reactos/reactos/ntoskrnl/mm/i386/page.c

2473 lines
59 KiB
C
Raw Normal View History

/* $Id$
*
* COPYRIGHT: See COPYING in the top level directory
* PROJECT: ReactOS kernel
* FILE: ntoskrnl/mm/i386/page.c
* PURPOSE: Low level memory managment manipulation
*
* PROGRAMMERS: David Welch (welch@cwcom.net)
*/
/* INCLUDES ***************************************************************/
#include <ntoskrnl.h>
#define NDEBUG
#include <internal/debug.h>
#if defined (ALLOC_PRAGMA)
#pragma alloc_text(INIT, MmInitGlobalKernelPageDirectory)
#pragma alloc_text(INIT, MiInitPageDirectoryMap)
#endif
/* GLOBALS *****************************************************************/
#define PA_BIT_PRESENT (0)
#define PA_BIT_READWRITE (1)
#define PA_BIT_USER (2)
#define PA_BIT_WT (3)
#define PA_BIT_CD (4)
#define PA_BIT_ACCESSED (5)
#define PA_BIT_DIRTY (6)
#define PA_BIT_GLOBAL (8)
#define PA_PRESENT (1 << PA_BIT_PRESENT)
#define PA_READWRITE (1 << PA_BIT_READWRITE)
#define PA_USER (1 << PA_BIT_USER)
#define PA_DIRTY (1 << PA_BIT_DIRTY)
#define PA_WT (1 << PA_BIT_WT)
#define PA_CD (1 << PA_BIT_CD)
#define PA_ACCESSED (1 << PA_BIT_ACCESSED)
#define PA_GLOBAL (1 << PA_BIT_GLOBAL)
#define PAGETABLE_MAP (0xc0000000)
#define PAGEDIRECTORY_MAP (0xc0000000 + (PAGETABLE_MAP / (1024)))
#define PAE_PAGEDIRECTORY_MAP (0xc0000000 + (PAGETABLE_MAP / (512)))
#define HYPERSPACE (Ke386Pae ? 0xc0800000 : 0xc0400000)
#define IS_HYPERSPACE(v) (((ULONG)(v) >= HYPERSPACE && (ULONG)(v) < HYPERSPACE + 0x400000))
ULONG MmGlobalKernelPageDirectory[1024];
ULONGLONG MmGlobalKernelPageDirectoryForPAE[2048];
#define PTE_TO_PFN(X) ((X) >> PAGE_SHIFT)
#define PFN_TO_PTE(X) ((X) << PAGE_SHIFT)
#define PAE_PTE_TO_PFN(X) (PAE_PAGE_MASK(X) >> PAGE_SHIFT)
#define PAE_PFN_TO_PTE(X) ((X) << PAGE_SHIFT)
#if defined(__GNUC__)
2002-06-04 David Welch <welch@whitehall1-5.seh.ox.ac.uk> * ntoskrnl/ke/i386/exp.c (KiDoubleFaultHandler): Print CR3 correctly. 2002-06-04 David Welch <welch@whitehall1-5.seh.ox.ac.uk> * ntoskrnl/include/internal/ps.h: Added KTHREAD_STACK_LIMIT definition. * ntoskrnl/ke/i386/tskswitch.S (Ki386ContextSwitch): Force all the pages of the kernel stack to be accessible from this process. 2002-06-04 David Welch <welch@cwcom.net> * ntoskrnl/cc/view.c (ReadCacheSegmentChain): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/cc/copy.c (CcRosCreateCacheSegment): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/cc/copy.c (CcFreeCachePage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/include/internal/mm.h: Changed prototypes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/include/internal/ps.h (KPROCESS): Changed type of page directory base to PHYSICAL_ADDRESS. * ntoskrnl/include/internal/i386/mm.h: Changed prototypes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/ke/kthread.c (KeFreeStackPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/ke/kthread.c (KeInitializeThread): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/ke/process.c (KeAttachProcess, KeDetachProcess): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/ke/kernel.c (PcrPages, KeApplicationProcessorInit): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/balance.c (MM_ALLOCATION_REQUEST): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/balance.c (MmReleasePageMemoryConsumer): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/balance.c (MmRequestPageMemoryConsumer): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/cont.c (MmFreeContinuousPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/cont.c (MmAllocateContinuousAlignedMemory): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/freelist.c (MmTransferOwnershipPage, MmGetLRUFirstUserPage, MmGetLRUNextUserPage, MmGetContinuousPages, MmInitializePageList, MmSetFlagsPage, MmSetRmapListHeadPage, MmGetRmapListHeadPage, MmMarkPageMapped, MmMarkPageUnmapped, MmGetFlagsPage, MmSetSavedSwapEntryPage, MmGetSavedSwapEntryPage, MmReferencePage, MmGetReferenceCountPage, MmIsUsablePage, MmDereferencePage, MmGetLockCountPage, MmLockPage, MmUnlockPage, MmAllocPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/iospace.c (MmMapIoSpace): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/kmap.c (ExAllocatePage, MiZeroPage, MiCopyFromUserPage, ExAllocatePageWithPhysPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/marea.c (MmFreeMemoryArea): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/mdl.c (MmUnlockPages, MmMapLockedPages, MmProbeAndLockPages): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/mm.c (MmSharedDataPagePhysicalAddress, MmCommitPagedPoolAddress, MmNotPresentFault): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/mminit.c (MmInitVirtualMemory): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/ncache.c (MmAllocateNonCachedMemory, MmFreeNonCachedPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/npool.c (grow_kernel_pool): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/rmap.c (MmPageOutPhysicalAddress, MmInsertRmap, MmDeleteAllRmaps, MmDeleteRmap): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/section.c (MiReadPage, MmNotPresentFaultSectionView, MmAccessFaultSectionView, MmPageOutDeleteMapping, MmPageOutSectionView, MmFreeSectionPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/slab.c (ExGrowSlabCache): Changes to use PHYSICAL_ADDRESS type for physical address. * ntoskrnl/mm/virtual.c (MmPageOutVirtualMemory, MmNotPresentFaultVirtualMemory, MmFreeVirtualMemoryPage): Changes to use PHYSICAL_ADDRESS type for physical address. * ntoskrnl/mm/wset.c (MmTrimUserMemory): Changes to use PHYSICAL_ADDRESS type for physical address. * ntoskrnl/mm/page.c (Mmi386ReleaseMmInfo, MmCopyMmInfo, MmGetPhysicalAddressForProcess, MmCreateVirtualMapping, MmCreateVirtualMappingUnsafe, MmCreateVirtualMappingForProcess, MmDeleteVirtualMapping): Changes to use PHYSICAL_ADDRESS type for physical address. * ntoskrnl/ps/process (PsInitProcessManagment): Changes to use PHYSICAL_ADDRESS type for physical address. * ntoskrnl/ps/thread.c (PsAllocateCallbackStack): Changes to use PHYSICAL_ADDRESS type for physical address. 2002-06-04 David Welch <welch@cwcom.net> * Lots of change since the ChangeLog was last updated. svn path=/trunk/; revision=3000
2002-06-04 15:26:58 +00:00
#define PTE_TO_PAGE(X) ((LARGE_INTEGER)(LONGLONG)(PAGE_MASK(X)))
#else
__inline LARGE_INTEGER PTE_TO_PAGE(ULONG npage)
{
LARGE_INTEGER dummy;
dummy.QuadPart = (LONGLONG)(PAGE_MASK(npage));
return dummy;
}
#endif
2002-06-04 David Welch <welch@whitehall1-5.seh.ox.ac.uk> * ntoskrnl/ke/i386/exp.c (KiDoubleFaultHandler): Print CR3 correctly. 2002-06-04 David Welch <welch@whitehall1-5.seh.ox.ac.uk> * ntoskrnl/include/internal/ps.h: Added KTHREAD_STACK_LIMIT definition. * ntoskrnl/ke/i386/tskswitch.S (Ki386ContextSwitch): Force all the pages of the kernel stack to be accessible from this process. 2002-06-04 David Welch <welch@cwcom.net> * ntoskrnl/cc/view.c (ReadCacheSegmentChain): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/cc/copy.c (CcRosCreateCacheSegment): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/cc/copy.c (CcFreeCachePage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/include/internal/mm.h: Changed prototypes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/include/internal/ps.h (KPROCESS): Changed type of page directory base to PHYSICAL_ADDRESS. * ntoskrnl/include/internal/i386/mm.h: Changed prototypes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/ke/kthread.c (KeFreeStackPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/ke/kthread.c (KeInitializeThread): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/ke/process.c (KeAttachProcess, KeDetachProcess): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/ke/kernel.c (PcrPages, KeApplicationProcessorInit): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/balance.c (MM_ALLOCATION_REQUEST): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/balance.c (MmReleasePageMemoryConsumer): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/balance.c (MmRequestPageMemoryConsumer): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/cont.c (MmFreeContinuousPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/cont.c (MmAllocateContinuousAlignedMemory): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/freelist.c (MmTransferOwnershipPage, MmGetLRUFirstUserPage, MmGetLRUNextUserPage, MmGetContinuousPages, MmInitializePageList, MmSetFlagsPage, MmSetRmapListHeadPage, MmGetRmapListHeadPage, MmMarkPageMapped, MmMarkPageUnmapped, MmGetFlagsPage, MmSetSavedSwapEntryPage, MmGetSavedSwapEntryPage, MmReferencePage, MmGetReferenceCountPage, MmIsUsablePage, MmDereferencePage, MmGetLockCountPage, MmLockPage, MmUnlockPage, MmAllocPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/iospace.c (MmMapIoSpace): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/kmap.c (ExAllocatePage, MiZeroPage, MiCopyFromUserPage, ExAllocatePageWithPhysPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/marea.c (MmFreeMemoryArea): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/mdl.c (MmUnlockPages, MmMapLockedPages, MmProbeAndLockPages): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/mm.c (MmSharedDataPagePhysicalAddress, MmCommitPagedPoolAddress, MmNotPresentFault): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/mminit.c (MmInitVirtualMemory): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/ncache.c (MmAllocateNonCachedMemory, MmFreeNonCachedPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/npool.c (grow_kernel_pool): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/rmap.c (MmPageOutPhysicalAddress, MmInsertRmap, MmDeleteAllRmaps, MmDeleteRmap): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/section.c (MiReadPage, MmNotPresentFaultSectionView, MmAccessFaultSectionView, MmPageOutDeleteMapping, MmPageOutSectionView, MmFreeSectionPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/slab.c (ExGrowSlabCache): Changes to use PHYSICAL_ADDRESS type for physical address. * ntoskrnl/mm/virtual.c (MmPageOutVirtualMemory, MmNotPresentFaultVirtualMemory, MmFreeVirtualMemoryPage): Changes to use PHYSICAL_ADDRESS type for physical address. * ntoskrnl/mm/wset.c (MmTrimUserMemory): Changes to use PHYSICAL_ADDRESS type for physical address. * ntoskrnl/mm/page.c (Mmi386ReleaseMmInfo, MmCopyMmInfo, MmGetPhysicalAddressForProcess, MmCreateVirtualMapping, MmCreateVirtualMappingUnsafe, MmCreateVirtualMappingForProcess, MmDeleteVirtualMapping): Changes to use PHYSICAL_ADDRESS type for physical address. * ntoskrnl/ps/process (PsInitProcessManagment): Changes to use PHYSICAL_ADDRESS type for physical address. * ntoskrnl/ps/thread.c (PsAllocateCallbackStack): Changes to use PHYSICAL_ADDRESS type for physical address. 2002-06-04 David Welch <welch@cwcom.net> * Lots of change since the ChangeLog was last updated. svn path=/trunk/; revision=3000
2002-06-04 15:26:58 +00:00
extern BOOLEAN Ke386Pae;
extern BOOLEAN Ke386NoExecute;
/* FUNCTIONS ***************************************************************/
BOOLEAN MmUnmapPageTable(PULONG Pt);
ULONG_PTR
NTAPI
MiFlushTlbIpiRoutine(ULONG_PTR Address)
{
if (Address == (ULONG_PTR)-1)
{
KeFlushCurrentTb();
}
else if (Address == (ULONG_PTR)-2)
{
KeFlushCurrentTb();
}
else
{
__invlpg((PVOID)Address);
}
return 0;
}
VOID
MiFlushTlb(PULONG Pt, PVOID Address)
{
#ifdef CONFIG_SMP
if (Pt)
{
MmUnmapPageTable(Pt);
}
if (KeNumberProcessors > 1)
{
KeIpiGenericCall(MiFlushTlbIpiRoutine, (ULONG_PTR)Address);
}
else
{
MiFlushTlbIpiRoutine((ULONG_PTR)Address);
}
#else
if ((Pt && MmUnmapPageTable(Pt)) || Address >= MmSystemRangeStart)
{
__invlpg(Address);
}
#endif
}
PULONG
MmGetPageDirectory(VOID)
{
return (PULONG)__readcr3();
}
static ULONG
ProtectToPTE(ULONG flProtect)
{
ULONG Attributes = 0;
if (flProtect & (PAGE_NOACCESS|PAGE_GUARD))
{
Attributes = 0;
}
else if (flProtect & PAGE_IS_WRITABLE)
{
Attributes = PA_PRESENT | PA_READWRITE;
}
else if (flProtect & (PAGE_IS_READABLE | PAGE_IS_EXECUTABLE))
{
Attributes = PA_PRESENT;
}
else
{
DPRINT1("Unknown main protection type.\n");
KEBUGCHECK(0);
}
if (Ke386NoExecute &&
!(flProtect & PAGE_IS_EXECUTABLE))
{
Attributes = Attributes | 0x80000000;
}
if (flProtect & PAGE_SYSTEM)
{
}
else
{
Attributes = Attributes | PA_USER;
}
if (flProtect & PAGE_NOCACHE)
{
Attributes = Attributes | PA_CD;
}
if (flProtect & PAGE_WRITETHROUGH)
{
Attributes = Attributes | PA_WT;
}
return(Attributes);
}
#define ADDR_TO_PAGE_TABLE(v) (((ULONG)(v)) / (1024 * PAGE_SIZE))
#define ADDR_TO_PDE(v) (PULONG)(PAGEDIRECTORY_MAP + \
((((ULONG)(v)) / (1024 * 1024))&(~0x3)))
#define ADDR_TO_PTE(v) (PULONG)(PAGETABLE_MAP + ((((ULONG)(v) / 1024))&(~0x3)))
#define ADDR_TO_PDE_OFFSET(v) ((((ULONG)(v)) / (1024 * PAGE_SIZE)))
#define ADDR_TO_PTE_OFFSET(v) ((((ULONG)(v)) % (1024 * PAGE_SIZE)) / PAGE_SIZE)
#define PAE_ADDR_TO_PAGE_TABLE(v) (((ULONG)(v)) / (512 * PAGE_SIZE))
#define PAE_ADDR_TO_PDE(v) (PULONGLONG) (PAE_PAGEDIRECTORY_MAP + \
((((ULONG_PTR)(v)) / (512 * 512))&(~0x7)))
#define PAE_ADDR_TO_PTE(v) (PULONGLONG) (PAGETABLE_MAP + ((((ULONG_PTR)(v) / 512))&(~0x7)))
#define PAE_ADDR_TO_PDTE_OFFSET(v) (((ULONG_PTR)(v)) / (512 * 512 * PAGE_SIZE))
#define PAE_ADDR_TO_PDE_PAGE_OFFSET(v) ((((ULONG_PTR)(v)) % (512 * 512 * PAGE_SIZE)) / (512 * PAGE_SIZE))
#define PAE_ADDR_TO_PDE_OFFSET(v) (((ULONG_PTR)(v))/ (512 * PAGE_SIZE))
#define PAE_ADDR_TO_PTE_OFFSET(v) ((((ULONG_PTR)(v)) % (512 * PAGE_SIZE)) / PAGE_SIZE)
NTSTATUS
NTAPI
Mmi386ReleaseMmInfo(PEPROCESS Process)
{
PUSHORT LdtDescriptor;
ULONG LdtBase;
ULONG i, j;
DPRINT("Mmi386ReleaseMmInfo(Process %x)\n",Process);
LdtDescriptor = (PUSHORT) &Process->Pcb.LdtDescriptor;
LdtBase = LdtDescriptor[1] |
((LdtDescriptor[2] & 0xff) << 16) |
((LdtDescriptor[3] & ~0xff) << 16);
DPRINT("LdtBase: %x\n", LdtBase);
if (LdtBase)
{
ExFreePool((PVOID) LdtBase);
}
if (Ke386Pae)
{
PULONGLONG PageDirTable;
PULONGLONG PageDir;
PULONGLONG Pde;
ULONG k;
PageDirTable = (PULONGLONG)MmCreateHyperspaceMapping(PAE_PTE_TO_PFN(Process->Pcb.DirectoryTableBase.QuadPart));
for (i = 0; i < 4; i++)
{
PageDir = (PULONGLONG)MmCreateHyperspaceMapping(PAE_PTE_TO_PFN(PageDirTable[i]));
if (i < PAE_ADDR_TO_PDTE_OFFSET(MmSystemRangeStart))
{
for (j = 0; j < 512; j++)
{
if (PageDir[j] != 0LL)
{
DPRINT1("ProcessId %d, Pde for %08x - %08x is not freed, RefCount %d\n",
Process->UniqueProcessId,
(i * 512 + j) * 512 * PAGE_SIZE, (i * 512 + j + 1) * 512 * PAGE_SIZE - 1,
((PMADDRESS_SPACE)&Process->VadRoot)->PageTableRefCountTable[i*512 + j]);
Pde = MmCreateHyperspaceMapping(PAE_PTE_TO_PFN(PageDir[j]));
for (k = 0; k < 512; k++)
{
if(Pde[k] != 0)
{
if (Pde[k] & PA_PRESENT)
{
DPRINT1("Page at %08x is not freed\n",
(i * 512 + j) * 512 * PAGE_SIZE + k * PAGE_SIZE);
}
else
{
DPRINT1("Swapentry %x at %x is not freed\n",
(i * 512 + j) * 512 * PAGE_SIZE + k * PAGE_SIZE);
}
}
}
MmDeleteHyperspaceMapping(Pde);
MmReleasePageMemoryConsumer(MC_NPPOOL, PAE_PTE_TO_PFN(PageDir[j]));
}
}
}
if (i == PAE_ADDR_TO_PDTE_OFFSET(HYPERSPACE))
{
MmReleasePageMemoryConsumer(MC_NPPOOL, PAE_PTE_TO_PFN(PageDir[PAE_ADDR_TO_PDE_PAGE_OFFSET(HYPERSPACE)]));
MmReleasePageMemoryConsumer(MC_NPPOOL, PAE_PTE_TO_PFN(PageDir[PAE_ADDR_TO_PDE_PAGE_OFFSET(HYPERSPACE)+1]));
}
MmDeleteHyperspaceMapping(PageDir);
MmReleasePageMemoryConsumer(MC_NPPOOL, PAE_PTE_TO_PFN(PageDirTable[i]));
}
MmDeleteHyperspaceMapping((PVOID)PageDirTable);
MmReleasePageMemoryConsumer(MC_NPPOOL, PAE_PTE_TO_PFN(Process->Pcb.DirectoryTableBase.QuadPart));
}
else
{
PULONG Pde;
PULONG PageDir;
PageDir = MmCreateHyperspaceMapping(PTE_TO_PFN(Process->Pcb.DirectoryTableBase.u.LowPart));
for (i = 0; i < ADDR_TO_PDE_OFFSET(MmSystemRangeStart); i++)
{
if (PageDir[i] != 0)
{
DPRINT1("Pde for %08x - %08x is not freed, RefCount %d\n",
i * 4 * 1024 * 1024, (i + 1) * 4 * 1024 * 1024 - 1,
((PMADDRESS_SPACE)&Process->VadRoot)->PageTableRefCountTable[i]);
Pde = MmCreateHyperspaceMapping(PTE_TO_PFN(PageDir[i]));
for (j = 0; j < 1024; j++)
{
if(Pde[j] != 0)
{
if (Pde[j] & PA_PRESENT)
{
DPRINT1("Page at %08x is not freed\n",
i * 4 * 1024 * 1024 + j * PAGE_SIZE);
}
else
{
DPRINT1("Swapentry %x at %x is not freed\n",
Pde[j], i * 4 * 1024 * 1024 + j * PAGE_SIZE);
}
}
}
MmDeleteHyperspaceMapping(Pde);
MmReleasePageMemoryConsumer(MC_NPPOOL, PTE_TO_PFN(PageDir[i]));
}
}
MmReleasePageMemoryConsumer(MC_NPPOOL, PTE_TO_PFN(PageDir[ADDR_TO_PDE_OFFSET(HYPERSPACE)]));
MmDeleteHyperspaceMapping(PageDir);
MmReleasePageMemoryConsumer(MC_NPPOOL, PTE_TO_PFN(Process->Pcb.DirectoryTableBase.u.LowPart));
}
#if defined(__GNUC__)
2002-06-04 David Welch <welch@whitehall1-5.seh.ox.ac.uk> * ntoskrnl/ke/i386/exp.c (KiDoubleFaultHandler): Print CR3 correctly. 2002-06-04 David Welch <welch@whitehall1-5.seh.ox.ac.uk> * ntoskrnl/include/internal/ps.h: Added KTHREAD_STACK_LIMIT definition. * ntoskrnl/ke/i386/tskswitch.S (Ki386ContextSwitch): Force all the pages of the kernel stack to be accessible from this process. 2002-06-04 David Welch <welch@cwcom.net> * ntoskrnl/cc/view.c (ReadCacheSegmentChain): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/cc/copy.c (CcRosCreateCacheSegment): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/cc/copy.c (CcFreeCachePage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/include/internal/mm.h: Changed prototypes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/include/internal/ps.h (KPROCESS): Changed type of page directory base to PHYSICAL_ADDRESS. * ntoskrnl/include/internal/i386/mm.h: Changed prototypes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/ke/kthread.c (KeFreeStackPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/ke/kthread.c (KeInitializeThread): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/ke/process.c (KeAttachProcess, KeDetachProcess): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/ke/kernel.c (PcrPages, KeApplicationProcessorInit): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/balance.c (MM_ALLOCATION_REQUEST): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/balance.c (MmReleasePageMemoryConsumer): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/balance.c (MmRequestPageMemoryConsumer): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/cont.c (MmFreeContinuousPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/cont.c (MmAllocateContinuousAlignedMemory): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/freelist.c (MmTransferOwnershipPage, MmGetLRUFirstUserPage, MmGetLRUNextUserPage, MmGetContinuousPages, MmInitializePageList, MmSetFlagsPage, MmSetRmapListHeadPage, MmGetRmapListHeadPage, MmMarkPageMapped, MmMarkPageUnmapped, MmGetFlagsPage, MmSetSavedSwapEntryPage, MmGetSavedSwapEntryPage, MmReferencePage, MmGetReferenceCountPage, MmIsUsablePage, MmDereferencePage, MmGetLockCountPage, MmLockPage, MmUnlockPage, MmAllocPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/iospace.c (MmMapIoSpace): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/kmap.c (ExAllocatePage, MiZeroPage, MiCopyFromUserPage, ExAllocatePageWithPhysPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/marea.c (MmFreeMemoryArea): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/mdl.c (MmUnlockPages, MmMapLockedPages, MmProbeAndLockPages): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/mm.c (MmSharedDataPagePhysicalAddress, MmCommitPagedPoolAddress, MmNotPresentFault): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/mminit.c (MmInitVirtualMemory): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/ncache.c (MmAllocateNonCachedMemory, MmFreeNonCachedPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/npool.c (grow_kernel_pool): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/rmap.c (MmPageOutPhysicalAddress, MmInsertRmap, MmDeleteAllRmaps, MmDeleteRmap): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/section.c (MiReadPage, MmNotPresentFaultSectionView, MmAccessFaultSectionView, MmPageOutDeleteMapping, MmPageOutSectionView, MmFreeSectionPage): Changes to use PHYSICAL_ADDRESS type for physical addresses. * ntoskrnl/mm/slab.c (ExGrowSlabCache): Changes to use PHYSICAL_ADDRESS type for physical address. * ntoskrnl/mm/virtual.c (MmPageOutVirtualMemory, MmNotPresentFaultVirtualMemory, MmFreeVirtualMemoryPage): Changes to use PHYSICAL_ADDRESS type for physical address. * ntoskrnl/mm/wset.c (MmTrimUserMemory): Changes to use PHYSICAL_ADDRESS type for physical address. * ntoskrnl/mm/page.c (Mmi386ReleaseMmInfo, MmCopyMmInfo, MmGetPhysicalAddressForProcess, MmCreateVirtualMapping, MmCreateVirtualMappingUnsafe, MmCreateVirtualMappingForProcess, MmDeleteVirtualMapping): Changes to use PHYSICAL_ADDRESS type for physical address. * ntoskrnl/ps/process (PsInitProcessManagment): Changes to use PHYSICAL_ADDRESS type for physical address. * ntoskrnl/ps/thread.c (PsAllocateCallbackStack): Changes to use PHYSICAL_ADDRESS type for physical address. 2002-06-04 David Welch <welch@cwcom.net> * Lots of change since the ChangeLog was last updated. svn path=/trunk/; revision=3000
2002-06-04 15:26:58 +00:00
Process->Pcb.DirectoryTableBase.QuadPart = 0LL;
#else
Process->Pcb.DirectoryTableBase.QuadPart = 0;
#endif
DPRINT("Finished Mmi386ReleaseMmInfo()\n");
return(STATUS_SUCCESS);
}
NTSTATUS
NTAPI
MmInitializeHandBuiltProcess(IN PEPROCESS Process,
IN PLARGE_INTEGER DirectoryTableBase)
{
/* Share the directory base with the idle process */
*DirectoryTableBase = PsGetCurrentProcess()->Pcb.DirectoryTableBase;
/* Initialize the Addresss Space */
MmInitializeAddressSpace(Process, (PMADDRESS_SPACE)&Process->VadRoot);
/* The process now has an address space */
Process->HasAddressSpace = TRUE;
return STATUS_SUCCESS;
}
BOOLEAN
STDCALL
MmCreateProcessAddressSpace(IN ULONG MinWs,
IN PEPROCESS Process,
IN PLARGE_INTEGER DirectoryTableBase)
{
NTSTATUS Status;
ULONG i, j;
PFN_TYPE Pfn[7];
ULONG Count;
DPRINT("MmCopyMmInfo(Src %x, Dest %x)\n", MinWs, Process);
Count = Ke386Pae ? 7 : 2;
for (i = 0; i < Count; i++)
{
Status = MmRequestPageMemoryConsumer(MC_NPPOOL, FALSE, &Pfn[i]);
if (!NT_SUCCESS(Status))
{
for (j = 0; j < i; j++)
{
MmReleasePageMemoryConsumer(MC_NPPOOL, Pfn[j]);
}
return FALSE;
}
}
if (Ke386Pae)
{
PULONGLONG PageDirTable;
PULONGLONG PageDir;
PageDirTable = MmCreateHyperspaceMapping(Pfn[0]);
for (i = 0; i < 4; i++)
{
PageDirTable[i] = PAE_PFN_TO_PTE(Pfn[1+i]) | PA_PRESENT;
}
MmDeleteHyperspaceMapping(PageDirTable);
for (i = PAE_ADDR_TO_PDTE_OFFSET(MmSystemRangeStart); i < 4; i++)
{
PageDir = (PULONGLONG)MmCreateHyperspaceMapping(Pfn[i+1]);
memcpy(PageDir, &MmGlobalKernelPageDirectoryForPAE[i * 512], 512 * sizeof(ULONGLONG));
if (PAE_ADDR_TO_PDTE_OFFSET(PAGETABLE_MAP) == i)
{
for (j = 0; j < 4; j++)
{
PageDir[PAE_ADDR_TO_PDE_PAGE_OFFSET(PAGETABLE_MAP) + j] = PAE_PFN_TO_PTE(Pfn[1+j]) | PA_PRESENT | PA_READWRITE;
}
}
if (PAE_ADDR_TO_PDTE_OFFSET(HYPERSPACE) == i)
{
PageDir[PAE_ADDR_TO_PDE_PAGE_OFFSET(HYPERSPACE)] = PAE_PFN_TO_PTE(Pfn[5]) | PA_PRESENT | PA_READWRITE;
PageDir[PAE_ADDR_TO_PDE_PAGE_OFFSET(HYPERSPACE)+1] = PAE_PFN_TO_PTE(Pfn[6]) | PA_PRESENT | PA_READWRITE;
}
MmDeleteHyperspaceMapping(PageDir);
}
}
else
{
PULONG PageDirectory;
PageDirectory = MmCreateHyperspaceMapping(Pfn[0]);
memcpy(PageDirectory + ADDR_TO_PDE_OFFSET(MmSystemRangeStart),
MmGlobalKernelPageDirectory + ADDR_TO_PDE_OFFSET(MmSystemRangeStart),
(1024 - ADDR_TO_PDE_OFFSET(MmSystemRangeStart)) * sizeof(ULONG));
DPRINT("Addr %x\n",ADDR_TO_PDE_OFFSET(PAGETABLE_MAP));
PageDirectory[ADDR_TO_PDE_OFFSET(PAGETABLE_MAP)] = PFN_TO_PTE(Pfn[0]) | PA_PRESENT | PA_READWRITE;
PageDirectory[ADDR_TO_PDE_OFFSET(HYPERSPACE)] = PFN_TO_PTE(Pfn[1]) | PA_PRESENT | PA_READWRITE;
MmDeleteHyperspaceMapping(PageDirectory);
}
DirectoryTableBase->QuadPart = PFN_TO_PTE(Pfn[0]);
DPRINT("Finished MmCopyMmInfo(): %I64x\n", DirectoryTableBase->QuadPart);
return TRUE;
}
VOID
NTAPI
MmDeletePageTable(PEPROCESS Process, PVOID Address)
{
PEPROCESS CurrentProcess = PsGetCurrentProcess();
if (Process != NULL && Process != CurrentProcess)
{
KeAttachProcess(&Process->Pcb);
}
if (Ke386Pae)
{
ULONGLONG ZeroPde = 0LL;
(void)ExfpInterlockedExchange64UL(PAE_ADDR_TO_PDE(Address), &ZeroPde);
MiFlushTlb((PULONG)PAE_ADDR_TO_PDE(Address), PAE_ADDR_TO_PTE(Address));
}
else
{
*(ADDR_TO_PDE(Address)) = 0;
MiFlushTlb(ADDR_TO_PDE(Address), ADDR_TO_PTE(Address));
}
if (Address >= MmSystemRangeStart)
{
KEBUGCHECK(0);
// MmGlobalKernelPageDirectory[ADDR_TO_PDE_OFFSET(Address)] = 0;
}
if (Process != NULL && Process != CurrentProcess)
{
KeDetachProcess();
}
}
VOID
NTAPI
MmFreePageTable(PEPROCESS Process, PVOID Address)
{
PEPROCESS CurrentProcess = PsGetCurrentProcess();
ULONG i;
PFN_TYPE Pfn;
DPRINT("ProcessId %d, Address %x\n", Process->UniqueProcessId, Address);
if (Process != NULL && Process != CurrentProcess)
{
KeAttachProcess(&Process->Pcb);
}
if (Ke386Pae)
{
PULONGLONG PageTable;
ULONGLONG ZeroPte = 0LL;
PageTable = (PULONGLONG)PAGE_ROUND_DOWN((PVOID)PAE_ADDR_TO_PTE(Address));
for (i = 0; i < 512; i++)
{
if (PageTable[i] != 0LL)
{
DbgPrint("Page table entry not clear at %x/%x (is %I64x)\n",
((ULONG)Address / (4*1024*1024)), i, PageTable[i]);
KEBUGCHECK(0);
}
}
Pfn = PAE_PTE_TO_PFN(*(PAE_ADDR_TO_PDE(Address)));
(void)ExfpInterlockedExchange64UL(PAE_ADDR_TO_PDE(Address), &ZeroPte);
MiFlushTlb((PULONG)PAE_ADDR_TO_PDE(Address), PAE_ADDR_TO_PTE(Address));
}
else
{
PULONG PageTable;
PageTable = (PULONG)PAGE_ROUND_DOWN((PVOID)ADDR_TO_PTE(Address));
for (i = 0; i < 1024; i++)
{
if (PageTable[i] != 0)
{
DbgPrint("Page table entry not clear at %x/%x (is %x)\n",
((ULONG)Address / (4*1024*1024)), i, PageTable[i]);
KEBUGCHECK(0);
}
}
Pfn = PTE_TO_PFN(*(ADDR_TO_PDE(Address)));
*(ADDR_TO_PDE(Address)) = 0;
MiFlushTlb(ADDR_TO_PDE(Address), ADDR_TO_PTE(Address));
}
if (Address >= MmSystemRangeStart)
{
// MmGlobalKernelPageDirectory[ADDR_TO_PDE_OFFSET(Address)] = 0;
KEBUGCHECK(0);
}
else
{
MmReleasePageMemoryConsumer(MC_NPPOOL, Pfn);
}
if (Process != NULL && Process != CurrentProcess)
{
KeDetachProcess();
}
}
static PULONGLONG
MmGetPageTableForProcessForPAE(PEPROCESS Process, PVOID Address, BOOLEAN Create)
{
NTSTATUS Status;
PFN_TYPE Pfn;
ULONGLONG Entry;
ULONGLONG ZeroEntry = 0LL;
PULONGLONG Pt;
PULONGLONG PageDir;
PULONGLONG PageDirTable;
DPRINT("MmGetPageTableForProcessForPAE(%x %x %d)\n",
Process, Address, Create);
if (Address >= (PVOID)PAGETABLE_MAP && Address < (PVOID)((ULONG_PTR)PAGETABLE_MAP + 0x800000))
{
KEBUGCHECK(0);
}
if (Address < MmSystemRangeStart && Process && Process != PsGetCurrentProcess())
{
PageDirTable = MmCreateHyperspaceMapping(PAE_PTE_TO_PFN(Process->Pcb.DirectoryTableBase.QuadPart));
if (PageDirTable == NULL)
{
KEBUGCHECK(0);
}
PageDir = MmCreateHyperspaceMapping(PAE_PTE_TO_PFN(PageDirTable[PAE_ADDR_TO_PDTE_OFFSET(Address)]));
MmDeleteHyperspaceMapping(PageDirTable);
if (PageDir == NULL)
{
KEBUGCHECK(0);
}
PageDir += PAE_ADDR_TO_PDE_PAGE_OFFSET(Address);
Entry = ExfInterlockedCompareExchange64UL(PageDir, &ZeroEntry, &ZeroEntry);
if (Entry == 0LL)
{
if (Create == FALSE)
{
MmDeleteHyperspaceMapping(PageDir);
return NULL;
}
Status = MmRequestPageMemoryConsumer(MC_NPPOOL, FALSE, &Pfn);
if (!NT_SUCCESS(Status))
{
KEBUGCHECK(0);
}
Entry = PFN_TO_PTE(Pfn) | PA_PRESENT | PA_READWRITE | PA_USER;
Entry = ExfInterlockedCompareExchange64UL(PageDir, &Entry, &ZeroEntry);
if (Entry != 0LL)
{
MmReleasePageMemoryConsumer(MC_NPPOOL, Pfn);
Pfn = PAE_PTE_TO_PFN(Entry);
}
}
else
{
Pfn = PAE_PTE_TO_PFN(Entry);
}
MmDeleteHyperspaceMapping(PageDir);
Pt = MmCreateHyperspaceMapping(Pfn);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
return Pt + PAE_ADDR_TO_PTE_OFFSET(Address);
}
PageDir = PAE_ADDR_TO_PDE(Address);
if (0LL == ExfInterlockedCompareExchange64UL(PageDir, &ZeroEntry, &ZeroEntry))
{
if (Address >= MmSystemRangeStart)
{
if (MmGlobalKernelPageDirectoryForPAE[PAE_ADDR_TO_PDE_OFFSET(Address)] == 0LL)
{
if (Create == FALSE)
{
return NULL;
}
Status = MmRequestPageMemoryConsumer(MC_NPPOOL, FALSE, &Pfn);
if (!NT_SUCCESS(Status))
{
KEBUGCHECK(0);
}
Entry = PAE_PFN_TO_PTE(Pfn) | PA_PRESENT | PA_READWRITE;
if (Ke386GlobalPagesEnabled)
{
Entry |= PA_GLOBAL;
}
if (0LL != ExfInterlockedCompareExchange64UL(&MmGlobalKernelPageDirectoryForPAE[PAE_ADDR_TO_PDE_OFFSET(Address)], &Entry, &ZeroEntry))
{
MmReleasePageMemoryConsumer(MC_NPPOOL, Pfn);
}
}
(void)ExfInterlockedCompareExchange64UL(PageDir, &MmGlobalKernelPageDirectoryForPAE[PAE_ADDR_TO_PDE_OFFSET(Address)], &ZeroEntry);
}
else
{
if (Create == FALSE)
{
return NULL;
}
Status = MmRequestPageMemoryConsumer(MC_NPPOOL, FALSE, &Pfn);
if (!NT_SUCCESS(Status))
{
KEBUGCHECK(0);
}
Entry = PFN_TO_PTE(Pfn) | PA_PRESENT | PA_READWRITE | PA_USER;
Entry = ExfInterlockedCompareExchange64UL(PageDir, &Entry, &ZeroEntry);
if (Entry != 0LL)
{
MmReleasePageMemoryConsumer(MC_NPPOOL, Pfn);
}
}
}
return (PULONGLONG)PAE_ADDR_TO_PTE(Address);
}
static PULONG
MmGetPageTableForProcess(PEPROCESS Process, PVOID Address, BOOLEAN Create)
{
ULONG PdeOffset = ADDR_TO_PDE_OFFSET(Address);
NTSTATUS Status;
PFN_TYPE Pfn;
ULONG Entry;
PULONG Pt, PageDir;
if (Address < MmSystemRangeStart && Process && Process != PsGetCurrentProcess())
{
PageDir = MmCreateHyperspaceMapping(PTE_TO_PFN(Process->Pcb.DirectoryTableBase.LowPart));
if (PageDir == NULL)
{
KEBUGCHECK(0);
}
if (0 == InterlockedCompareExchangeUL(&PageDir[PdeOffset], 0, 0))
{
if (Create == FALSE)
{
MmDeleteHyperspaceMapping(PageDir);
return NULL;
}
Status = MmRequestPageMemoryConsumer(MC_NPPOOL, FALSE, &Pfn);
if (!NT_SUCCESS(Status) || Pfn == 0)
{
KEBUGCHECK(0);
}
Entry = InterlockedCompareExchangeUL(&PageDir[PdeOffset], PFN_TO_PTE(Pfn) | PA_PRESENT | PA_READWRITE | PA_USER, 0);
if (Entry != 0)
{
MmReleasePageMemoryConsumer(MC_NPPOOL, Pfn);
Pfn = PTE_TO_PFN(Entry);
}
}
else
{
Pfn = PTE_TO_PFN(PageDir[PdeOffset]);
}
MmDeleteHyperspaceMapping(PageDir);
Pt = MmCreateHyperspaceMapping(Pfn);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
return Pt + ADDR_TO_PTE_OFFSET(Address);
}
PageDir = ADDR_TO_PDE(Address);
if (0 == InterlockedCompareExchangeUL(PageDir, 0, 0))
{
if (Address >= MmSystemRangeStart)
{
if (0 == InterlockedCompareExchangeUL(&MmGlobalKernelPageDirectory[PdeOffset], 0, 0))
{
if (Create == FALSE)
{
return NULL;
}
Status = MmRequestPageMemoryConsumer(MC_NPPOOL, FALSE, &Pfn);
if (!NT_SUCCESS(Status) || Pfn == 0)
{
KEBUGCHECK(0);
}
Entry = PFN_TO_PTE(Pfn) | PA_PRESENT | PA_READWRITE;
if (Ke386GlobalPagesEnabled)
{
Entry |= PA_GLOBAL;
}
if(0 != InterlockedCompareExchangeUL(&MmGlobalKernelPageDirectory[PdeOffset], Entry, 0))
{
MmReleasePageMemoryConsumer(MC_NPPOOL, Pfn);
}
}
(void)InterlockedExchangeUL(PageDir, MmGlobalKernelPageDirectory[PdeOffset]);
}
else
{
if (Create == FALSE)
{
return NULL;
}
Status = MmRequestPageMemoryConsumer(MC_NPPOOL, FALSE, &Pfn);
if (!NT_SUCCESS(Status) || Pfn == 0)
{
KEBUGCHECK(0);
}
Entry = InterlockedCompareExchangeUL(PageDir, PFN_TO_PTE(Pfn) | PA_PRESENT | PA_READWRITE | PA_USER, 0);
if (Entry != 0)
{
MmReleasePageMemoryConsumer(MC_NPPOOL, Pfn);
}
}
}
return (PULONG)ADDR_TO_PTE(Address);
}
BOOLEAN MmUnmapPageTable(PULONG Pt)
{
if (Ke386Pae)
{
if ((PULONGLONG)Pt >= (PULONGLONG)PAGETABLE_MAP && (PULONGLONG)Pt < (PULONGLONG)PAGETABLE_MAP + 4*512*512)
{
return TRUE;
}
}
else
{
if (Pt >= (PULONG)PAGETABLE_MAP && Pt < (PULONG)PAGETABLE_MAP + 1024*1024)
{
return TRUE;
}
}
if (Pt)
{
MmDeleteHyperspaceMapping((PVOID)PAGE_ROUND_DOWN(Pt));
}
return FALSE;
}
static ULONGLONG MmGetPageEntryForProcessForPAE(PEPROCESS Process, PVOID Address)
{
ULONGLONG Pte;
PULONGLONG Pt;
Pt = MmGetPageTableForProcessForPAE(Process, Address, FALSE);
if (Pt)
{
Pte = *Pt;
MmUnmapPageTable((PULONG)Pt);
return Pte;
}
return 0;
}
static ULONG MmGetPageEntryForProcess(PEPROCESS Process, PVOID Address)
{
ULONG Pte;
PULONG Pt;
Pt = MmGetPageTableForProcess(Process, Address, FALSE);
if (Pt)
{
Pte = *Pt;
MmUnmapPageTable(Pt);
return Pte;
}
return 0;
}
PFN_TYPE
NTAPI
MmGetPfnForProcess(PEPROCESS Process,
PVOID Address)
{
if (Ke386Pae)
{
ULONGLONG Entry;
Entry = MmGetPageEntryForProcessForPAE(Process, Address);
if (!(Entry & PA_PRESENT))
{
return 0;
}
return(PAE_PTE_TO_PFN(Entry));
}
else
{
ULONG Entry;
Entry = MmGetPageEntryForProcess(Process, Address);
if (!(Entry & PA_PRESENT))
{
return 0;
}
return(PTE_TO_PFN(Entry));
}
}
VOID
NTAPI
MmDisableVirtualMapping(PEPROCESS Process, PVOID Address, BOOLEAN* WasDirty, PPFN_TYPE Page)
/*
* FUNCTION: Delete a virtual mapping
*/
{
BOOLEAN WasValid;
if (Ke386Pae)
{
ULONGLONG Pte;
ULONGLONG tmpPte;
PULONGLONG Pt;
Pt = MmGetPageTableForProcessForPAE(Process, Address, FALSE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
/*
* Atomically disable the present bit and get the old value.
*/
do
{
Pte = *Pt;
tmpPte = Pte & ~PA_PRESENT;
} while (Pte != ExfInterlockedCompareExchange64UL(Pt, &tmpPte, &Pte));
MiFlushTlb((PULONG)Pt, Address);
WasValid = PAE_PAGE_MASK(Pte) != 0LL ? TRUE : FALSE;
if (!WasValid)
{
KEBUGCHECK(0);
}
/*
* Return some information to the caller
*/
if (WasDirty != NULL)
{
*WasDirty = Pte & PA_DIRTY ? TRUE : FALSE;
}
if (Page != NULL)
{
*Page = PAE_PTE_TO_PFN(Pte);
}
}
else
{
ULONG Pte;
PULONG Pt;
Pt = MmGetPageTableForProcess(Process, Address, FALSE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
/*
* Atomically disable the present bit and get the old value.
*/
do
{
Pte = *Pt;
} while (Pte != InterlockedCompareExchangeUL(Pt, Pte & ~PA_PRESENT, Pte));
MiFlushTlb(Pt, Address);
WasValid = (PAGE_MASK(Pte) != 0);
if (!WasValid)
{
KEBUGCHECK(0);
}
/*
* Return some information to the caller
*/
if (WasDirty != NULL)
{
*WasDirty = Pte & PA_DIRTY;
}
if (Page != NULL)
{
*Page = PTE_TO_PFN(Pte);
}
}
}
VOID
NTAPI
MmRawDeleteVirtualMapping(PVOID Address)
{
if (Ke386Pae)
{
PULONGLONG Pt;
ULONGLONG ZeroPte = 0LL;
Pt = MmGetPageTableForProcessForPAE(NULL, Address, FALSE);
if (Pt)
{
/*
* Set the entry to zero
*/
(void)ExfpInterlockedExchange64UL(Pt, &ZeroPte);
MiFlushTlb((PULONG)Pt, Address);
}
}
else
{
PULONG Pt;
Pt = MmGetPageTableForProcess(NULL, Address, FALSE);
if (Pt && *Pt)
{
/*
* Set the entry to zero
*/
(void)InterlockedExchangeUL(Pt, 0);
MiFlushTlb(Pt, Address);
}
}
}
VOID
NTAPI
MmDeleteVirtualMapping(PEPROCESS Process, PVOID Address, BOOLEAN FreePage,
BOOLEAN* WasDirty, PPFN_TYPE Page)
/*
* FUNCTION: Delete a virtual mapping
*/
{
BOOLEAN WasValid = FALSE;
PFN_TYPE Pfn;
DPRINT("MmDeleteVirtualMapping(%x, %x, %d, %x, %x)\n",
Process, Address, FreePage, WasDirty, Page);
if (Ke386Pae)
{
ULONGLONG Pte;
PULONGLONG Pt;
Pt = MmGetPageTableForProcessForPAE(Process, Address, FALSE);
if (Pt == NULL)
{
if (WasDirty != NULL)
{
*WasDirty = FALSE;
}
if (Page != NULL)
{
*Page = 0;
}
return;
}
/*
* Atomically set the entry to zero and get the old value.
*/
Pte = 0LL;
Pte = ExfpInterlockedExchange64UL(Pt, &Pte);
MiFlushTlb((PULONG)Pt, Address);
WasValid = PAE_PAGE_MASK(Pte) != 0 ? TRUE : FALSE;
if (WasValid)
{
Pfn = PAE_PTE_TO_PFN(Pte);
MmMarkPageUnmapped(Pfn);
}
else
{
Pfn = 0;
}
if (FreePage && WasValid)
{
MmReleasePageMemoryConsumer(MC_NPPOOL, Pfn);
}
/*
* Return some information to the caller
*/
if (WasDirty != NULL)
{
*WasDirty = Pte & PA_DIRTY ? TRUE : FALSE;
}
if (Page != NULL)
{
*Page = Pfn;
}
}
else
{
ULONG Pte;
PULONG Pt;
Pt = MmGetPageTableForProcess(Process, Address, FALSE);
if (Pt == NULL)
{
if (WasDirty != NULL)
{
*WasDirty = FALSE;
}
if (Page != NULL)
{
*Page = 0;
}
return;
}
/*
* Atomically set the entry to zero and get the old value.
*/
Pte = InterlockedExchangeUL(Pt, 0);
MiFlushTlb(Pt, Address);
WasValid = (PAGE_MASK(Pte) != 0);
if (WasValid)
{
Pfn = PTE_TO_PFN(Pte);
MmMarkPageUnmapped(Pfn);
}
else
{
Pfn = 0;
}
if (FreePage && WasValid)
{
MmReleasePageMemoryConsumer(MC_NPPOOL, Pfn);
}
/*
* Return some information to the caller
*/
if (WasDirty != NULL)
{
*WasDirty = Pte & PA_DIRTY ? TRUE : FALSE;
}
if (Page != NULL)
{
*Page = Pfn;
}
}
/*
* Decrement the reference count for this page table.
*/
if (Process != NULL && WasValid &&
((PMADDRESS_SPACE)&Process->VadRoot)->PageTableRefCountTable != NULL &&
Address < MmSystemRangeStart)
{
PUSHORT Ptrc;
ULONG Idx;
Ptrc = ((PMADDRESS_SPACE)&Process->VadRoot)->PageTableRefCountTable;
Idx = Ke386Pae ? PAE_ADDR_TO_PAGE_TABLE(Address) : ADDR_TO_PAGE_TABLE(Address);
Ptrc[Idx]--;
if (Ptrc[Idx] == 0)
{
MmFreePageTable(Process, Address);
}
}
}
VOID
NTAPI
MmDeletePageFileMapping(PEPROCESS Process, PVOID Address,
SWAPENTRY* SwapEntry)
/*
* FUNCTION: Delete a virtual mapping
*/
{
if (Ke386Pae)
{
ULONGLONG Pte;
PULONGLONG Pt;
Pt = MmGetPageTableForProcessForPAE(Process, Address, FALSE);
if (Pt == NULL)
{
*SwapEntry = 0;
return;
}
/*
* Atomically set the entry to zero and get the old value.
*/
Pte = 0LL;
Pte = ExfpInterlockedExchange64UL(Pt, &Pte);
MiFlushTlb((PULONG)Pt, Address);
/*
* Decrement the reference count for this page table.
*/
if (Process != NULL && Pte &&
((PMADDRESS_SPACE)&Process->VadRoot)->PageTableRefCountTable != NULL &&
Address < MmSystemRangeStart)
{
PUSHORT Ptrc;
Ptrc = ((PMADDRESS_SPACE)&Process->VadRoot)->PageTableRefCountTable;
Ptrc[PAE_ADDR_TO_PAGE_TABLE(Address)]--;
if (Ptrc[PAE_ADDR_TO_PAGE_TABLE(Address)] == 0)
{
MmFreePageTable(Process, Address);
}
}
/*
* Return some information to the caller
*/
*SwapEntry = Pte >> 1;
}
else
{
ULONG Pte;
PULONG Pt;
Pt = MmGetPageTableForProcess(Process, Address, FALSE);
if (Pt == NULL)
{
*SwapEntry = 0;
return;
}
/*
* Atomically set the entry to zero and get the old value.
*/
Pte = InterlockedExchangeUL(Pt, 0);
MiFlushTlb(Pt, Address);
/*
* Decrement the reference count for this page table.
*/
if (Process != NULL && Pte &&
((PMADDRESS_SPACE)&Process->VadRoot)->PageTableRefCountTable != NULL &&
Address < MmSystemRangeStart)
{
PUSHORT Ptrc;
Ptrc = ((PMADDRESS_SPACE)&Process->VadRoot)->PageTableRefCountTable;
Ptrc[ADDR_TO_PAGE_TABLE(Address)]--;
if (Ptrc[ADDR_TO_PAGE_TABLE(Address)] == 0)
{
MmFreePageTable(Process, Address);
}
}
/*
* Return some information to the caller
*/
*SwapEntry = Pte >> 1;
}
}
BOOLEAN
Mmi386MakeKernelPageTableGlobal(PVOID PAddress)
{
if (Ke386Pae)
{
PULONGLONG Pt;
PULONGLONG Pde;
Pde = PAE_ADDR_TO_PDE(PAddress);
if (*Pde == 0LL)
{
Pt = MmGetPageTableForProcessForPAE(NULL, PAddress, FALSE);
#if 0
/* Non existing mappings are not cached within the tlb. We must not invalidate this entry */
FLASH_TLB_ONE(PAddress);
#endif
if (Pt != NULL)
{
return TRUE;
}
}
}
else
{
PULONG Pt, Pde;
Pde = ADDR_TO_PDE(PAddress);
if (*Pde == 0)
{
Pt = MmGetPageTableForProcess(NULL, PAddress, FALSE);
#if 0
/* Non existing mappings are not cached within the tlb. We must not invalidate this entry */
FLASH_TLB_ONE(PAddress);
#endif
if (Pt != NULL)
{
return TRUE;
}
}
}
return(FALSE);
}
BOOLEAN
NTAPI
MmIsDirtyPage(PEPROCESS Process, PVOID Address)
{
if (Ke386Pae)
{
return MmGetPageEntryForProcessForPAE(Process, Address) & PA_DIRTY ? TRUE : FALSE;
}
else
{
return MmGetPageEntryForProcess(Process, Address) & PA_DIRTY ? TRUE : FALSE;
}
}
BOOLEAN
NTAPI
MmIsAccessedAndResetAccessPage(PEPROCESS Process, PVOID Address)
{
if (Address < MmSystemRangeStart && Process == NULL)
{
DPRINT1("MmIsAccessedAndResetAccessPage is called for user space without a process.\n");
KEBUGCHECK(0);
}
if (Ke386Pae)
{
PULONGLONG Pt;
ULONGLONG Pte;
ULONGLONG tmpPte;
Pt = MmGetPageTableForProcessForPAE(Process, Address, FALSE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
do
{
Pte = *Pt;
tmpPte = Pte & ~PA_ACCESSED;
} while (Pte != ExfInterlockedCompareExchange64UL(Pt, &tmpPte, &Pte));
if (Pte & PA_ACCESSED)
{
MiFlushTlb((PULONG)Pt, Address);
return TRUE;
}
else
{
MmUnmapPageTable((PULONG)Pt);
return FALSE;
}
}
else
{
PULONG Pt;
ULONG Pte;
Pt = MmGetPageTableForProcess(Process, Address, FALSE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
do
{
Pte = *Pt;
} while (Pte != InterlockedCompareExchangeUL(Pt, Pte & ~PA_ACCESSED, Pte));
if (Pte & PA_ACCESSED)
{
MiFlushTlb(Pt, Address);
return TRUE;
}
else
{
MmUnmapPageTable(Pt);
return FALSE;
}
}
}
VOID
NTAPI
MmSetCleanPage(PEPROCESS Process, PVOID Address)
{
if (Address < MmSystemRangeStart && Process == NULL)
{
DPRINT1("MmSetCleanPage is called for user space without a process.\n");
KEBUGCHECK(0);
}
if (Ke386Pae)
{
PULONGLONG Pt;
ULONGLONG Pte;
ULONGLONG tmpPte;
Pt = MmGetPageTableForProcessForPAE(Process, Address, FALSE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
do
{
Pte = *Pt;
tmpPte = Pte & ~PA_DIRTY;
} while (Pte != ExfInterlockedCompareExchange64UL(Pt, &tmpPte, &Pte));
if (Pte & PA_DIRTY)
{
MiFlushTlb((PULONG)Pt, Address);
}
else
{
MmUnmapPageTable((PULONG)Pt);
}
}
else
{
PULONG Pt;
ULONG Pte;
Pt = MmGetPageTableForProcess(Process, Address, FALSE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
do
{
Pte = *Pt;
} while (Pte != InterlockedCompareExchangeUL(Pt, Pte & ~PA_DIRTY, Pte));
if (Pte & PA_DIRTY)
{
MiFlushTlb(Pt, Address);
}
else
{
MmUnmapPageTable(Pt);
}
}
}
VOID
NTAPI
MmSetDirtyPage(PEPROCESS Process, PVOID Address)
{
if (Address < MmSystemRangeStart && Process == NULL)
{
DPRINT1("MmSetDirtyPage is called for user space without a process.\n");
KEBUGCHECK(0);
}
if (Ke386Pae)
{
PULONGLONG Pt;
ULONGLONG Pte;
ULONGLONG tmpPte;
Pt = MmGetPageTableForProcessForPAE(Process, Address, FALSE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
do
{
Pte = *Pt;
tmpPte = Pte | PA_DIRTY;
} while (Pte != ExfInterlockedCompareExchange64UL(Pt, &tmpPte, &Pte));
if (!(Pte & PA_DIRTY))
{
MiFlushTlb((PULONG)Pt, Address);
}
else
{
MmUnmapPageTable((PULONG)Pt);
}
}
else
{
PULONG Pt;
ULONG Pte;
Pt = MmGetPageTableForProcess(Process, Address, FALSE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
do
{
Pte = *Pt;
} while (Pte != InterlockedCompareExchangeUL(Pt, Pte | PA_DIRTY, Pte));
if (!(Pte & PA_DIRTY))
{
MiFlushTlb(Pt, Address);
}
else
{
MmUnmapPageTable(Pt);
}
}
}
VOID
NTAPI
MmEnableVirtualMapping(PEPROCESS Process, PVOID Address)
{
if (Ke386Pae)
{
PULONGLONG Pt;
ULONGLONG Pte;
ULONGLONG tmpPte;
Pt = MmGetPageTableForProcessForPAE(Process, Address, FALSE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
do
{
Pte = *Pt;
tmpPte = Pte | PA_PRESENT;
} while (Pte != ExfInterlockedCompareExchange64UL(Pt, &tmpPte, &Pte));
if (!(Pte & PA_PRESENT))
{
MiFlushTlb((PULONG)Pt, Address);
}
else
{
MmUnmapPageTable((PULONG)Pt);
}
}
else
{
PULONG Pt;
ULONG Pte;
Pt = MmGetPageTableForProcess(Process, Address, FALSE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
do
{
Pte = *Pt;
} while (Pte != InterlockedCompareExchangeUL(Pt, Pte | PA_PRESENT, Pte));
if (!(Pte & PA_PRESENT))
{
MiFlushTlb(Pt, Address);
}
else
{
MmUnmapPageTable(Pt);
}
}
}
BOOLEAN
NTAPI
MmIsPagePresent(PEPROCESS Process, PVOID Address)
{
if (Ke386Pae)
{
return MmGetPageEntryForProcessForPAE(Process, Address) & PA_PRESENT ? TRUE : FALSE;
}
else
{
return MmGetPageEntryForProcess(Process, Address) & PA_PRESENT ? TRUE : FALSE;
}
}
BOOLEAN
NTAPI
MmIsPageSwapEntry(PEPROCESS Process, PVOID Address)
{
if (Ke386Pae)
{
ULONGLONG Entry;
Entry = MmGetPageEntryForProcessForPAE(Process, Address);
return !(Entry & PA_PRESENT) && Entry != 0 ? TRUE : FALSE;
}
else
{
ULONG Entry;
Entry = MmGetPageEntryForProcess(Process, Address);
return !(Entry & PA_PRESENT) && Entry != 0 ? TRUE : FALSE;
}
}
NTSTATUS
NTAPI
MmCreateVirtualMappingForKernel(PVOID Address,
ULONG flProtect,
PPFN_TYPE Pages,
ULONG PageCount)
{
ULONG Attributes;
ULONG i;
PVOID Addr;
ULONG PdeOffset, oldPdeOffset;
BOOLEAN NoExecute = FALSE;
DPRINT("MmCreateVirtualMappingForKernel(%x, %x, %x, %d)\n",
Address, flProtect, Pages, PageCount);
if (Address < MmSystemRangeStart)
{
DPRINT1("MmCreateVirtualMappingForKernel is called for user space\n");
KEBUGCHECK(0);
}
Attributes = ProtectToPTE(flProtect);
if (Attributes & 0x80000000)
{
NoExecute = TRUE;
}
Attributes &= 0xfff;
if (Ke386GlobalPagesEnabled)
{
Attributes |= PA_GLOBAL;
}
Addr = Address;
if (Ke386Pae)
{
PULONGLONG Pt = NULL;
ULONGLONG Pte;
oldPdeOffset = PAE_ADDR_TO_PDE_OFFSET(Addr) + 1;
for (i = 0; i < PageCount; i++, Addr = (PVOID)((ULONG_PTR)Addr + PAGE_SIZE))
{
if (!(Attributes & PA_PRESENT) && Pages[i] != 0)
{
DPRINT1("Setting physical address but not allowing access at address "
"0x%.8X with attributes %x/%x.\n",
Addr, Attributes, flProtect);
KEBUGCHECK(0);
}
PdeOffset = PAE_ADDR_TO_PDE_OFFSET(Addr);
if (oldPdeOffset != PdeOffset)
{
Pt = MmGetPageTableForProcessForPAE(NULL, Addr, TRUE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
}
else
{
Pt++;
}
oldPdeOffset = PdeOffset;
Pte = PFN_TO_PTE(Pages[i]) | Attributes;
if (NoExecute)
{
Pte |= 0x8000000000000000LL;
}
Pte = ExfpInterlockedExchange64UL(Pt, &Pte);
if (Pte != 0LL)
{
KEBUGCHECK(0);
}
}
}
else
{
PULONG Pt;
ULONG Pte;
oldPdeOffset = ADDR_TO_PDE_OFFSET(Addr);
Pt = MmGetPageTableForProcess(NULL, Addr, TRUE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
Pt--;
for (i = 0; i < PageCount; i++, Addr = (PVOID)((ULONG_PTR)Addr + PAGE_SIZE))
{
if (!(Attributes & PA_PRESENT) && Pages[i] != 0)
{
DPRINT1("Setting physical address but not allowing access at address "
"0x%.8X with attributes %x/%x.\n",
Addr, Attributes, flProtect);
KEBUGCHECK(0);
}
PdeOffset = ADDR_TO_PDE_OFFSET(Addr);
if (oldPdeOffset != PdeOffset)
{
Pt = MmGetPageTableForProcess(NULL, Addr, TRUE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
}
else
{
Pt++;
}
oldPdeOffset = PdeOffset;
Pte = *Pt;
if (Pte != 0)
{
KEBUGCHECK(0);
}
(void)InterlockedExchangeUL(Pt, PFN_TO_PTE(Pages[i]) | Attributes);
}
}
return(STATUS_SUCCESS);
}
NTSTATUS
NTAPI
MmCreatePageFileMapping(PEPROCESS Process,
PVOID Address,
SWAPENTRY SwapEntry)
{
if (Process == NULL && Address < MmSystemRangeStart)
{
DPRINT1("No process\n");
KEBUGCHECK(0);
}
if (Process != NULL && Address >= MmSystemRangeStart)
{
DPRINT1("Setting kernel address with process context\n");
KEBUGCHECK(0);
}
if (SwapEntry & (1 << 31))
{
KEBUGCHECK(0);
}
if (Ke386Pae)
{
PULONGLONG Pt;
ULONGLONG Pte;
ULONGLONG tmpPte;
Pt = MmGetPageTableForProcessForPAE(Process, Address, TRUE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
tmpPte = SwapEntry << 1;
Pte = ExfpInterlockedExchange64UL(Pt, &tmpPte);
if (PAE_PAGE_MASK((Pte)) != 0)
{
MmMarkPageUnmapped(PAE_PTE_TO_PFN((Pte)));
}
if (Pte != 0)
{
MiFlushTlb((PULONG)Pt, Address);
}
else
{
MmUnmapPageTable((PULONG)Pt);
}
}
else
{
PULONG Pt;
ULONG Pte;
Pt = MmGetPageTableForProcess(Process, Address, TRUE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
Pte = *Pt;
if (PAGE_MASK((Pte)) != 0)
{
MmMarkPageUnmapped(PTE_TO_PFN((Pte)));
}
(void)InterlockedExchangeUL(Pt, SwapEntry << 1);
if (Pte != 0)
{
MiFlushTlb(Pt, Address);
}
else
{
MmUnmapPageTable(Pt);
}
}
if (Process != NULL &&
((PMADDRESS_SPACE)&Process->VadRoot)->PageTableRefCountTable != NULL &&
Address < MmSystemRangeStart)
{
PUSHORT Ptrc;
ULONG Idx;
Ptrc = ((PMADDRESS_SPACE)&Process->VadRoot)->PageTableRefCountTable;
Idx = Ke386Pae ? PAE_ADDR_TO_PAGE_TABLE(Address) : ADDR_TO_PAGE_TABLE(Address);
Ptrc[Idx]++;
}
return(STATUS_SUCCESS);
}
NTSTATUS
NTAPI
MmCreateVirtualMappingUnsafe(PEPROCESS Process,
PVOID Address,
ULONG flProtect,
PPFN_TYPE Pages,
ULONG PageCount)
{
ULONG Attributes;
PVOID Addr;
ULONG i;
ULONG oldPdeOffset, PdeOffset;
BOOLEAN NoExecute = FALSE;
DPRINT("MmCreateVirtualMappingUnsafe(%x, %x, %x, %x (%x), %d)\n",
Process, Address, flProtect, Pages, *Pages, PageCount);
if (Process == NULL)
{
if (Address < MmSystemRangeStart)
{
DPRINT1("No process\n");
KEBUGCHECK(0);
}
if (PageCount > 0x10000 ||
(ULONG_PTR) Address / PAGE_SIZE + PageCount > 0x100000)
{
DPRINT1("Page count to large\n");
KEBUGCHECK(0);
}
}
else
{
if (Address >= MmSystemRangeStart)
{
DPRINT1("Setting kernel address with process context\n");
KEBUGCHECK(0);
}
if (PageCount > (ULONG_PTR)MmSystemRangeStart / PAGE_SIZE ||
(ULONG_PTR) Address / PAGE_SIZE + PageCount >
(ULONG_PTR)MmSystemRangeStart / PAGE_SIZE)
{
DPRINT1("Page Count to large\n");
KEBUGCHECK(0);
}
}
Attributes = ProtectToPTE(flProtect);
if (Attributes & 0x80000000)
{
NoExecute = TRUE;
}
Attributes &= 0xfff;
if (Address >= MmSystemRangeStart)
{
Attributes &= ~PA_USER;
if (Ke386GlobalPagesEnabled)
{
Attributes |= PA_GLOBAL;
}
}
else
{
Attributes |= PA_USER;
}
Addr = Address;
if (Ke386Pae)
{
ULONGLONG Pte, tmpPte;
PULONGLONG Pt = NULL;
oldPdeOffset = PAE_ADDR_TO_PDE_OFFSET(Addr) + 1;
for (i = 0; i < PageCount; i++, Addr = (PVOID)((ULONG_PTR)Addr + PAGE_SIZE))
{
if (!(Attributes & PA_PRESENT) && Pages[i] != 0)
{
DPRINT1("Setting physical address but not allowing access at address "
"0x%.8X with attributes %x/%x.\n",
Addr, Attributes, flProtect);
KEBUGCHECK(0);
}
PdeOffset = PAE_ADDR_TO_PDE_OFFSET(Addr);
if (oldPdeOffset != PdeOffset)
{
MmUnmapPageTable((PULONG)Pt);
Pt = MmGetPageTableForProcessForPAE(Process, Addr, TRUE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
}
else
{
Pt++;
}
oldPdeOffset = PdeOffset;
MmMarkPageMapped(Pages[i]);
tmpPte = PAE_PFN_TO_PTE(Pages[i]) | Attributes;
if (NoExecute)
{
tmpPte |= 0x8000000000000000LL;
}
Pte = ExfpInterlockedExchange64UL(Pt, &tmpPte);
if (PAE_PAGE_MASK((Pte)) != 0LL && !((Pte) & PA_PRESENT))
{
KEBUGCHECK(0);
}
if (PAE_PAGE_MASK((Pte)) != 0LL)
{
MmMarkPageUnmapped(PAE_PTE_TO_PFN((Pte)));
}
if (Address < MmSystemRangeStart &&
((PMADDRESS_SPACE)&Process->VadRoot)->PageTableRefCountTable != NULL &&
Attributes & PA_PRESENT)
{
PUSHORT Ptrc;
Ptrc = ((PMADDRESS_SPACE)&Process->VadRoot)->PageTableRefCountTable;
Ptrc[PAE_ADDR_TO_PAGE_TABLE(Addr)]++;
}
if (Pte != 0LL)
{
if (Address > MmSystemRangeStart ||
(Pt >= (PULONGLONG)PAGETABLE_MAP && Pt < (PULONGLONG)PAGETABLE_MAP + 4*512*512))
{
MiFlushTlb((PULONG)Pt, Address);
}
}
}
if (Addr > Address)
{
MmUnmapPageTable((PULONG)Pt);
}
}
else
{
PULONG Pt = NULL;
ULONG Pte;
oldPdeOffset = ADDR_TO_PDE_OFFSET(Addr) + 1;
for (i = 0; i < PageCount; i++, Addr = (PVOID)((ULONG_PTR)Addr + PAGE_SIZE))
{
if (!(Attributes & PA_PRESENT) && Pages[i] != 0)
{
DPRINT1("Setting physical address but not allowing access at address "
"0x%.8X with attributes %x/%x.\n",
Addr, Attributes, flProtect);
KEBUGCHECK(0);
}
PdeOffset = ADDR_TO_PDE_OFFSET(Addr);
if (oldPdeOffset != PdeOffset)
{
MmUnmapPageTable(Pt);
Pt = MmGetPageTableForProcess(Process, Addr, TRUE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
}
else
{
Pt++;
}
oldPdeOffset = PdeOffset;
Pte = *Pt;
MmMarkPageMapped(Pages[i]);
if (PAGE_MASK((Pte)) != 0 && !((Pte) & PA_PRESENT))
{
KEBUGCHECK(0);
}
if (PAGE_MASK((Pte)) != 0)
{
MmMarkPageUnmapped(PTE_TO_PFN((Pte)));
}
(void)InterlockedExchangeUL(Pt, PFN_TO_PTE(Pages[i]) | Attributes);
if (Address < MmSystemRangeStart &&
((PMADDRESS_SPACE)&Process->VadRoot)->PageTableRefCountTable != NULL &&
Attributes & PA_PRESENT)
{
PUSHORT Ptrc;
Ptrc = ((PMADDRESS_SPACE)&Process->VadRoot)->PageTableRefCountTable;
Ptrc[ADDR_TO_PAGE_TABLE(Addr)]++;
}
if (Pte != 0)
{
if (Address > MmSystemRangeStart ||
(Pt >= (PULONG)PAGETABLE_MAP && Pt < (PULONG)PAGETABLE_MAP + 1024*1024))
{
MiFlushTlb(Pt, Address);
}
}
}
if (Addr > Address)
{
MmUnmapPageTable(Pt);
}
}
return(STATUS_SUCCESS);
}
NTSTATUS
NTAPI
MmCreateVirtualMapping(PEPROCESS Process,
PVOID Address,
ULONG flProtect,
PPFN_TYPE Pages,
ULONG PageCount)
{
ULONG i;
for (i = 0; i < PageCount; i++)
{
if (!MmIsPageInUse(Pages[i]))
{
DPRINT1("Page at address %x not in use\n", PFN_TO_PTE(Pages[i]));
KEBUGCHECK(0);
}
}
return(MmCreateVirtualMappingUnsafe(Process,
Address,
flProtect,
Pages,
PageCount));
}
ULONG
NTAPI
MmGetPageProtect(PEPROCESS Process, PVOID Address)
{
ULONG Entry;
ULONG Protect;
if (Ke386Pae)
{
Entry = MmGetPageEntryForProcessForPAE(Process, Address);
}
else
{
Entry = MmGetPageEntryForProcess(Process, Address);
}
if (!(Entry & PA_PRESENT))
{
Protect = PAGE_NOACCESS;
}
else
{
if (Entry & PA_READWRITE)
{
Protect = PAGE_READWRITE;
}
else
{
Protect = PAGE_EXECUTE_READ;
}
if (Entry & PA_CD)
{
Protect |= PAGE_NOCACHE;
}
if (Entry & PA_WT)
{
Protect |= PAGE_WRITETHROUGH;
}
if (!(Entry & PA_USER))
{
Protect |= PAGE_SYSTEM;
}
}
return(Protect);
}
VOID
NTAPI
MmSetPageProtect(PEPROCESS Process, PVOID Address, ULONG flProtect)
{
ULONG Attributes = 0;
BOOLEAN NoExecute = FALSE;
DPRINT("MmSetPageProtect(Process %x Address %x flProtect %x)\n",
Process, Address, flProtect);
Attributes = ProtectToPTE(flProtect);
if (Attributes & 0x80000000)
{
NoExecute = TRUE;
}
Attributes &= 0xfff;
if (Address >= MmSystemRangeStart)
{
Attributes &= ~PA_USER;
if (Ke386GlobalPagesEnabled)
{
Attributes |= PA_GLOBAL;
}
}
else
{
Attributes |= PA_USER;
}
if (Ke386Pae)
{
PULONGLONG Pt;
ULONGLONG tmpPte, Pte;
Pt = MmGetPageTableForProcessForPAE(Process, Address, FALSE);
if (Pt == NULL)
{
DPRINT1("Address %x\n", Address);
KEBUGCHECK(0);
}
do
{
Pte = *Pt;
tmpPte = PAE_PAGE_MASK(Pte) | Attributes | (Pte & (PA_ACCESSED|PA_DIRTY));
if (NoExecute)
{
tmpPte |= 0x8000000000000000LL;
}
else
{
tmpPte &= ~0x8000000000000000LL;
}
} while (Pte != ExfInterlockedCompareExchange64UL(Pt, &tmpPte, &Pte));
MiFlushTlb((PULONG)Pt, Address);
}
else
{
PULONG Pt;
Pt = MmGetPageTableForProcess(Process, Address, FALSE);
if (Pt == NULL)
{
KEBUGCHECK(0);
}
InterlockedExchange((PLONG)Pt, PAGE_MASK(*Pt) | Attributes | (*Pt & (PA_ACCESSED|PA_DIRTY)));
MiFlushTlb(Pt, Address);
}
}
/*
* @implemented
*/
PHYSICAL_ADDRESS STDCALL
MmGetPhysicalAddress(PVOID vaddr)
/*
* FUNCTION: Returns the physical address corresponding to a virtual address
*/
{
PHYSICAL_ADDRESS p;
DPRINT("MmGetPhysicalAddress(vaddr %x)\n", vaddr);
if (Ke386Pae)
{
ULONGLONG Pte;
Pte = MmGetPageEntryForProcessForPAE(NULL, vaddr);
if (Pte != 0 && Pte & PA_PRESENT)
{
p.QuadPart = PAE_PAGE_MASK(Pte);
p.u.LowPart |= (ULONG_PTR)vaddr & (PAGE_SIZE - 1);
}
else
{
p.QuadPart = 0;
}
}
else
{
ULONG Pte;
Pte = MmGetPageEntryForProcess(NULL, vaddr);
if (Pte != 0 && Pte & PA_PRESENT)
{
p.QuadPart = PAGE_MASK(Pte);
p.u.LowPart |= (ULONG_PTR)vaddr & (PAGE_SIZE - 1);
}
else
{
p.QuadPart = 0;
}
}
return p;
}
PVOID
NTAPI
MmCreateHyperspaceMapping(PFN_TYPE Page)
{
PVOID Address;
ULONG i;
if (Ke386Pae)
{
ULONGLONG Entry;
ULONGLONG ZeroEntry = 0LL;
PULONGLONG Pte;
Entry = PFN_TO_PTE(Page) | PA_PRESENT | PA_READWRITE;
Pte = PAE_ADDR_TO_PTE(HYPERSPACE) + Page % 1024;
if (Page & 1024)
{
for (i = Page %1024; i < 1024; i++, Pte++)
{
if (0LL == ExfInterlockedCompareExchange64UL(Pte, &Entry, &ZeroEntry))
{
break;
}
}
if (i >= 1024)
{
Pte = PAE_ADDR_TO_PTE(HYPERSPACE);
for (i = 0; i < Page % 1024; i++, Pte++)
{
if (0LL == ExfInterlockedCompareExchange64UL(Pte, &Entry, &ZeroEntry))
{
break;
}
}
if (i >= Page % 1024)
{
KEBUGCHECK(0);
}
}
}
else
{
for (i = Page %1024; (LONG)i >= 0; i--, Pte--)
{
if (0LL == ExfInterlockedCompareExchange64UL(Pte, &Entry, &ZeroEntry))
{
break;
}
}
if ((LONG)i < 0)
{
Pte = PAE_ADDR_TO_PTE(HYPERSPACE) + 1023;
for (i = 1023; i > Page % 1024; i--, Pte--)
{
if (0LL == ExfInterlockedCompareExchange64UL(Pte, &Entry, &ZeroEntry))
{
break;
}
}
if (i <= Page % 1024)
{
KEBUGCHECK(0);
}
}
}
}
else
{
ULONG Entry;
PULONG Pte;
Entry = PFN_TO_PTE(Page) | PA_PRESENT | PA_READWRITE;
Pte = ADDR_TO_PTE(HYPERSPACE) + Page % 1024;
if (Page & 1024)
{
for (i = Page % 1024; i < 1024; i++, Pte++)
{
if (0 == InterlockedCompareExchange((PLONG)Pte, (LONG)Entry, 0))
{
break;
}
}
if (i >= 1024)
{
Pte = ADDR_TO_PTE(HYPERSPACE);
for (i = 0; i < Page % 1024; i++, Pte++)
{
if (0 == InterlockedCompareExchange((PLONG)Pte, (LONG)Entry, 0))
{
break;
}
}
if (i >= Page % 1024)
{
KEBUGCHECK(0);
}
}
}
else
{
for (i = Page % 1024; (LONG)i >= 0; i--, Pte--)
{
if (0 == InterlockedCompareExchange((PLONG)Pte, (LONG)Entry, 0))
{
break;
}
}
if ((LONG)i < 0)
{
Pte = ADDR_TO_PTE(HYPERSPACE) + 1023;
for (i = 1023; i > Page % 1024; i--, Pte--)
{
if (0 == InterlockedCompareExchange((PLONG)Pte, (LONG)Entry, 0))
{
break;
}
}
if (i <= Page % 1024)
{
KEBUGCHECK(0);
}
}
}
}
Address = (PVOID)((ULONG_PTR)HYPERSPACE + i * PAGE_SIZE);
__invlpg(Address);
return Address;
}
PFN_TYPE
NTAPI
MmChangeHyperspaceMapping(PVOID Address, PFN_TYPE NewPage)
{
PFN_TYPE Pfn;
ASSERT (IS_HYPERSPACE(Address));
if (Ke386Pae)
{
ULONGLONG Entry = PAE_PFN_TO_PTE(NewPage) | PA_PRESENT | PA_READWRITE;
Entry = (ULONG)ExfpInterlockedExchange64UL(PAE_ADDR_TO_PTE(Address), &Entry);
Pfn = PAE_PTE_TO_PFN(Entry);
}
else
{
ULONG Entry;
Entry = InterlockedExchange((PLONG)ADDR_TO_PTE(Address), PFN_TO_PTE(NewPage) | PA_PRESENT | PA_READWRITE);
Pfn = PTE_TO_PFN(Entry);
}
__invlpg(Address);
return Pfn;
}
PFN_TYPE
NTAPI
MmDeleteHyperspaceMapping(PVOID Address)
{
PFN_TYPE Pfn;
ASSERT (IS_HYPERSPACE(Address));
if (Ke386Pae)
{
ULONGLONG Entry = 0LL;
Entry = (ULONG)ExfpInterlockedExchange64UL(PAE_ADDR_TO_PTE(Address), &Entry);
Pfn = PAE_PTE_TO_PFN(Entry);
}
else
{
ULONG Entry;
Entry = InterlockedExchange((PLONG)ADDR_TO_PTE(Address), 0);
Pfn = PTE_TO_PFN(Entry);
}
__invlpg(Address);
return Pfn;
}
VOID
NTAPI
MmUpdatePageDir(PEPROCESS Process, PVOID Address, ULONG Size)
{
ULONG StartOffset, EndOffset, Offset;
if (Address < MmSystemRangeStart)
{
KEBUGCHECK(0);
}
if (Ke386Pae)
{
PULONGLONG PageDirTable;
PULONGLONG Pde;
ULONGLONG ZeroPde = 0LL;
ULONG i;
for (i = PAE_ADDR_TO_PDTE_OFFSET(Address); i <= PAE_ADDR_TO_PDTE_OFFSET((PVOID)((ULONG_PTR)Address + Size)); i++)
{
if (i == PAE_ADDR_TO_PDTE_OFFSET(Address))
{
StartOffset = PAE_ADDR_TO_PDE_PAGE_OFFSET(Address);
}
else
{
StartOffset = 0;
}
if (i == PAE_ADDR_TO_PDTE_OFFSET((PVOID)((ULONG_PTR)Address + Size)))
{
EndOffset = PAE_ADDR_TO_PDE_PAGE_OFFSET((PVOID)((ULONG_PTR)Address + Size));
}
else
{
EndOffset = 511;
}
if (Process != NULL && Process != PsGetCurrentProcess())
{
PageDirTable = MmCreateHyperspaceMapping(PAE_PTE_TO_PFN(Process->Pcb.DirectoryTableBase.QuadPart));
Pde = (PULONGLONG)MmCreateHyperspaceMapping(PTE_TO_PFN(PageDirTable[i]));
MmDeleteHyperspaceMapping(PageDirTable);
}
else
{
Pde = (PULONGLONG)PAE_PAGEDIRECTORY_MAP + i*512;
}
for (Offset = StartOffset; Offset <= EndOffset; Offset++)
{
if (i * 512 + Offset < PAE_ADDR_TO_PDE_OFFSET(PAGETABLE_MAP) || i * 512 + Offset >= PAE_ADDR_TO_PDE_OFFSET(PAGETABLE_MAP)+4)
{
(void)ExfInterlockedCompareExchange64UL(&Pde[Offset], &MmGlobalKernelPageDirectoryForPAE[i*512 + Offset], &ZeroPde);
}
}
MmUnmapPageTable((PULONG)Pde);
}
}
else
{
PULONG Pde;
StartOffset = ADDR_TO_PDE_OFFSET(Address);
EndOffset = ADDR_TO_PDE_OFFSET((PVOID)((ULONG_PTR)Address + Size));
if (Process != NULL && Process != PsGetCurrentProcess())
{
Pde = MmCreateHyperspaceMapping(PTE_TO_PFN(Process->Pcb.DirectoryTableBase.u.LowPart));
}
else
{
Pde = (PULONG)PAGEDIRECTORY_MAP;
}
for (Offset = StartOffset; Offset <= EndOffset; Offset++)
{
if (Offset != ADDR_TO_PDE_OFFSET(PAGETABLE_MAP))
{
(void)InterlockedCompareExchangeUL(&Pde[Offset], MmGlobalKernelPageDirectory[Offset], 0);
}
}
if (Pde != (PULONG)PAGEDIRECTORY_MAP)
{
MmDeleteHyperspaceMapping(Pde);
}
}
}
VOID
INIT_FUNCTION
NTAPI
MmInitGlobalKernelPageDirectory(VOID)
{
ULONG i;
DPRINT("MmInitGlobalKernelPageDirectory()\n");
if (Ke386Pae)
{
PULONGLONG CurrentPageDirectory = (PULONGLONG)PAE_PAGEDIRECTORY_MAP;
for (i = PAE_ADDR_TO_PDE_OFFSET(MmSystemRangeStart); i < 4 * 512; i++)
{
if (!(i >= PAE_ADDR_TO_PDE_OFFSET(PAGETABLE_MAP) && i < PAE_ADDR_TO_PDE_OFFSET(PAGETABLE_MAP) + 4) &&
!(i >= PAE_ADDR_TO_PDE_OFFSET(HYPERSPACE) && i < PAE_ADDR_TO_PDE_OFFSET(HYPERSPACE) + 2) &&
0LL == MmGlobalKernelPageDirectoryForPAE[i] && 0LL != CurrentPageDirectory[i])
{
(void)ExfpInterlockedExchange64UL(&MmGlobalKernelPageDirectoryForPAE[i], &CurrentPageDirectory[i]);
if (Ke386GlobalPagesEnabled)
{
MmGlobalKernelPageDirectoryForPAE[i] |= PA_GLOBAL;
CurrentPageDirectory[i] |= PA_GLOBAL;
}
}
}
}
else
{
PULONG CurrentPageDirectory = (PULONG)PAGEDIRECTORY_MAP;
for (i = ADDR_TO_PDE_OFFSET(MmSystemRangeStart); i < 1024; i++)
{
if (i != ADDR_TO_PDE_OFFSET(PAGETABLE_MAP) &&
i != ADDR_TO_PDE_OFFSET(HYPERSPACE) &&
0 == MmGlobalKernelPageDirectory[i] && 0 != CurrentPageDirectory[i])
{
MmGlobalKernelPageDirectory[i] = CurrentPageDirectory[i];
if (Ke386GlobalPagesEnabled)
{
MmGlobalKernelPageDirectory[i] |= PA_GLOBAL;
CurrentPageDirectory[i] |= PA_GLOBAL;
}
}
}
}
}
ULONG
NTAPI
MiGetUserPageDirectoryCount(VOID)
{
return Ke386Pae ? PAE_ADDR_TO_PDE_OFFSET(MmSystemRangeStart) : ADDR_TO_PDE_OFFSET(MmSystemRangeStart);
}
VOID
INIT_FUNCTION
NTAPI
MiInitPageDirectoryMap(VOID)
{
MEMORY_AREA* kernel_map_desc = NULL;
MEMORY_AREA* hyperspace_desc = NULL;
PHYSICAL_ADDRESS BoundaryAddressMultiple;
PVOID BaseAddress;
NTSTATUS Status;
DPRINT("MiInitPageDirectoryMap()\n");
BoundaryAddressMultiple.QuadPart = 0;
BaseAddress = (PVOID)PAGETABLE_MAP;
Status = MmCreateMemoryArea(MmGetKernelAddressSpace(),
MEMORY_AREA_SYSTEM,
&BaseAddress,
Ke386Pae ? 0x800000 : 0x400000,
PAGE_READWRITE,
&kernel_map_desc,
TRUE,
0,
BoundaryAddressMultiple);
if (!NT_SUCCESS(Status))
{
KEBUGCHECK(0);
}
BaseAddress = (PVOID)HYPERSPACE;
Status = MmCreateMemoryArea(MmGetKernelAddressSpace(),
MEMORY_AREA_SYSTEM,
&BaseAddress,
0x400000,
PAGE_READWRITE,
&hyperspace_desc,
TRUE,
0,
BoundaryAddressMultiple);
if (!NT_SUCCESS(Status))
{
KEBUGCHECK(0);
}
}
/* EOF */