reactos/subsystems/mvdm/ntvdm/bios/bios.c

161 lines
4.5 KiB
C
Raw Normal View History

/*
* COPYRIGHT: GPL - See COPYING in the top level directory
* PROJECT: ReactOS Virtual DOS Machine
* FILE: subsystems/mvdm/ntvdm/bios/bios.c
* PURPOSE: VDM BIOS Support Library
* PROGRAMMERS: Hermes Belusca-Maito (hermes.belusca@sfr.fr)
*/
/* INCLUDES *******************************************************************/
#include "ntvdm.h"
#define NDEBUG
#include <debug.h>
#include "emulator.h"
#include "cpu/callback.h"
#include "cpu/bop.h"
#include "bios.h"
#include "bios32/bios32.h"
#include "rom.h"
#include "umamgr.h"
#include "io.h"
#include "hardware/cmos.h"
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
#include <stdlib.h>
/* DEFINES ********************************************************************/
/* BOP Identifiers */
#define BOP_RESET 0x00 // Windows NTVDM (SoftPC) BIOS calls BOP 0x00
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
// to let the virtual machine perform the POST.
#define BOP_EQUIPLIST 0x11
#define BOP_GETMEMSIZE 0x12
/* PRIVATE VARIABLES **********************************************************/
static BOOLEAN Bios32Loaded = FALSE;
PBIOS_DATA_AREA Bda;
PBIOS_CONFIG_TABLE Bct;
/* PRIVATE FUNCTIONS **********************************************************/
[NTVDM] - Move all the hardware initialization to EmulatorInitialize (since emulator.c can be viewed as support functions for emulating a PC motherboard) --> PS2 and VGA go there. - Break bios.c into bios.c and kbdbios.c (the keyboard bios module) (according to the IBM documentation as well as other emulator sources or SeaBIOS or...). - Move Exception handling from int32.c to emulator.c, because it's something tight to the emulator, not to the interrupt system by itself (yet it happens that INT 00h to 07h are commonly set to some exception handlers). In the bios.c, initialize those vectors with the default exception handler. - Handling IRQs is done fully in bios.c now: introduce PicSetIRQMask and EnableHwIRQ helper functions (adapted from their equivalents from SeaBIOS) that allows the bios to set (and activate in the PIC) a given IRQ with its corresponding handler. Also introduce PicIRQComplete that serves as a PIC IRQ completer (i.e. sends the EOI to the right PIC(s)). - Continuing on that, at the moment I set dumb default PIC IRQ handlers for IRQ 08h - 0Fh and IRQ 70h - 77h). - By default I disable all the IRQs; there are then set on-demand with EnableHwIRQ. - Rework the POST (aka. BiosInitialize function): * the memory size is now get from the CMOS (as well as the extended memory size via INT 12h, AH=88h), * then we initialize the interrupts, * then platform hardware (ie. the chips) are initialized, * and finally the keyboard and video bioses. - As said before, move memory sizes into the CMOS. - Simplify video bios initialization. svn path=/branches/ntvdm/; revision=61796
2014-01-25 00:21:51 +00:00
/* PUBLIC FUNCTIONS ***********************************************************/
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
VOID WINAPI
WinNtVdmBiosReset(LPWORD Stack)
{
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
DisplayMessage(L"You are loading Windows NTVDM BIOS!\n");
// Bios32Post(Stack);
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
DisplayMessage(L"ReactOS NTVDM doesn't support Windows NTVDM BIOS at the moment. The VDM will shut down.");
EmulatorTerminate();
}
BOOLEAN
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
BiosInitialize(IN LPCSTR BiosFileName,
IN LPCSTR RomFiles OPTIONAL)
{
BOOLEAN Success = FALSE;
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
BOOLEAN Success2 = FALSE;
LPCSTR RomFile;
LPSTR ptr;
ULONG RomAddress;
CHAR RomFileName[MAX_PATH + 10 + 1];
/* Disable interrupts */
setIF(0);
/* Initialize the BDA and the BCT pointers */
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
Bda = (PBIOS_DATA_AREA)SEG_OFF_TO_PTR(BDA_SEGMENT , 0x0000);
// The BCT is found at F000:E6F5 for 100% compatible BIOSes.
Bct = (PBIOS_CONFIG_TABLE)SEG_OFF_TO_PTR(BIOS_SEGMENT, 0xE6F5);
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
/* Register the BIOS support BOPs */
RegisterBop(BOP_RESET, WinNtVdmBiosReset); // Needed for Windows NTVDM (SoftPC) BIOS.
RegisterBop(BOP_EQUIPLIST , BiosEquipmentService); // Needed by Windows NTVDM (SoftPC) BIOS
RegisterBop(BOP_GETMEMSIZE, BiosGetMemorySize); // and also NTDOS!!
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
if (BiosFileName == NULL)
{
Success = Bios32Loaded = Bios32Initialize();
}
else if (BiosFileName[0] != '\0')
{
PVOID BiosLocation = NULL;
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
Success = LoadBios(BiosFileName, &BiosLocation, NULL);
DPRINT1("BIOS file '%s' loading %s at address 0x%08x; GetLastError() = %u\n",
BiosFileName, Success ? "succeeded" : "failed", BiosLocation, GetLastError());
}
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
else // if (BiosFileName[0] == '\0')
{
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
/* Do nothing */
Success = TRUE;
}
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
/* Bail out now if we failed to load any BIOS file */
if (!Success) return FALSE;
/* Load optional ROMs */
if (RomFiles)
{
RomFile = RomFiles;
while (*RomFile)
{
strncpy(RomFileName, RomFile, ARRAYSIZE(RomFileName));
RomFileName[ARRAYSIZE(RomFileName)-1] = '\0';
ptr = strchr(RomFileName, '|'); // Since '|' is forbidden as a valid file name, we use it as a separator for the ROM address.
if (!ptr) goto Skip;
*ptr++ = '\0';
RomAddress = strtoul(ptr, NULL, 0); // ROM segment
RomAddress <<= 4; // Convert to real address
if (RomAddress == 0) goto Skip;
Success2 = LoadRom(RomFileName, (PVOID)RomAddress, NULL);
DPRINT1("ROM file '%s' loading %s at address 0x%08x; GetLastError() = %u\n",
RomFileName, Success2 ? "succeeded" : "failed", RomAddress, GetLastError());
Skip:
RomFile += strlen(RomFile) + 1;
}
}
[NTVDM] - Add some level of "Advanced debugging" (see ntvdm.h) which one can adjust to enable/disable debugging features inside NTVDM (this can be useful as long as NTVDM is under heavy bugfixing. When it will be more perfect, this stuff will be removed). - Add the possibility to load option ROMs at a given segment. Currently their list should be specified from inside ntvdm.c (in the BiosInitialize call), but I plan to make it available from a registry option (or via command-line for NTVDM-standalone mode). - Start to separate the initialization of "static" BIOS data (stuff that lives in ROM space) and initialization of "dynamic" BIOS data (eg. initializing the interrupt vector table, the BIOS data area at segment 40h, ...) so that we may be able to reuse part of our code to be able to more-or-less run external (16-bit) BIOSes, or the Windows NTVDM BIOS that uses BOPs to run some of its stuff in ntvdm in 32-bit (as we do for our 32-bit BIOS, except that *all* of our bios is 32-bit, not just some parts). Also, some file reorganization will be in order there soon... - Add video BIOS version information in memory so that tools such as Microsoft Diagnostics can correctly recognize our video BIOS (btw, we try to emulate the functionality of Cirrus' CL-GD5434). - Correctly put video BIOS ROM header (+ checksum) in memory so that it is recognized as such by diagnostics tools. - During BIOS POST, scan for ROMs starting segment 0xC000 (where video ROMs reside). - Store statically the BIOS configuration table. - Fix INT 16h, AH=12h "Get extended shift states" so that it correctly returns the state of right Ctrl and Alt keys. - Fix bit-setting state; report that our keyboard is 101/102 enhanced keyboard. - Correctly set the error return values (AH=86h and CF set) when a function of INT 15h is unsupported. - Implement INT 15h, AH=C9h "Get CPU Type and Mask Revision"; INT 1Ah, AH=02h "Get Real-Time Clock Time" and Ah=04h "Get Real-Time Clock Date" by reading the CMOS. - Implement CMOS century register support. svn path=/trunk/; revision=68598
2015-08-04 20:17:05 +00:00
/*
* Boot it up.
* The CPU is already in reset-mode so that
* CS:IP points to F000:FFF0 as required.
*/
// DisplayMessage(L"CS:IP=%04X:%04X", getCS(), getIP());
// setCS(0xF000);
// setIP(0xFFF0);
// /* Enable interrupts */
// setIF(1);
[NTVDM] EMS: - Introduce (and use) helpers for checking validity of EMS handles. - Do not hardcode the EMS page frame segment, but instead allow it to be changed (for now, it is still set to a default value; in the future, via some configuration file or via the registry). This is done by acquiring a UMB block (see after). XMS: - Implement functions 0x01 "Request HMA" and 0x02 "Release HMA". - Fix the return value of functions 0x04 "Global disable A20" and 0x08 "Query free Extended Memory"; simplify code of function 0x0B "Move EMB". - Halfplement function 0x0F "Reallocate Extended Memory Block" in the simple case of size reduction (size expansion is left to the programmer as an exercise :PP ) - Rewrite the UMB provider support (functions 0x10, 0x11, 0x12) by calling the Upper Memory Area manager helpers (see after) (this is closer to reality: UMBs are either provided by XMS driver itself, or by an EMS driver which hooks into the XMS driver chain -- as it is done with MS' himem+EMM386; sometimes all that stuff is contained inside one driver only --) instead of calling back into DOS. This is the DOS which calls XMS for getting the UMB blocks and initializing them! (and not the other way around as it was done in r68001!). NTVDM: - Introduce an "Upper Memory Area manager" which maintains a list of areas of upper memory (>= A000:0000 and <= FFFF:000F) that can be used as RAM blocks. It is intended to work closely with the NTVDM memory manager and be used by XMS for getting possible free UMBs, and by VDDs for implementing the VDDInclude/ExcludeMem APIs (which adds/remove blocks in/from the UMB pool; those are unaccessible to DOS if those APIs are called after NTVDM have been started, but are accessible by XMS). DOS: - Add a helper function for detecting early DOS arena corruptions (for debugging purposes only). - Make the DOS memory manager really UMB-compatible. This means: * not hardcoding the start of the UMB chain; * getting all the available UMB blocks from XMS and initializing them, marking the reserved blocks as read-only (with a correct header; reserved blocks are eg. VGA memory area, ROM blocks...). There is room for improvements obviously (see the FIXMEs in the code). Used documentation is mentioned in comments in the code. This commit should fix quite some apps, as well as it fixes corruptions of loaded ROMs in upper memory: that's how I came into working on fixing the UMB support. In other words, during those two last weeks, I was like in: http://i.imgur.com/zoWpqEB.gifv CORE-9969 #resolve svn path=/trunk/; revision=68586
2015-08-01 17:07:07 +00:00
/* Initialize the Upper Memory Area Manager */
if (!UmaMgrInitialize())
{
wprintf(L"FATAL: Failed to initialize the UMA manager.\n");
return FALSE;
}
return Success;
[NTVDM] - Move all the hardware initialization to EmulatorInitialize (since emulator.c can be viewed as support functions for emulating a PC motherboard) --> PS2 and VGA go there. - Break bios.c into bios.c and kbdbios.c (the keyboard bios module) (according to the IBM documentation as well as other emulator sources or SeaBIOS or...). - Move Exception handling from int32.c to emulator.c, because it's something tight to the emulator, not to the interrupt system by itself (yet it happens that INT 00h to 07h are commonly set to some exception handlers). In the bios.c, initialize those vectors with the default exception handler. - Handling IRQs is done fully in bios.c now: introduce PicSetIRQMask and EnableHwIRQ helper functions (adapted from their equivalents from SeaBIOS) that allows the bios to set (and activate in the PIC) a given IRQ with its corresponding handler. Also introduce PicIRQComplete that serves as a PIC IRQ completer (i.e. sends the EOI to the right PIC(s)). - Continuing on that, at the moment I set dumb default PIC IRQ handlers for IRQ 08h - 0Fh and IRQ 70h - 77h). - By default I disable all the IRQs; there are then set on-demand with EnableHwIRQ. - Rework the POST (aka. BiosInitialize function): * the memory size is now get from the CMOS (as well as the extended memory size via INT 12h, AH=88h), * then we initialize the interrupts, * then platform hardware (ie. the chips) are initialized, * and finally the keyboard and video bioses. - As said before, move memory sizes into the CMOS. - Simplify video bios initialization. svn path=/branches/ntvdm/; revision=61796
2014-01-25 00:21:51 +00:00
}
VOID
BiosCleanup(VOID)
[NTVDM] - Move all the hardware initialization to EmulatorInitialize (since emulator.c can be viewed as support functions for emulating a PC motherboard) --> PS2 and VGA go there. - Break bios.c into bios.c and kbdbios.c (the keyboard bios module) (according to the IBM documentation as well as other emulator sources or SeaBIOS or...). - Move Exception handling from int32.c to emulator.c, because it's something tight to the emulator, not to the interrupt system by itself (yet it happens that INT 00h to 07h are commonly set to some exception handlers). In the bios.c, initialize those vectors with the default exception handler. - Handling IRQs is done fully in bios.c now: introduce PicSetIRQMask and EnableHwIRQ helper functions (adapted from their equivalents from SeaBIOS) that allows the bios to set (and activate in the PIC) a given IRQ with its corresponding handler. Also introduce PicIRQComplete that serves as a PIC IRQ completer (i.e. sends the EOI to the right PIC(s)). - Continuing on that, at the moment I set dumb default PIC IRQ handlers for IRQ 08h - 0Fh and IRQ 70h - 77h). - By default I disable all the IRQs; there are then set on-demand with EnableHwIRQ. - Rework the POST (aka. BiosInitialize function): * the memory size is now get from the CMOS (as well as the extended memory size via INT 12h, AH=88h), * then we initialize the interrupts, * then platform hardware (ie. the chips) are initialized, * and finally the keyboard and video bioses. - As said before, move memory sizes into the CMOS. - Simplify video bios initialization. svn path=/branches/ntvdm/; revision=61796
2014-01-25 00:21:51 +00:00
{
[NTVDM] EMS: - Introduce (and use) helpers for checking validity of EMS handles. - Do not hardcode the EMS page frame segment, but instead allow it to be changed (for now, it is still set to a default value; in the future, via some configuration file or via the registry). This is done by acquiring a UMB block (see after). XMS: - Implement functions 0x01 "Request HMA" and 0x02 "Release HMA". - Fix the return value of functions 0x04 "Global disable A20" and 0x08 "Query free Extended Memory"; simplify code of function 0x0B "Move EMB". - Halfplement function 0x0F "Reallocate Extended Memory Block" in the simple case of size reduction (size expansion is left to the programmer as an exercise :PP ) - Rewrite the UMB provider support (functions 0x10, 0x11, 0x12) by calling the Upper Memory Area manager helpers (see after) (this is closer to reality: UMBs are either provided by XMS driver itself, or by an EMS driver which hooks into the XMS driver chain -- as it is done with MS' himem+EMM386; sometimes all that stuff is contained inside one driver only --) instead of calling back into DOS. This is the DOS which calls XMS for getting the UMB blocks and initializing them! (and not the other way around as it was done in r68001!). NTVDM: - Introduce an "Upper Memory Area manager" which maintains a list of areas of upper memory (>= A000:0000 and <= FFFF:000F) that can be used as RAM blocks. It is intended to work closely with the NTVDM memory manager and be used by XMS for getting possible free UMBs, and by VDDs for implementing the VDDInclude/ExcludeMem APIs (which adds/remove blocks in/from the UMB pool; those are unaccessible to DOS if those APIs are called after NTVDM have been started, but are accessible by XMS). DOS: - Add a helper function for detecting early DOS arena corruptions (for debugging purposes only). - Make the DOS memory manager really UMB-compatible. This means: * not hardcoding the start of the UMB chain; * getting all the available UMB blocks from XMS and initializing them, marking the reserved blocks as read-only (with a correct header; reserved blocks are eg. VGA memory area, ROM blocks...). There is room for improvements obviously (see the FIXMEs in the code). Used documentation is mentioned in comments in the code. This commit should fix quite some apps, as well as it fixes corruptions of loaded ROMs in upper memory: that's how I came into working on fixing the UMB support. In other words, during those two last weeks, I was like in: http://i.imgur.com/zoWpqEB.gifv CORE-9969 #resolve svn path=/trunk/; revision=68586
2015-08-01 17:07:07 +00:00
UmaMgrCleanup();
if (Bios32Loaded) Bios32Cleanup();
}
/* EOF */