We are doing IoCallDriver here, so the valid stack location should be
CurrentLocation <= Irp->StackCount (just a check for a completly incorrect value)
&& CurrentLocation > 1 (ensure that we have a place for another call)
CORE-17189
Co-authored-by: Thomas Faber <thomas.faber@reactos.org>
RtlGetNtProductType comes into two variants: one in user-mode that is exported for use from NTDLL layer and the kernel-mode that is used exclusively by the NT kernel. The kernel-mode variant of the function is not exported.
- Some "PartitionInfo->PartitionNumber = 0;" are ROS-specific hacks for
xHalIoAssignDriveLetters(), that should be fixed... Mark them as such.
- Un-hardcode some "magic" values (partition IDs, max number of
partition table entries, etc.).
- Use NULL instead of '0' for null-pointers.
- Fix some typos in comments.
Introduce the PiPerformSyncDeviceAction routine for queuing
synchronous device actions
Change all kernel code to use PiPerformSyncDeviceAction and
PiQueueDeviceAction for device enumeration
CORE-10456
Use single IOCTL (IOCTL_DISK_GET_DRIVE_GEOMETRY_EX) for retrieving
disk basic geometry information along with disk size.
Previous implementation used to issue two requests for that.
And rearrange them in more logical order.
This effectively splits the file, leaving public "Io" functions in
pnpmgr.c along with some things not related do device object management.
Functions which manipulate the device tree are left in devaction.c.
In future all these functions will only be accessed from
DeviceActionWorker.
While being public API, IoRequestDeviceEject and IoInvalidateDeviceState
have been moved to devaction.c as well. In next commits they will be
converted to DeviceActionWorker routines and their callers will be put
in pnpmgr.c
If SEH is used in a C trap handler, the exception frame will be
registered before the call to KiEnterTrap, which means we save
the wrong trap handler. We'll therefore also restore this wrong
frame for the excepting code, resulting in a stale SEH chain.
We avoid this problem by saving the handler in the assembly
trap entry code instead of from C. While SEH in a C trap handler
should now theoretically be safe, we still forbid it through
asserts in the C KiEnterTrap variants to make any potential
future problems more obvious. Should this functionality be
needed at some point and deemed safe, these asserts can then be
removed.
- Sync some INIT_FUNCTION with how they are used and what is already
specified in the headers.
Addendum to commit 85e5b5be (r49445).
- KdbpGetCommandLineSettings(): Remove INIT_FUNCTION.
Fix MSVC 2015 x86 custom build:
"...\ntoskrnl\kdbg\kdb.c(1699): error C2983: 'KdbpGetCommandLineSettings': all declarations must have an identical __declspec(code_seg(...))"
And may also fix obscure bugs when entering into the KDBG debugger.
This version (after .rsrc) works different than the
proper version I used for 0.4.12 (after .reloc).
Inserting after .rsrc is actually not correct, but Thomas believes it can
be used as a temporary trick to avoid random memory corruption upon
relocations of the kernel, caused by ROSBE-154.
I follow his advice, although when judging from practical tests only:
as long as we limit this script to NTOSKRNL like I do for releases
there have no negative consequences been observed in real life yet
even with the proper version of 0.4.12.
Up to now those problems have only been observed when used for drivers
MODULE TYPE sdk/cmake/gcc.cmake as well, like
it was tried for a moment in master 0.4.13-dev-609-g
c4d8e2a6e9
Using for drivers immediately did lead to BSODs like CORE-16183 and therefore was
mitigated in master by total disabling of the scripts for both,
kernel and drivers in
0.4.13-dev-621-g
36e9a6f8dd
To allow installing DVDWritenow without BSOD,
we need the script at least for ntoskrnl!
I committed this patch (after .rsrc) already into 0.4.13RC and 0.4.14RC.
- Add boot video color constants
- Refactor palette initialization
- Move some common stuff in right place
- Get rid of some magic constants and hardcoded values
- Get rid of TopDelta variable (calculated at compile time)
- Update SAL annotations
Addendum to 5f2ca473. CORE-16216 CORE-16219
According to PC-9801 Bible p. 50, divisor for PIT will become unsupported in some cases after having removed the fractional part. Replace 19200 value with 9600 which is supported by both 10 MHz and 8 MHz machines.
Remove RTC switch from configure.cmd, now MSVC runtime checks are
supposed to be enabled/disabled via CMake define (-DRUNTIME_CHECKS=1)
Prepare for adding more dynamic analysis options
If a thread calls MiInsertPageInFreeList after the zero page thread has
woken up from its wait but before it acquired the PFN lock,
MmZeroingPageEvent might get set again even though there is no additional
work to be done.
By setting MmZeroingPageThreadActive together with the event, the variable
correctly indicates for future callers that the zero thread will process
newly added free pages.
This partially reverts r72990.
This means we now correctly handle the DO_POWER_PAGABLE flag.
In particular, Windows's usbhub.sys calls KeDelayExecutionThread from a
power IRP dispatch routine. We now handle this correctly.
Useful functions for debugging IO and PNP managers:
PipDumpDeviceNodes() - displays information about a node(s) in the device tree;
PipDumpResourceRequirementsList() - displays information about a Io List;
PipDumpCmResourceList() - displays information about a Cm List
The tree list of devices (DEVICE_NODE structures) is perhaps the main one in the PnP manager. They also store information about the hardware resources required and assigned to devices.
These functions can help with debugging. For example, you can call PipDumpDeviceNodes() before and after device enumeration and compare the resulting information.
For PipDumpDeviceNodes() it is possible to optionally output:
- allocated resources and boot configuration resources
- resources required
- translated resources
It is possible to displays both a single node and the entire tree.
Optionally, you can display child nodes.
The information output format for resource lists is maximally compressed, since often the only debugging port is a monitor.
The DebugLevel parameter allows dumping in two modes:
0 - unconditional;
1 - if NDEBUG is not defined in "debug.c".
The SYSTEM_PD_SIZE constant should not be used to determine the page boundary for page tables. It is better to use the portable MiIsPteOnPdeBoundary() macro for this.
which implements the required functionality.
ntdll and ntoskrnl now have a wrapper for this, with SEH.
This protects the function against malformed / bad images,
whilst still being able to use the code in freeldr et al.
Idea from Thomas.
CORE-14857
- Improve the device action worker to support more than just a single action
- Move the action queue code from IoInvalidateDeviceRelations to a new function IopQueueDeviceAction.
Probe the data before allocating a copy buffer. Otherwise NtSetValueKey returns an unexpected status code in case of too large data size.
This fixes the NtSetValueKey ntdll api tests.
The initializer for WmipGuidObjectType does not set UseDefaultObject,
and it's possible for user mode to obtain a handle to a GUID object
with SYNCHRONIZE access. Therefore that handle can be passed to
NtWaitForSingleObject, which means it must start with a DISPATCHER_HEADER.
The trap frame is in a random location on the stack, and setting Esp0 there
wastes significant amounts of space and may lead to unexpected stack overflows.
Also use a more descriptive expression for the V86 members of the KTRAP_FRAME.
Revert "[NTOS] On DBG builds, fill pool allocations with 0xCD and freed pool with 0xDD"
This reverts commit 24f240be8a.
Revert "[NTOS] Add compile time option to trace callers of pool allocations"
This reverts commit 8b20755040.
Revert "WIP"
This reverts commit 8cfd5c601f.
Our legacy KD module is slowly being phased out for the more recent KD64
Kernel Debugger that supports WinDbg, but at the same time we must retain
support for GCC debugging and the KDBG interface.
For the time being few #ifdef _WINKD_ have been introduced in KD64 so that
some of its code/data does not completely get shared yet with the legacy KD,
until the latter becomes phased out.
KD Modifications:
=================
- Remove the implementation of NtQueryDebugFilterState() /
NtSetDebugFilterState() that now comes entirely from KD64.
- Remove KD variables that are now shared with KD64.
- Share common code with KD64: KdpMoveMemory(), KdpZeroMemory(),
KdpCopyMemoryChunks(), KdpPrint(), KdpPrompt().
- KDBG: Remove the duplicated KdpCopyMemoryChunks() function.
- In KdpServiceDispatcher() and KdpEnterDebuggerException(), call the
KdpPrint() worker function that correctly probes and captures its arguments.
- Temporarily stub out KdEnterDebugger() and KdExitDebugger() that is used
by the shared code, until KD is removed and only the KD64 version of these
functions remain.
- Re-implement the KD/KDBG KdpPrompt() function using a custom KdpPromptString()
helper compatible with KD64, that is called by the KD64 implementation of
KdpPrompt(). This KdpPromptString() helper now issues the prompt on all
the KD loggers: e.g. if you use both at the same time COM-port and SCREEN
debugging, the prompt will appear on both. Before that the prompt was always
being displayed on COM port even if e.g. a SCREEN-only debug session was used...
- ppc_irq.c: Fix the prototype of KdpServiceDispatcher().
KD64 Fixes:
===========
- Initialize the MaximumLength member of the counted STRING variables
before using them elsewhere.
- Get rid of alloca() within SEH block in KdpPrint() (addendum to 7b95fcf9).
- Add the ROS-specific handy dump commands in KdSystemDebugControl().
- KD64: Update the list of supported Debug Filter Masks (KdComponentTable)
with the more up-to-date one from KDBG, that includes some components
that have been added in Vista+, but some of which we also use in ReactOS.
- NtQueryDebugFilterState(), NtSetDebugFilterState() and KdpPrint():
Add the Vista+ behaviour or falling back to the DEFAULT component ID
settings for unknown Components (compiled in only wheen NTDDI_VERSION >= NTDDI_VISTA).
+ Remove redundant comments and update these functions with SAL2 annotations.
- KDBG: Add extra documentation for the debug filter components list.
- CONFIG: Load all the supported Debug Filter Masks settings from the
registry.
- Introduce KdpScreenAcquire() / KdpScreenRelease() helpers that allow
to correctly acquire or release the screen when using INBV for
"Screen-Mode" debugging.
- Introduce KdpAcquireLock() / KdpReleaseLock() helpers so as to reduce
the copy-pasted code required when acquiring spin-locks in the KD debug
logger functions.
- Close the opened KdpLogFileHandle file in the KdpInitDebugLog() logger
in case we failed to create the logger writer thread.
Also use explicit kernel-mode handle when opening the log file.
- static-ify some local variables, remove few hardcoded values, and
minor formatting.
- Correctly define the INIT_FUNCTION's.
CORE-16448, PR #2003. Supersedes PR #1997.
This commit supersedes commit 6c5c7809 (r54503).
The original code was checking for the NMI or Double-Fault TSS by
comparing the current stack-traced EIP address with their corresponding
trap handler address ranges. That method was actually buggy because
nothing was ensuring that the trap handlers were in the "expected" order
in the kernel binary (and in memory).
Instead, we now can handle completely generic nested TSSes, instead of
just the NMI or the Double-Fault ones.
The way we proceed is by performing the full stack backtrace of the
current TSS, then once finished we check whether this TSS is nested
(has a parent). If so we change the (cached) current TSS to the latter,
restarting the backtrace at the parent TSS' latest EIP.
Examples of stack backtraces:
=============================
- General Protection fault:
<snip>
*** Fatal System Error: 0x0000007f
(0x0000000D,0x00000000,0x00000000,0x00000000)
Entered debugger on embedded INT3 at 0x0008:0x80953528.
kdb:> bt
Eip:
<ntoskrnl.exe:153529 (sdk/lib/rtl/i386/debug_asm.S:57 (RtlpBreakWithStatusInstruction))>
Frames:
<ntoskrnl.exe:899b0 (ntoskrnl/ke/bug.c:1136 (KeBugCheckWithTf))>
<ntoskrnl.exe:134826 (ntoskrnl/ke/i386/exp.c:1161 (KeRaiseUserException))>
<ntoskrnl.exe:19ae67 (ntoskrnl/ke/i386/traphdlr.c:1282 (KiTrap0DHandler))>
<ntoskrnl.exe:19a840 (:0 (KiTrap0D))>
<ntoskrnl.exe:1925e6 (ntoskrnl/include/internal/i386/intrin_i.h:45 (KiInitMachineDependent))>
<ntoskrnl.exe:187688 (ntoskrnl/ke/krnlinit.c:305 (KeInitSystem))>
<ntoskrnl.exe:17fb2f (ntoskrnl/ex/init.c:1621 (Phase1InitializationDiscard))>
<ntoskrnl.exe:3247f (ntoskrnl/ex/init.c:2019 (Phase1Initialization))>
<ntoskrnl.exe:11c079 (ntoskrnl/ps/thread.c:156 (PspSystemThreadStartup))>
<ntoskrnl.exe:135c8a (ntoskrnl/ke/i386/thrdini.c:78 (KiThreadStartup))>
<ntoskrnl.exe:11c040 (ntoskrnl/ps/thread.c:141 (PspSystemThreadStartup))>
<5d8950ec>
Couldn't access memory at 0x83E58959!
</snip>
- Double-fault (manually triggered by removing the GP handler):
Note how the backtrace explicitly specifies the crossed TSS boundaries,
and the trace in the parent TSS is indeed consistent with the previous
example. Note also that log2lines (used here to completely resolve the
trace) failed to see KiTrap08Handler(), which has been instead mistaken
for KiTrap09().
<snip>
*** Fatal System Error: 0x0000007f
(0x00000008,0x8009C000,0x00000000,0x00000000)
Entered debugger on embedded INT3 at 0x0008:0x80953528.
kdb:> bt
[Active TSS 0x0050 @ 0x80A10CA0]
Eip:
<ntoskrnl.exe:153529 (sdk/lib/rtl/i386/debug_asm.S:57 (RtlpBreakWithStatusInstruction))>
Frames:
<ntoskrnl.exe:899b0 (ntoskrnl/ke/bug.c:1136 (KeBugCheckWithTf))>
<ntoskrnl.exe:19a1d8 (ntoskrnl/ke/i386/traphdlr.c:917 (KiTrap09))> // <-- Here, log2lines fails to see it's actually KiTrap08Handler.
<ntoskrnl.exe:19a145 (:0 (KiTrap08))>
[Parent TSS 0x0028 @ 0x8009C000]
<ntoskrnl.exe:1925e6 (ntoskrnl/include/internal/i386/intrin_i.h:45 (KiInitMachineDependent))>
<ntoskrnl.exe:187688 (ntoskrnl/ke/krnlinit.c:305 (KeInitSystem))>
<ntoskrnl.exe:17fb2f (ntoskrnl/ex/init.c:1621 (Phase1InitializationDiscard))>
<ntoskrnl.exe:3247f (ntoskrnl/ex/init.c:2019 (Phase1Initialization))>
<ntoskrnl.exe:11c079 (ntoskrnl/ps/thread.c:156 (PspSystemThreadStartup))>
<ntoskrnl.exe:135c8a (ntoskrnl/ke/i386/thrdini.c:78 (KiThreadStartup))>
<ntoskrnl.exe:11c040 (ntoskrnl/ps/thread.c:141 (PspSystemThreadStartup))>
<5d8950ec>
Couldn't access memory at 0x83E58959!
</snip>
This fixes a regression introduced in 5ab1cfc which
was causing Unix (BtrFS, ExtX, and so on) volumes not
to be assigned a drive letter assigned anymore. And
thus, they were no longer mounted and presented to the
users.
CORE-16499
- Import KdpCopyMemoryChunks() from kd64/kdapi.c, and re-implement
KdbpSafeReadMemory() and KdbpSafeWriteMemory() around it.
Note that these functions read virtual memory and are equivalent of
the kd64 KdpReadVirtualMemory() and KdpWriteVirtualMemory()
respectively.
- Get rid of the KdpEnableSafeMem() call in KdInitSystem().
- Adjust kd gdbstub.c wrapper in accordance.
We allow specifying manually the TSS selector number or its descriptor address,
and dump more information from the associated KTSS structure.
Also add the KdbpRetrieveTss() helper to retrieve the PKTSS from its
corresponding selector number. It will also be useful for future improvements.
As documented in https://docs.microsoft.com/fr-fr/windows-hardware/drivers/ddi/wdm/nf-wdm-exallocatepoolwithtag
pool tag "characters" must be a value in the range 0x20 (space) to 0x7E (tilde),
which happen indeed to be the range of printable (non-extended) ASCII characters.
(The display problem was originally caught while attempting to display
the pool tag 0x3a306847 corresponding to 'Gh0:', a win32ss GDIOBJ pool tag
encoded with macro GDIOBJ_POOL_TAG().)
The major change with this rewrite is the support for the mount
manager. Fstub will now assume that most of the devices are PnP
and that they are already registered to the mount manager.
It will thus ask the mount manager to assign the drive letter.
Fstub will keep assigning drive letters non mission critical devices
such as CDs, floppies and other removable devices.
See MountMgr:QueryPoints API test that will now return mount points :-).