = batch[ck]
if exists(model.reshuffle_patch_size):
assert isinstance(model.reshuffle_patch_size, int)
cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
p1=model.reshuffle_patch_size, p2=model.reshuffle_patch_size)
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
# cond
cond = {"c_concat": [c_cat], "c_crossattn": [c]}
# uncond cond
uc_cross = model.get_unconditional_conditioning(num_samples, "")
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
elif isinstance(model, LatentUpscaleDiffusion):
x_augment, noise_level = make_noise_augmentation(model, batch, noise_level)
cond = {"c_concat": [x_augment], "c_crossattn": [c], "c_adm": noise_level}
# uncond cond
uc_cross = model.get_unconditional_conditioning(num_samples, "")
uc_full = {"c_concat": [x_augment], "c_crossattn": [uc_cross], "c_adm": noise_level}
else:
raise NotImplementedError()
shape = [model.channels, h, w]
samples, intermediates = sampler.sample(
steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc_full,
x_T=start_code,
callback=callback
)
with torch.no_grad():
x_samples_ddim = model.decode_first_stage(samples)
result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]