reactos/drivers/filesystems/ntfs/btree.c

2031 lines
69 KiB
C
Raw Normal View History

/*
* ReactOS kernel
* Copyright (C) 2002, 2017 ReactOS Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
*
* COPYRIGHT: See COPYING in the top level directory
* PROJECT: ReactOS kernel
* FILE: drivers/filesystem/ntfs/btree.c
* PURPOSE: NTFS filesystem driver
* PROGRAMMERS: Trevor Thompson
*/
/* INCLUDES *****************************************************************/
#include "ntfs.h"
#define NDEBUG
#include <debug.h>
/* FUNCTIONS ****************************************************************/
// TEMP FUNCTION for diagnostic purposes.
// Prints VCN of every node in an index allocation
VOID
PrintAllVCNs(PDEVICE_EXTENSION Vcb,
PNTFS_ATTR_CONTEXT IndexAllocationContext,
ULONG NodeSize)
{
ULONGLONG CurrentOffset = 0;
PINDEX_BUFFER CurrentNode, Buffer;
ULONGLONG BufferSize = AttributeDataLength(IndexAllocationContext->pRecord);
ULONG BytesRead;
ULONGLONG i;
int Count = 0;
if (BufferSize == 0)
{
DPRINT1("Index Allocation is empty.\n");
return;
}
Buffer = ExAllocatePoolWithTag(NonPagedPool, BufferSize, TAG_NTFS);
BytesRead = ReadAttribute(Vcb, IndexAllocationContext, 0, (PCHAR)Buffer, BufferSize);
ASSERT(BytesRead = BufferSize);
CurrentNode = Buffer;
// loop through all the nodes
for (i = 0; i < BufferSize; i += NodeSize)
{
NTSTATUS Status = FixupUpdateSequenceArray(Vcb, &CurrentNode->Ntfs);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Fixing fixup failed!\n");
continue;
}
DPRINT1("Node #%d, VCN: %I64u\n", Count, CurrentNode->VCN);
CurrentNode = (PINDEX_BUFFER)((ULONG_PTR)CurrentNode + NodeSize);
CurrentOffset += NodeSize;
Count++;
}
ExFreePoolWithTag(Buffer, TAG_NTFS);
}
/**
* @name AllocateIndexNode
* @implemented
*
* Allocates a new index record in an index allocation.
*
* @param DeviceExt
* Pointer to the target DEVICE_EXTENSION describing the volume the node will be created on.
*
* @param FileRecord
* Pointer to a copy of the file record containing the index.
*
* @param IndexBufferSize
* Size of an index record for this index, in bytes. Commonly defined as 4096.
*
* @param IndexAllocationCtx
* Pointer to an NTFS_ATTR_CONTEXT describing the index allocation attribute the node will be assigned to.
*
* @param IndexAllocationOffset
* Offset of the index allocation attribute relative to the file record.
*
* @param NewVCN
* Pointer to a ULONGLONG which will receive the VCN of the newly-assigned index record
*
* @returns
* STATUS_SUCCESS in case of success.
* STATUS_NOT_IMPLEMENTED if there's no $I30 bitmap attribute in the file record.
*
* @remarks
* AllocateIndexNode() doesn't write any data to the index record it creates. Called by UpdateIndexNode().
* Don't call PrintAllVCNs() or NtfsDumpFileRecord() after calling AllocateIndexNode() before UpdateIndexNode() finishes.
* Possible TODO: Create an empty node and write it to the allocated index node, so the index allocation is always valid.
*/
NTSTATUS
AllocateIndexNode(PDEVICE_EXTENSION DeviceExt,
PFILE_RECORD_HEADER FileRecord,
ULONG IndexBufferSize,
PNTFS_ATTR_CONTEXT IndexAllocationCtx,
ULONG IndexAllocationOffset,
PULONGLONG NewVCN)
{
NTSTATUS Status;
PNTFS_ATTR_CONTEXT BitmapCtx;
ULONGLONG IndexAllocationLength, BitmapLength;
ULONG BitmapOffset;
ULONGLONG NextNodeNumber;
PCHAR *BitmapMem;
ULONG *BitmapPtr;
RTL_BITMAP Bitmap;
ULONG BytesWritten;
ULONG BytesNeeded;
LARGE_INTEGER DataSize;
DPRINT1("AllocateIndexNode(%p, %p, %lu, %p, %lu, %p) called.\n", DeviceExt,
FileRecord,
IndexBufferSize,
IndexAllocationCtx,
IndexAllocationOffset,
NewVCN);
// Get the length of the attribute allocation
IndexAllocationLength = AttributeDataLength(IndexAllocationCtx->pRecord);
// Find the bitmap attribute for the index
Status = FindAttribute(DeviceExt,
FileRecord,
AttributeBitmap,
L"$I30",
4,
&BitmapCtx,
&BitmapOffset);
if (!NT_SUCCESS(Status))
{
DPRINT1("FIXME: Need to add bitmap attribute!\n");
return STATUS_NOT_IMPLEMENTED;
}
// Get the length of the bitmap attribute
BitmapLength = AttributeDataLength(BitmapCtx->pRecord);
NextNodeNumber = IndexAllocationLength / DeviceExt->NtfsInfo.BytesPerIndexRecord;
// TODO: Find unused allocation in bitmap and use that space first
// Add another bit to bitmap
// See how many bytes we need to store the amount of bits we'll have
BytesNeeded = NextNodeNumber / 8;
BytesNeeded++;
// Windows seems to allocate the bitmap in 8-byte chunks to keep any bytes from being wasted on padding
BytesNeeded = ALIGN_UP(BytesNeeded, ATTR_RECORD_ALIGNMENT);
// Allocate memory for the bitmap, including some padding; RtlInitializeBitmap() wants a pointer
// that's ULONG-aligned, and it wants the size of the memory allocated for it to be a ULONG-multiple.
BitmapMem = ExAllocatePoolWithTag(NonPagedPool, BytesNeeded + sizeof(ULONG), TAG_NTFS);
if (!BitmapMem)
{
DPRINT1("Error: failed to allocate bitmap!");
ReleaseAttributeContext(BitmapCtx);
return STATUS_INSUFFICIENT_RESOURCES;
}
// RtlInitializeBitmap() wants a pointer that's ULONG-aligned.
BitmapPtr = (PULONG)ALIGN_UP_BY((ULONG_PTR)BitmapMem, sizeof(ULONG));
RtlZeroMemory(BitmapPtr, BytesNeeded);
// Read the existing bitmap data
Status = ReadAttribute(DeviceExt, BitmapCtx, 0, (PCHAR)BitmapPtr, BitmapLength);
// Initialize bitmap
RtlInitializeBitMap(&Bitmap, BitmapPtr, NextNodeNumber);
// Do we need to enlarge the bitmap?
if (BytesNeeded > BitmapLength)
{
// TODO: handle synchronization issues that could occur from changing the directory's file record
// Change bitmap size
DataSize.QuadPart = BytesNeeded;
if (BitmapCtx->pRecord->IsNonResident)
{
Status = SetNonResidentAttributeDataLength(DeviceExt,
BitmapCtx,
BitmapOffset,
FileRecord,
&DataSize);
}
else
{
Status = SetResidentAttributeDataLength(DeviceExt,
BitmapCtx,
BitmapOffset,
FileRecord,
&DataSize);
}
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to set length of bitmap attribute!\n");
ReleaseAttributeContext(BitmapCtx);
return Status;
}
}
// Enlarge Index Allocation attribute
DataSize.QuadPart = IndexAllocationLength + IndexBufferSize;
Status = SetNonResidentAttributeDataLength(DeviceExt,
IndexAllocationCtx,
IndexAllocationOffset,
FileRecord,
&DataSize);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to set length of index allocation!\n");
ReleaseAttributeContext(BitmapCtx);
return Status;
}
// Update file record on disk
Status = UpdateFileRecord(DeviceExt, IndexAllocationCtx->FileMFTIndex, FileRecord);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to update file record!\n");
ReleaseAttributeContext(BitmapCtx);
return Status;
}
// Set the bit for the new index record
RtlSetBits(&Bitmap, NextNodeNumber, 1);
// Write the new bitmap attribute
Status = WriteAttribute(DeviceExt,
BitmapCtx,
0,
(const PUCHAR)BitmapPtr,
BytesNeeded,
&BytesWritten,
FileRecord);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Unable to write to $I30 bitmap attribute!\n");
}
// Calculate VCN of new node number
*NewVCN = NextNodeNumber * (IndexBufferSize / DeviceExt->NtfsInfo.BytesPerCluster);
DPRINT("New VCN: %I64u\n", *NewVCN);
ExFreePoolWithTag(BitmapMem, TAG_NTFS);
ReleaseAttributeContext(BitmapCtx);
return Status;
}
/**
* @name CreateDummyKey
* @implemented
*
* Creates the final B_TREE_KEY for a B_TREE_FILENAME_NODE. Also creates the associated index entry.
*
* @param HasChildNode
* BOOLEAN to indicate if this key will have a LesserChild.
*
* @return
* The newly-created key.
*/
PB_TREE_KEY
CreateDummyKey(BOOLEAN HasChildNode)
{
PINDEX_ENTRY_ATTRIBUTE NewIndexEntry;
PB_TREE_KEY NewDummyKey;
// Calculate max size of a dummy key
ULONG EntrySize = ALIGN_UP_BY(FIELD_OFFSET(INDEX_ENTRY_ATTRIBUTE, FileName), 8);
EntrySize += sizeof(ULONGLONG); // for VCN
// Create the index entry for the key
NewIndexEntry = ExAllocatePoolWithTag(NonPagedPool, EntrySize, TAG_NTFS);
if (!NewIndexEntry)
{
DPRINT1("Couldn't allocate memory for dummy key index entry!\n");
return NULL;
}
RtlZeroMemory(NewIndexEntry, EntrySize);
if (HasChildNode)
{
NewIndexEntry->Flags = NTFS_INDEX_ENTRY_NODE | NTFS_INDEX_ENTRY_END;
}
else
{
NewIndexEntry->Flags = NTFS_INDEX_ENTRY_END;
EntrySize -= sizeof(ULONGLONG); // no VCN
}
NewIndexEntry->Length = EntrySize;
// Create the key
NewDummyKey = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_KEY), TAG_NTFS);
if (!NewDummyKey)
{
DPRINT1("Unable to allocate dummy key!\n");
ExFreePoolWithTag(NewIndexEntry, TAG_NTFS);
return NULL;
}
RtlZeroMemory(NewDummyKey, sizeof(B_TREE_KEY));
NewDummyKey->IndexEntry = NewIndexEntry;
return NewDummyKey;
}
/**
* @name CreateEmptyBTree
* @implemented
*
* Creates an empty B-Tree, which will contain a single root node which will contain a single dummy key.
*
* @param NewTree
* Pointer to a PB_TREE that will receive the pointer of the newly-created B-Tree.
*
* @return
* STATUS_SUCCESS on success. STATUS_INSUFFICIENT_RESOURCES if an allocation fails.
*/
NTSTATUS
CreateEmptyBTree(PB_TREE *NewTree)
{
PB_TREE Tree = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE), TAG_NTFS);
PB_TREE_FILENAME_NODE RootNode = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_FILENAME_NODE), TAG_NTFS);
PB_TREE_KEY DummyKey;
DPRINT1("CreateEmptyBTree(%p) called\n", NewTree);
if (!Tree || !RootNode)
{
DPRINT1("Couldn't allocate enough memory for B-Tree!\n");
if (Tree)
ExFreePoolWithTag(Tree, TAG_NTFS);
if (RootNode)
ExFreePoolWithTag(RootNode, TAG_NTFS);
return STATUS_INSUFFICIENT_RESOURCES;
}
// Create the dummy key
DummyKey = CreateDummyKey(FALSE);
if (!DummyKey)
{
DPRINT1("ERROR: Failed to create dummy key!\n");
ExFreePoolWithTag(Tree, TAG_NTFS);
ExFreePoolWithTag(RootNode, TAG_NTFS);
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory(Tree, sizeof(B_TREE));
RtlZeroMemory(RootNode, sizeof(B_TREE_FILENAME_NODE));
// Setup the Tree
RootNode->FirstKey = DummyKey;
RootNode->KeyCount = 1;
RootNode->DiskNeedsUpdating = TRUE;
Tree->RootNode = RootNode;
*NewTree = Tree;
// Memory will be freed when DestroyBTree() is called
return STATUS_SUCCESS;
}
/**
* @name CompareTreeKeys
* @implemented
*
* Compare two B_TREE_KEY's to determine their order in the tree.
*
* @param Key1
* Pointer to a B_TREE_KEY that will be compared.
*
* @param Key2
* Pointer to the other B_TREE_KEY that will be compared.
*
* @param CaseSensitive
* Boolean indicating if the function should operate in case-sensitive mode. This will be TRUE
* if an application created the file with the FILE_FLAG_POSIX_SEMANTICS flag.
*
* @returns
* 0 if the two keys are equal.
* < 0 if key1 is less thank key2
* > 0 if key1 is greater than key2
*
* @remarks
* Any other key is always less than the final (dummy) key in a node. Key1 must not be the dummy node.
*/
LONG
CompareTreeKeys(PB_TREE_KEY Key1, PB_TREE_KEY Key2, BOOLEAN CaseSensitive)
{
UNICODE_STRING Key1Name, Key2Name;
LONG Comparison;
// Key1 must not be the final key (AKA the dummy key)
ASSERT(!(Key1->IndexEntry->Flags & NTFS_INDEX_ENTRY_END));
// If Key2 is the "dummy key", key 1 will always come first
if (Key2->NextKey == NULL)
return -1;
Key1Name.Buffer = Key1->IndexEntry->FileName.Name;
Key1Name.Length = Key1Name.MaximumLength
= Key1->IndexEntry->FileName.NameLength * sizeof(WCHAR);
Key2Name.Buffer = Key2->IndexEntry->FileName.Name;
Key2Name.Length = Key2Name.MaximumLength
= Key2->IndexEntry->FileName.NameLength * sizeof(WCHAR);
// Are the two keys the same length?
if (Key1Name.Length == Key2Name.Length)
return RtlCompareUnicodeString(&Key1Name, &Key2Name, !CaseSensitive);
// Is Key1 shorter?
if (Key1Name.Length < Key2Name.Length)
{
// Truncate KeyName2 to be the same length as KeyName1
Key2Name.Length = Key1Name.Length;
// Compare the names of the same length
Comparison = RtlCompareUnicodeString(&Key1Name, &Key2Name, !CaseSensitive);
// If the truncated names are the same length, the shorter one comes first
if (Comparison == 0)
return -1;
}
else
{
// Key2 is shorter
// Truncate KeyName1 to be the same length as KeyName2
Key1Name.Length = Key2Name.Length;
// Compare the names of the same length
Comparison = RtlCompareUnicodeString(&Key1Name, &Key2Name, !CaseSensitive);
// If the truncated names are the same length, the shorter one comes first
if (Comparison == 0)
return 1;
}
return Comparison;
}
/**
* @name CountBTreeKeys
* @implemented
*
* Counts the number of linked B-Tree keys, starting with FirstKey.
*
* @param FirstKey
* Pointer to a B_TREE_KEY that will be the first key to be counted.
*
* @return
* The number of keys in a linked-list, including FirstKey and the final dummy key.
*/
ULONG
CountBTreeKeys(PB_TREE_KEY FirstKey)
{
ULONG Count = 0;
PB_TREE_KEY Current = FirstKey;
while (Current != NULL)
{
Count++;
Current = Current->NextKey;
}
return Count;
}
PB_TREE_FILENAME_NODE
CreateBTreeNodeFromIndexNode(PDEVICE_EXTENSION Vcb,
PINDEX_ROOT_ATTRIBUTE IndexRoot,
PNTFS_ATTR_CONTEXT IndexAllocationAttributeCtx,
PINDEX_ENTRY_ATTRIBUTE NodeEntry)
{
PB_TREE_FILENAME_NODE NewNode;
PINDEX_ENTRY_ATTRIBUTE CurrentNodeEntry;
PINDEX_ENTRY_ATTRIBUTE FirstNodeEntry;
ULONG CurrentEntryOffset = 0;
PINDEX_BUFFER NodeBuffer;
ULONG IndexBufferSize = Vcb->NtfsInfo.BytesPerIndexRecord;
PULONGLONG VCN;
PB_TREE_KEY CurrentKey;
NTSTATUS Status;
ULONGLONG IndexNodeOffset;
ULONG BytesRead;
if (IndexAllocationAttributeCtx == NULL)
{
DPRINT1("ERROR: Couldn't find index allocation attribute even though there should be one!\n");
return NULL;
}
// Get the node number from the end of the node entry
VCN = (PULONGLONG)((ULONG_PTR)NodeEntry + NodeEntry->Length - sizeof(ULONGLONG));
// Create the new tree node
NewNode = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_FILENAME_NODE), TAG_NTFS);
if (!NewNode)
{
DPRINT1("ERROR: Couldn't allocate memory for new filename node.\n");
return NULL;
}
RtlZeroMemory(NewNode, sizeof(B_TREE_FILENAME_NODE));
// Create the first key
CurrentKey = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_KEY), TAG_NTFS);
if (!CurrentKey)
{
DPRINT1("ERROR: Failed to allocate memory for key!\n");
ExFreePoolWithTag(NewNode, TAG_NTFS);
return NULL;
}
RtlZeroMemory(CurrentKey, sizeof(B_TREE_KEY));
NewNode->FirstKey = CurrentKey;
// Allocate memory for the node buffer
NodeBuffer = ExAllocatePoolWithTag(NonPagedPool, IndexBufferSize, TAG_NTFS);
if (!NodeBuffer)
{
DPRINT1("ERROR: Couldn't allocate memory for node buffer!\n");
ExFreePoolWithTag(CurrentKey, TAG_NTFS);
ExFreePoolWithTag(NewNode, TAG_NTFS);
return NULL;
}
// Calculate offset into index allocation
IndexNodeOffset = GetAllocationOffsetFromVCN(Vcb, IndexBufferSize, *VCN);
// TODO: Confirm index bitmap has this node marked as in-use
// Read the node
BytesRead = ReadAttribute(Vcb,
IndexAllocationAttributeCtx,
IndexNodeOffset,
(PCHAR)NodeBuffer,
IndexBufferSize);
ASSERT(BytesRead == IndexBufferSize);
NT_ASSERT(NodeBuffer->Ntfs.Type == NRH_INDX_TYPE);
NT_ASSERT(NodeBuffer->VCN == *VCN);
// Apply the fixup array to the node buffer
Status = FixupUpdateSequenceArray(Vcb, &NodeBuffer->Ntfs);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Couldn't apply fixup array to index node buffer!\n");
ExFreePoolWithTag(NodeBuffer, TAG_NTFS);
ExFreePoolWithTag(CurrentKey, TAG_NTFS);
ExFreePoolWithTag(NewNode, TAG_NTFS);
return NULL;
}
// Walk through the index and create keys for all the entries
FirstNodeEntry = (PINDEX_ENTRY_ATTRIBUTE)((ULONG_PTR)(&NodeBuffer->Header)
+ NodeBuffer->Header.FirstEntryOffset);
CurrentNodeEntry = FirstNodeEntry;
while (CurrentEntryOffset < NodeBuffer->Header.TotalSizeOfEntries)
{
// Allocate memory for the current entry
CurrentKey->IndexEntry = ExAllocatePoolWithTag(NonPagedPool, CurrentNodeEntry->Length, TAG_NTFS);
if (!CurrentKey->IndexEntry)
{
DPRINT1("ERROR: Couldn't allocate memory for next key!\n");
DestroyBTreeNode(NewNode);
ExFreePoolWithTag(NodeBuffer, TAG_NTFS);
return NULL;
}
NewNode->KeyCount++;
// If this isn't the last entry
if (!(CurrentNodeEntry->Flags & NTFS_INDEX_ENTRY_END))
{
// Create the next key
PB_TREE_KEY NextKey = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_KEY), TAG_NTFS);
if (!NextKey)
{
DPRINT1("ERROR: Couldn't allocate memory for next key!\n");
DestroyBTreeNode(NewNode);
ExFreePoolWithTag(NodeBuffer, TAG_NTFS);
return NULL;
}
RtlZeroMemory(NextKey, sizeof(B_TREE_KEY));
// Add NextKey to the end of the list
CurrentKey->NextKey = NextKey;
// Copy the current entry to its key
RtlCopyMemory(CurrentKey->IndexEntry, CurrentNodeEntry, CurrentNodeEntry->Length);
// See if the current key has a sub-node
if (CurrentKey->IndexEntry->Flags & NTFS_INDEX_ENTRY_NODE)
{
CurrentKey->LesserChild = CreateBTreeNodeFromIndexNode(Vcb,
IndexRoot,
IndexAllocationAttributeCtx,
CurrentKey->IndexEntry);
}
CurrentKey = NextKey;
}
else
{
// Copy the final entry to its key
RtlCopyMemory(CurrentKey->IndexEntry, CurrentNodeEntry, CurrentNodeEntry->Length);
CurrentKey->NextKey = NULL;
// See if the current key has a sub-node
if (CurrentKey->IndexEntry->Flags & NTFS_INDEX_ENTRY_NODE)
{
CurrentKey->LesserChild = CreateBTreeNodeFromIndexNode(Vcb,
IndexRoot,
IndexAllocationAttributeCtx,
CurrentKey->IndexEntry);
}
break;
}
// Advance to the next entry
CurrentEntryOffset += CurrentNodeEntry->Length;
CurrentNodeEntry = (PINDEX_ENTRY_ATTRIBUTE)((ULONG_PTR)CurrentNodeEntry + CurrentNodeEntry->Length);
}
NewNode->VCN = *VCN;
NewNode->HasValidVCN = TRUE;
ExFreePoolWithTag(NodeBuffer, TAG_NTFS);
return NewNode;
}
/**
* @name CreateBTreeFromIndex
* @implemented
*
* Parse an index and create a B-Tree in memory from it.
*
* @param IndexRootContext
* Pointer to an NTFS_ATTR_CONTEXT that describes the location of the index root attribute.
*
* @param NewTree
* Pointer to a PB_TREE that will receive the pointer to a newly-created B-Tree.
*
* @returns
* STATUS_SUCCESS on success.
* STATUS_INSUFFICIENT_RESOURCES if an allocation fails.
*
* @remarks
* Allocates memory for the entire tree. Caller is responsible for destroying the tree with DestroyBTree().
*/
NTSTATUS
CreateBTreeFromIndex(PDEVICE_EXTENSION Vcb,
PFILE_RECORD_HEADER FileRecordWithIndex,
/*PCWSTR IndexName,*/
PNTFS_ATTR_CONTEXT IndexRootContext,
PINDEX_ROOT_ATTRIBUTE IndexRoot,
PB_TREE *NewTree)
{
PINDEX_ENTRY_ATTRIBUTE CurrentNodeEntry;
PB_TREE Tree = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE), TAG_NTFS);
PB_TREE_FILENAME_NODE RootNode = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_FILENAME_NODE), TAG_NTFS);
PB_TREE_KEY CurrentKey = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_KEY), TAG_NTFS);
ULONG CurrentOffset = IndexRoot->Header.FirstEntryOffset;
PNTFS_ATTR_CONTEXT IndexAllocationContext = NULL;
NTSTATUS Status;
DPRINT("CreateBTreeFromIndex(%p, %p)\n", IndexRoot, NewTree);
if (!Tree || !RootNode || !CurrentKey)
{
DPRINT1("Couldn't allocate enough memory for B-Tree!\n");
if (Tree)
ExFreePoolWithTag(Tree, TAG_NTFS);
if (CurrentKey)
ExFreePoolWithTag(CurrentKey, TAG_NTFS);
if (RootNode)
ExFreePoolWithTag(RootNode, TAG_NTFS);
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory(Tree, sizeof(B_TREE));
RtlZeroMemory(RootNode, sizeof(B_TREE_FILENAME_NODE));
RtlZeroMemory(CurrentKey, sizeof(B_TREE_KEY));
// See if the file record has an attribute allocation
Status = FindAttribute(Vcb,
FileRecordWithIndex,
AttributeIndexAllocation,
L"$I30",
4,
&IndexAllocationContext,
NULL);
if (!NT_SUCCESS(Status))
IndexAllocationContext = NULL;
// Setup the Tree
RootNode->FirstKey = CurrentKey;
Tree->RootNode = RootNode;
// Make sure we won't try reading past the attribute-end
if (FIELD_OFFSET(INDEX_ROOT_ATTRIBUTE, Header) + IndexRoot->Header.TotalSizeOfEntries > IndexRootContext->pRecord->Resident.ValueLength)
{
DPRINT1("Filesystem corruption detected!\n");
DestroyBTree(Tree);
Status = STATUS_FILE_CORRUPT_ERROR;
goto Cleanup;
}
// Start at the first node entry
CurrentNodeEntry = (PINDEX_ENTRY_ATTRIBUTE)((ULONG_PTR)IndexRoot
+ FIELD_OFFSET(INDEX_ROOT_ATTRIBUTE, Header)
+ IndexRoot->Header.FirstEntryOffset);
// Create a key for each entry in the node
while (CurrentOffset < IndexRoot->Header.TotalSizeOfEntries)
{
// Allocate memory for the current entry
CurrentKey->IndexEntry = ExAllocatePoolWithTag(NonPagedPool, CurrentNodeEntry->Length, TAG_NTFS);
if (!CurrentKey->IndexEntry)
{
DPRINT1("ERROR: Couldn't allocate memory for next key!\n");
DestroyBTree(Tree);
Status = STATUS_INSUFFICIENT_RESOURCES;
goto Cleanup;
}
RootNode->KeyCount++;
// If this isn't the last entry
if (!(CurrentNodeEntry->Flags & NTFS_INDEX_ENTRY_END))
{
// Create the next key
PB_TREE_KEY NextKey = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_KEY), TAG_NTFS);
if (!NextKey)
{
DPRINT1("ERROR: Couldn't allocate memory for next key!\n");
DestroyBTree(Tree);
Status = STATUS_INSUFFICIENT_RESOURCES;
goto Cleanup;
}
RtlZeroMemory(NextKey, sizeof(B_TREE_KEY));
// Add NextKey to the end of the list
CurrentKey->NextKey = NextKey;
// Copy the current entry to its key
RtlCopyMemory(CurrentKey->IndexEntry, CurrentNodeEntry, CurrentNodeEntry->Length);
// Does this key have a sub-node?
if (CurrentKey->IndexEntry->Flags & NTFS_INDEX_ENTRY_NODE)
{
// Create the child node
CurrentKey->LesserChild = CreateBTreeNodeFromIndexNode(Vcb,
IndexRoot,
IndexAllocationContext,
CurrentKey->IndexEntry);
if (!CurrentKey->LesserChild)
{
DPRINT1("ERROR: Couldn't create child node!\n");
DestroyBTree(Tree);
Status = STATUS_NOT_IMPLEMENTED;
goto Cleanup;
}
}
// Advance to the next entry
CurrentOffset += CurrentNodeEntry->Length;
CurrentNodeEntry = (PINDEX_ENTRY_ATTRIBUTE)((ULONG_PTR)CurrentNodeEntry + CurrentNodeEntry->Length);
CurrentKey = NextKey;
}
else
{
// Copy the final entry to its key
RtlCopyMemory(CurrentKey->IndexEntry, CurrentNodeEntry, CurrentNodeEntry->Length);
CurrentKey->NextKey = NULL;
// Does this key have a sub-node?
if (CurrentKey->IndexEntry->Flags & NTFS_INDEX_ENTRY_NODE)
{
// Create the child node
CurrentKey->LesserChild = CreateBTreeNodeFromIndexNode(Vcb,
IndexRoot,
IndexAllocationContext,
CurrentKey->IndexEntry);
if (!CurrentKey->LesserChild)
{
DPRINT1("ERROR: Couldn't create child node!\n");
DestroyBTree(Tree);
Status = STATUS_NOT_IMPLEMENTED;
goto Cleanup;
}
}
break;
}
}
*NewTree = Tree;
Status = STATUS_SUCCESS;
Cleanup:
if (IndexAllocationContext)
ReleaseAttributeContext(IndexAllocationContext);
return Status;
}
/**
* @name GetSizeOfIndexEntries
* @implemented
*
* Sums the size of each index entry in every key in a B-Tree node.
*
* @param Node
* Pointer to a B_TREE_FILENAME_NODE. The size of this node's index entries will be returned.
*
* @returns
* The sum of the sizes of every index entry for each key in the B-Tree node.
*
* @remarks
* Gets only the size of the index entries; doesn't include the size of any headers that would be added to an index record.
*/
ULONG
GetSizeOfIndexEntries(PB_TREE_FILENAME_NODE Node)
{
// Start summing the total size of this node's entries
ULONG NodeSize = 0;
// Walk through the list of Node Entries
PB_TREE_KEY CurrentKey = Node->FirstKey;
ULONG i;
for (i = 0; i < Node->KeyCount; i++)
{
ASSERT(CurrentKey->IndexEntry->Length != 0);
// Add the length of the current node
NodeSize += CurrentKey->IndexEntry->Length;
CurrentKey = CurrentKey->NextKey;
}
return NodeSize;
}
/**
* @name CreateIndexRootFromBTree
* @implemented
*
* Parse a B-Tree in memory and convert it into an index that can be written to disk.
*
* @param DeviceExt
* Pointer to the DEVICE_EXTENSION of the target drive.
*
* @param Tree
* Pointer to a B_TREE that describes the index to be written.
*
* @param MaxIndexSize
* Describes how large the index can be before it will take too much space in the file record.
* This is strictly the sum of the sizes of all index entries; it does not include the space
* required by the index root header (INDEX_ROOT_ATTRIBUTE), since that size will be constant.
*
* After reaching MaxIndexSize, an index can no longer be represented with just an index root
* attribute, and will require an index allocation and $I30 bitmap (TODO).
*
* @param IndexRoot
* Pointer to a PINDEX_ROOT_ATTRIBUTE that will receive a pointer to the newly-created index.
*
* @param Length
* Pointer to a ULONG which will receive the length of the new index root.
*
* @returns
* STATUS_SUCCESS on success.
* STATUS_INSUFFICIENT_RESOURCES if an allocation fails.
* STATUS_NOT_IMPLEMENTED if the new index can't fit within MaxIndexSize.
*
* @remarks
* If the function succeeds, it's the caller's responsibility to free IndexRoot with ExFreePoolWithTag().
*/
NTSTATUS
CreateIndexRootFromBTree(PDEVICE_EXTENSION DeviceExt,
PB_TREE Tree,
ULONG MaxIndexSize,
PINDEX_ROOT_ATTRIBUTE *IndexRoot,
ULONG *Length)
{
ULONG i;
PB_TREE_KEY CurrentKey;
PINDEX_ENTRY_ATTRIBUTE CurrentNodeEntry;
PINDEX_ROOT_ATTRIBUTE NewIndexRoot = ExAllocatePoolWithTag(NonPagedPool,
DeviceExt->NtfsInfo.BytesPerFileRecord,
TAG_NTFS);
DPRINT("CreateIndexRootFromBTree(%p, %p, 0x%lx, %p, %p)\n", DeviceExt, Tree, MaxIndexSize, IndexRoot, Length);
#ifndef NDEBUG
DumpBTree(Tree);
#endif
if (!NewIndexRoot)
{
DPRINT1("Failed to allocate memory for Index Root!\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
// Setup the new index root
RtlZeroMemory(NewIndexRoot, DeviceExt->NtfsInfo.BytesPerFileRecord);
NewIndexRoot->AttributeType = AttributeFileName;
NewIndexRoot->CollationRule = COLLATION_FILE_NAME;
NewIndexRoot->SizeOfEntry = DeviceExt->NtfsInfo.BytesPerIndexRecord;
// If Bytes per index record is less than cluster size, clusters per index record becomes sectors per index
if (NewIndexRoot->SizeOfEntry < DeviceExt->NtfsInfo.BytesPerCluster)
NewIndexRoot->ClustersPerIndexRecord = NewIndexRoot->SizeOfEntry / DeviceExt->NtfsInfo.BytesPerSector;
else
NewIndexRoot->ClustersPerIndexRecord = NewIndexRoot->SizeOfEntry / DeviceExt->NtfsInfo.BytesPerCluster;
// Setup the Index node header
NewIndexRoot->Header.FirstEntryOffset = sizeof(INDEX_HEADER_ATTRIBUTE);
NewIndexRoot->Header.Flags = INDEX_ROOT_SMALL;
// Start summing the total size of this node's entries
NewIndexRoot->Header.TotalSizeOfEntries = NewIndexRoot->Header.FirstEntryOffset;
// Setup each Node Entry
CurrentKey = Tree->RootNode->FirstKey;
CurrentNodeEntry = (PINDEX_ENTRY_ATTRIBUTE)((ULONG_PTR)NewIndexRoot
+ FIELD_OFFSET(INDEX_ROOT_ATTRIBUTE, Header)
+ NewIndexRoot->Header.FirstEntryOffset);
for (i = 0; i < Tree->RootNode->KeyCount; i++)
{
// Would adding the current entry to the index increase the index size beyond the limit we've set?
ULONG IndexSize = NewIndexRoot->Header.TotalSizeOfEntries - NewIndexRoot->Header.FirstEntryOffset + CurrentKey->IndexEntry->Length;
if (IndexSize > MaxIndexSize)
{
DPRINT1("TODO: Adding file would require creating an attribute list!\n");
ExFreePoolWithTag(NewIndexRoot, TAG_NTFS);
return STATUS_NOT_IMPLEMENTED;
}
ASSERT(CurrentKey->IndexEntry->Length != 0);
// Copy the index entry
RtlCopyMemory(CurrentNodeEntry, CurrentKey->IndexEntry, CurrentKey->IndexEntry->Length);
DPRINT1("Index Node Entry Stream Length: %u\nIndex Node Entry Length: %u\n",
CurrentNodeEntry->KeyLength,
CurrentNodeEntry->Length);
// Does the current key have any sub-nodes?
if (CurrentKey->LesserChild)
NewIndexRoot->Header.Flags = INDEX_ROOT_LARGE;
// Add Length of Current Entry to Total Size of Entries
NewIndexRoot->Header.TotalSizeOfEntries += CurrentKey->IndexEntry->Length;
// Go to the next node entry
CurrentNodeEntry = (PINDEX_ENTRY_ATTRIBUTE)((ULONG_PTR)CurrentNodeEntry + CurrentNodeEntry->Length);
CurrentKey = CurrentKey->NextKey;
}
NewIndexRoot->Header.AllocatedSize = NewIndexRoot->Header.TotalSizeOfEntries;
*IndexRoot = NewIndexRoot;
*Length = NewIndexRoot->Header.AllocatedSize + FIELD_OFFSET(INDEX_ROOT_ATTRIBUTE, Header);
return STATUS_SUCCESS;
}
NTSTATUS
CreateIndexBufferFromBTreeNode(PDEVICE_EXTENSION DeviceExt,
PB_TREE_FILENAME_NODE Node,
ULONG BufferSize,
BOOLEAN HasChildren,
PINDEX_BUFFER IndexBuffer)
{
ULONG i;
PB_TREE_KEY CurrentKey;
PINDEX_ENTRY_ATTRIBUTE CurrentNodeEntry;
NTSTATUS Status;
// TODO: Fix magic, do math
RtlZeroMemory(IndexBuffer, BufferSize);
IndexBuffer->Ntfs.Type = NRH_INDX_TYPE;
IndexBuffer->Ntfs.UsaOffset = 0x28;
IndexBuffer->Ntfs.UsaCount = 9;
// TODO: Check bitmap for VCN
ASSERT(Node->HasValidVCN);
IndexBuffer->VCN = Node->VCN;
// Windows seems to alternate between using 0x28 and 0x40 for the first entry offset of each index buffer.
// Interestingly, neither Windows nor chkdsk seem to mind if we just use 0x28 for every index record.
IndexBuffer->Header.FirstEntryOffset = 0x28;
IndexBuffer->Header.AllocatedSize = BufferSize - FIELD_OFFSET(INDEX_BUFFER, Header);
// Start summing the total size of this node's entries
IndexBuffer->Header.TotalSizeOfEntries = IndexBuffer->Header.FirstEntryOffset;
CurrentKey = Node->FirstKey;
CurrentNodeEntry = (PINDEX_ENTRY_ATTRIBUTE)((ULONG_PTR)&(IndexBuffer->Header)
+ IndexBuffer->Header.FirstEntryOffset);
for (i = 0; i < Node->KeyCount; i++)
{
// Would adding the current entry to the index increase the node size beyond the allocation size?
ULONG IndexSize = FIELD_OFFSET(INDEX_BUFFER, Header)
+ IndexBuffer->Header.TotalSizeOfEntries
+ CurrentNodeEntry->Length;
if (IndexSize > BufferSize)
{
DPRINT1("TODO: Adding file would require creating a new node!\n");
return STATUS_NOT_IMPLEMENTED;
}
ASSERT(CurrentKey->IndexEntry->Length != 0);
// Copy the index entry
RtlCopyMemory(CurrentNodeEntry, CurrentKey->IndexEntry, CurrentKey->IndexEntry->Length);
DPRINT("Index Node Entry Stream Length: %u\nIndex Node Entry Length: %u\n",
CurrentNodeEntry->KeyLength,
CurrentNodeEntry->Length);
// Add Length of Current Entry to Total Size of Entries
IndexBuffer->Header.TotalSizeOfEntries += CurrentNodeEntry->Length;
// Check for child nodes
if (HasChildren)
IndexBuffer->Header.Flags = INDEX_NODE_LARGE;
// Go to the next node entry
CurrentNodeEntry = (PINDEX_ENTRY_ATTRIBUTE)((ULONG_PTR)CurrentNodeEntry + CurrentNodeEntry->Length);
CurrentKey = CurrentKey->NextKey;
}
Status = AddFixupArray(DeviceExt, &IndexBuffer->Ntfs);
return Status;
}
/**
* @name DemoteBTreeRoot
* @implemented
*
* Demoting the root means first putting all the keys in the root node into a new node, and making
* the new node a child of a dummy key. The dummy key then becomes the sole contents of the root node.
* The B-Tree gets one level deeper. This operation is needed when an index root grows too large for its file record.
* Demotion is my own term; I might change the name later if I think of something more descriptive or can find
* an appropriate name for this operation in existing B-Tree literature.
*
* @param Tree
* Pointer to the B_TREE whose root is being demoted
*
* @returns
* STATUS_SUCCESS on success.
* STATUS_INSUFFICIENT_RESOURCES if an allocation fails.
*/
NTSTATUS
DemoteBTreeRoot(PB_TREE Tree)
{
PB_TREE_FILENAME_NODE NewSubNode, NewIndexRoot;
PB_TREE_KEY DummyKey;
DPRINT("Collapsing Index Root into sub-node.\n");
#ifndef NDEBUG
DumpBTree(Tree);
#endif
// Create a new node that will hold the keys currently in index root
NewSubNode = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_FILENAME_NODE), TAG_NTFS);
if (!NewSubNode)
{
DPRINT1("ERROR: Couldn't allocate memory for new sub-node.\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory(NewSubNode, sizeof(B_TREE_FILENAME_NODE));
// Copy the applicable data from the old index root node
NewSubNode->KeyCount = Tree->RootNode->KeyCount;
NewSubNode->FirstKey = Tree->RootNode->FirstKey;
NewSubNode->DiskNeedsUpdating = TRUE;
// Create a new dummy key, and make the new node it's child
DummyKey = CreateDummyKey(TRUE);
if (!DummyKey)
{
DPRINT1("ERROR: Couldn't allocate memory for new root node.\n");
ExFreePoolWithTag(NewSubNode, TAG_NTFS);
return STATUS_INSUFFICIENT_RESOURCES;
}
// Make the new node a child of the dummy key
DummyKey->LesserChild = NewSubNode;
// Create a new index root node
NewIndexRoot = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_FILENAME_NODE), TAG_NTFS);
if (!NewIndexRoot)
{
DPRINT1("ERROR: Couldn't allocate memory for new index root.\n");
ExFreePoolWithTag(NewSubNode, TAG_NTFS);
ExFreePoolWithTag(DummyKey, TAG_NTFS);
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory(NewIndexRoot, sizeof(B_TREE_FILENAME_NODE));
NewIndexRoot->DiskNeedsUpdating = TRUE;
// Insert the dummy key into the new node
NewIndexRoot->FirstKey = DummyKey;
NewIndexRoot->KeyCount = 1;
NewIndexRoot->DiskNeedsUpdating = TRUE;
// Make the new node the Tree's root node
Tree->RootNode = NewIndexRoot;
#ifndef NDEBUG
DumpBTree(Tree);
#endif
return STATUS_SUCCESS;
}
/**
* @name SetIndexEntryVCN
* @implemented
*
* Sets the VCN of a given IndexEntry.
*
* @param IndexEntry
* Pointer to an INDEX_ENTRY_ATTRIBUTE structure that will have its VCN set.
*
* @param VCN
* VCN to store in the index entry.
*
* @remarks
* The index entry must have enough memory allocated to store the VCN, and must have the NTFS_INDEX_ENTRY_NODE flag set.
* The VCN of an index entry is stored at the very end of the structure, after the filename attribute. Since the filename
* attribute can be a variable size, this function makes setting this member easy.
*/
VOID
SetIndexEntryVCN(PINDEX_ENTRY_ATTRIBUTE IndexEntry, ULONGLONG VCN)
{
PULONGLONG Destination = (PULONGLONG)((ULONG_PTR)IndexEntry + IndexEntry->Length - sizeof(ULONGLONG));
ASSERT(IndexEntry->Flags & NTFS_INDEX_ENTRY_NODE);
*Destination = VCN;
}
NTSTATUS
UpdateIndexAllocation(PDEVICE_EXTENSION DeviceExt,
PB_TREE Tree,
ULONG IndexBufferSize,
PFILE_RECORD_HEADER FileRecord)
{
// Find the index allocation and bitmap
PNTFS_ATTR_CONTEXT IndexAllocationContext;
PB_TREE_KEY CurrentKey;
NTSTATUS Status;
BOOLEAN HasIndexAllocation = FALSE;
ULONG i;
ULONG IndexAllocationOffset;
DPRINT("UpdateIndexAllocation() called.\n");
Status = FindAttribute(DeviceExt, FileRecord, AttributeIndexAllocation, L"$I30", 4, &IndexAllocationContext, &IndexAllocationOffset);
if (NT_SUCCESS(Status))
{
HasIndexAllocation = TRUE;
#ifndef NDEBUG
PrintAllVCNs(DeviceExt,
IndexAllocationContext,
IndexBufferSize);
#endif
}
// Walk through the root node and update all the sub-nodes
CurrentKey = Tree->RootNode->FirstKey;
for (i = 0; i < Tree->RootNode->KeyCount; i++)
{
if (CurrentKey->LesserChild)
{
if (!HasIndexAllocation)
{
// We need to add an index allocation to the file record
PNTFS_ATTR_RECORD EndMarker = (PNTFS_ATTR_RECORD)((ULONG_PTR)FileRecord + FileRecord->BytesInUse - (sizeof(ULONG) * 2));
DPRINT1("Adding index allocation...\n");
// Add index allocation to the very end of the file record
Status = AddIndexAllocation(DeviceExt,
FileRecord,
EndMarker,
L"$I30",
4);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to add index allocation!\n");
return Status;
}
// Find the new attribute
Status = FindAttribute(DeviceExt, FileRecord, AttributeIndexAllocation, L"$I30", 4, &IndexAllocationContext, &IndexAllocationOffset);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Couldn't find newly-created index allocation!\n");
return Status;
}
// Advance end marker
EndMarker = (PNTFS_ATTR_RECORD)((ULONG_PTR)EndMarker + EndMarker->Length);
// Add index bitmap to the very end of the file record
Status = AddBitmap(DeviceExt,
FileRecord,
EndMarker,
L"$I30",
4);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to add index bitmap!\n");
ReleaseAttributeContext(IndexAllocationContext);
return Status;
}
HasIndexAllocation = TRUE;
}
// Is the Index Entry large enough to store the VCN?
if (!BooleanFlagOn(CurrentKey->IndexEntry->Flags, NTFS_INDEX_ENTRY_NODE))
{
// Allocate memory for the larger index entry
PINDEX_ENTRY_ATTRIBUTE NewEntry = ExAllocatePoolWithTag(NonPagedPool,
CurrentKey->IndexEntry->Length + sizeof(ULONGLONG),
TAG_NTFS);
if (!NewEntry)
{
DPRINT1("ERROR: Unable to allocate memory for new index entry!\n");
if (HasIndexAllocation)
ReleaseAttributeContext(IndexAllocationContext);
return STATUS_INSUFFICIENT_RESOURCES;
}
// Copy the old entry to the new one
RtlCopyMemory(NewEntry, CurrentKey->IndexEntry, CurrentKey->IndexEntry->Length);
NewEntry->Length += sizeof(ULONGLONG);
// Free the old memory
ExFreePoolWithTag(CurrentKey->IndexEntry, TAG_NTFS);
CurrentKey->IndexEntry = NewEntry;
CurrentKey->IndexEntry->Flags |= NTFS_INDEX_ENTRY_NODE;
}
// Update the sub-node
Status = UpdateIndexNode(DeviceExt, FileRecord, CurrentKey->LesserChild, IndexBufferSize, IndexAllocationContext, IndexAllocationOffset);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to update index node!\n");
ReleaseAttributeContext(IndexAllocationContext);
return Status;
}
// Update the VCN stored in the index entry of CurrentKey
SetIndexEntryVCN(CurrentKey->IndexEntry, CurrentKey->LesserChild->VCN);
}
CurrentKey = CurrentKey->NextKey;
}
#ifndef NDEBUG
DumpBTree(Tree);
#endif
if (HasIndexAllocation)
{
#ifndef NDEBUG
PrintAllVCNs(DeviceExt,
IndexAllocationContext,
IndexBufferSize);
#endif
ReleaseAttributeContext(IndexAllocationContext);
}
return STATUS_SUCCESS;
}
NTSTATUS
UpdateIndexNode(PDEVICE_EXTENSION DeviceExt,
PFILE_RECORD_HEADER FileRecord,
PB_TREE_FILENAME_NODE Node,
ULONG IndexBufferSize,
PNTFS_ATTR_CONTEXT IndexAllocationContext,
ULONG IndexAllocationOffset)
{
ULONG i;
PB_TREE_KEY CurrentKey = Node->FirstKey;
BOOLEAN HasChildren = FALSE;
NTSTATUS Status;
DPRINT("UpdateIndexNode(%p, %p, %p, %lu, %p, %lu) called for index node with VCN %I64u\n",
DeviceExt,
FileRecord,
Node,
IndexBufferSize,
IndexAllocationContext,
IndexAllocationOffset,
Node->VCN);
// Walk through the node and look for children to update
for (i = 0; i < Node->KeyCount; i++)
{
ASSERT(CurrentKey);
// If there's a child node
if (CurrentKey->LesserChild)
{
HasChildren = TRUE;
// Update the child node on disk
Status = UpdateIndexNode(DeviceExt, FileRecord, CurrentKey->LesserChild, IndexBufferSize, IndexAllocationContext, IndexAllocationOffset);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to update child node!\n");
return Status;
}
// Is the Index Entry large enough to store the VCN?
if (!BooleanFlagOn(CurrentKey->IndexEntry->Flags, NTFS_INDEX_ENTRY_NODE))
{
// Allocate memory for the larger index entry
PINDEX_ENTRY_ATTRIBUTE NewEntry = ExAllocatePoolWithTag(NonPagedPool,
CurrentKey->IndexEntry->Length + sizeof(ULONGLONG),
TAG_NTFS);
if (!NewEntry)
{
DPRINT1("ERROR: Unable to allocate memory for new index entry!\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
// Copy the old entry to the new one
RtlCopyMemory(NewEntry, CurrentKey->IndexEntry, CurrentKey->IndexEntry->Length);
NewEntry->Length += sizeof(ULONGLONG);
// Free the old memory
ExFreePoolWithTag(CurrentKey->IndexEntry, TAG_NTFS);
CurrentKey->IndexEntry = NewEntry;
}
// Update the VCN stored in the index entry of CurrentKey
SetIndexEntryVCN(CurrentKey->IndexEntry, CurrentKey->LesserChild->VCN);
CurrentKey->IndexEntry->Flags |= NTFS_INDEX_ENTRY_NODE;
}
CurrentKey = CurrentKey->NextKey;
}
// Do we need to write this node to disk?
if (Node->DiskNeedsUpdating)
{
ULONGLONG NodeOffset;
ULONG LengthWritten;
PINDEX_BUFFER IndexBuffer;
// Does the node need to be assigned a VCN?
if (!Node->HasValidVCN)
{
// Allocate the node
Status = AllocateIndexNode(DeviceExt,
FileRecord,
IndexBufferSize,
IndexAllocationContext,
IndexAllocationOffset,
&Node->VCN);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to allocate index record in index allocation!\n");
return Status;
}
Node->HasValidVCN = TRUE;
}
// Allocate memory for an index buffer
IndexBuffer = ExAllocatePoolWithTag(NonPagedPool, IndexBufferSize, TAG_NTFS);
if (!IndexBuffer)
{
DPRINT1("ERROR: Failed to allocate %lu bytes for index buffer!\n", IndexBufferSize);
return STATUS_INSUFFICIENT_RESOURCES;
}
// Create the index buffer we'll be writing to disk to represent this node
Status = CreateIndexBufferFromBTreeNode(DeviceExt, Node, IndexBufferSize, HasChildren, IndexBuffer);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to create index buffer from node!\n");
ExFreePoolWithTag(IndexBuffer, TAG_NTFS);
return Status;
}
// Get Offset of index buffer in index allocation
NodeOffset = GetAllocationOffsetFromVCN(DeviceExt, IndexBufferSize, Node->VCN);
// Write the buffer to the index allocation
Status = WriteAttribute(DeviceExt, IndexAllocationContext, NodeOffset, (const PUCHAR)IndexBuffer, IndexBufferSize, &LengthWritten, FileRecord);
if (!NT_SUCCESS(Status) || LengthWritten != IndexBufferSize)
{
DPRINT1("ERROR: Failed to update index allocation!\n");
ExFreePoolWithTag(IndexBuffer, TAG_NTFS);
if (!NT_SUCCESS(Status))
return Status;
else
return STATUS_END_OF_FILE;
}
Node->DiskNeedsUpdating = FALSE;
// Free the index buffer
ExFreePoolWithTag(IndexBuffer, TAG_NTFS);
}
return STATUS_SUCCESS;
}
PB_TREE_KEY
CreateBTreeKeyFromFilename(ULONGLONG FileReference, PFILENAME_ATTRIBUTE FileNameAttribute)
{
PB_TREE_KEY NewKey;
ULONG AttributeSize = GetFileNameAttributeLength(FileNameAttribute);
ULONG EntrySize = ALIGN_UP_BY(AttributeSize + FIELD_OFFSET(INDEX_ENTRY_ATTRIBUTE, FileName), 8);
// Create a new Index Entry for the file
PINDEX_ENTRY_ATTRIBUTE NewEntry = ExAllocatePoolWithTag(NonPagedPool, EntrySize, TAG_NTFS);
if (!NewEntry)
{
DPRINT1("ERROR: Failed to allocate memory for Index Entry!\n");
return NULL;
}
// Setup the Index Entry
RtlZeroMemory(NewEntry, EntrySize);
NewEntry->Data.Directory.IndexedFile = FileReference;
NewEntry->Length = EntrySize;
NewEntry->KeyLength = AttributeSize;
// Copy the FileNameAttribute
RtlCopyMemory(&NewEntry->FileName, FileNameAttribute, AttributeSize);
// Setup the New Key
NewKey = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_KEY), TAG_NTFS);
if (!NewKey)
{
DPRINT1("ERROR: Failed to allocate memory for new key!\n");
ExFreePoolWithTag(NewEntry, TAG_NTFS);
return NULL;
}
NewKey->IndexEntry = NewEntry;
NewKey->NextKey = NULL;
return NewKey;
}
VOID
DestroyBTreeKey(PB_TREE_KEY Key)
{
if (Key->IndexEntry)
ExFreePoolWithTag(Key->IndexEntry, TAG_NTFS);
if (Key->LesserChild)
DestroyBTreeNode(Key->LesserChild);
ExFreePoolWithTag(Key, TAG_NTFS);
}
VOID
DestroyBTreeNode(PB_TREE_FILENAME_NODE Node)
{
PB_TREE_KEY NextKey;
PB_TREE_KEY CurrentKey = Node->FirstKey;
ULONG i;
for (i = 0; i < Node->KeyCount; i++)
{
NT_ASSERT(CurrentKey);
NextKey = CurrentKey->NextKey;
DestroyBTreeKey(CurrentKey);
CurrentKey = NextKey;
}
NT_ASSERT(NextKey == NULL);
ExFreePoolWithTag(Node, TAG_NTFS);
}
/**
* @name DestroyBTree
* @implemented
*
* Destroys a B-Tree.
*
* @param Tree
* Pointer to the B_TREE which will be destroyed.
*
* @remarks
* Destroys every bit of data stored in the tree.
*/
VOID
DestroyBTree(PB_TREE Tree)
{
DestroyBTreeNode(Tree->RootNode);
ExFreePoolWithTag(Tree, TAG_NTFS);
}
VOID
DumpBTreeKey(PB_TREE Tree, PB_TREE_KEY Key, ULONG Number, ULONG Depth)
{
ULONG i;
for (i = 0; i < Depth; i++)
DbgPrint(" ");
DbgPrint(" Key #%d", Number);
if (!(Key->IndexEntry->Flags & NTFS_INDEX_ENTRY_END))
{
UNICODE_STRING FileName;
FileName.Length = Key->IndexEntry->FileName.NameLength * sizeof(WCHAR);
FileName.MaximumLength = FileName.Length;
FileName.Buffer = Key->IndexEntry->FileName.Name;
DbgPrint(" '%wZ'\n", &FileName);
}
else
{
DbgPrint(" (Dummy Key)\n");
}
// Is there a child node?
if (Key->IndexEntry->Flags & NTFS_INDEX_ENTRY_NODE)
{
if (Key->LesserChild)
DumpBTreeNode(Tree, Key->LesserChild, Number, Depth + 1);
else
{
// This will be an assert once nodes with arbitrary depth are debugged
DPRINT1("DRIVER ERROR: No Key->LesserChild despite Key->IndexEntry->Flags indicating this is a node!\n");
}
}
}
VOID
DumpBTreeNode(PB_TREE Tree,
PB_TREE_FILENAME_NODE Node,
ULONG Number,
ULONG Depth)
{
PB_TREE_KEY CurrentKey;
ULONG i;
for (i = 0; i < Depth; i++)
DbgPrint(" ");
DbgPrint("Node #%d, Depth %d, has %d key%s", Number, Depth, Node->KeyCount, Node->KeyCount == 1 ? "" : "s");
if (Node->HasValidVCN)
DbgPrint(" VCN: %I64u\n", Node->VCN);
else if (Tree->RootNode == Node)
DbgPrint(" Index Root");
else
DbgPrint(" NOT ASSIGNED VCN YET\n");
CurrentKey = Node->FirstKey;
for (i = 0; i < Node->KeyCount; i++)
{
DumpBTreeKey(Tree, CurrentKey, i, Depth);
CurrentKey = CurrentKey->NextKey;
}
}
/**
* @name DumpBTree
* @implemented
*
* Displays a B-Tree.
*
* @param Tree
* Pointer to the B_TREE which will be displayed.
*
* @remarks
* Displays a diagnostic summary of a B_TREE.
*/
VOID
DumpBTree(PB_TREE Tree)
{
DbgPrint("B_TREE @ %p\n", Tree);
DumpBTreeNode(Tree, Tree->RootNode, 0, 0);
}
// Calculates start of Index Buffer relative to the index allocation, given the node's VCN
ULONGLONG
GetAllocationOffsetFromVCN(PDEVICE_EXTENSION DeviceExt,
ULONG IndexBufferSize,
ULONGLONG Vcn)
{
if (IndexBufferSize < DeviceExt->NtfsInfo.BytesPerCluster)
return Vcn * DeviceExt->NtfsInfo.BytesPerSector;
return Vcn * DeviceExt->NtfsInfo.BytesPerCluster;
}
ULONGLONG
GetIndexEntryVCN(PINDEX_ENTRY_ATTRIBUTE IndexEntry)
{
PULONGLONG Destination = (PULONGLONG)((ULONG_PTR)IndexEntry + IndexEntry->Length - sizeof(ULONGLONG));
ASSERT(IndexEntry->Flags & NTFS_INDEX_ENTRY_NODE);
return *Destination;
}
/**
* @name NtfsInsertKey
* @implemented
*
* Inserts a FILENAME_ATTRIBUTE into a B-Tree node.
*
* @param Tree
* Pointer to the B_TREE the key (filename attribute) is being inserted into.
*
* @param FileReference
* Reference number to the file being added. This will be a combination of the MFT index and update sequence number.
*
* @param FileNameAttribute
* Pointer to a FILENAME_ATTRIBUTE which is the data for the key that will be added to the tree. A copy will be made.
*
* @param Node
* Pointer to a B_TREE_FILENAME_NODE into which a new key will be inserted, in order.
*
* @param CaseSensitive
* Boolean indicating if the function should operate in case-sensitive mode. This will be TRUE
* if an application created the file with the FILE_FLAG_POSIX_SEMANTICS flag.
*
* @param MaxIndexRootSize
* The maximum size, in bytes, of node entries that can be stored in the index root before it will grow too large for
* the file record. This number is just the size of the entries, without any headers for the attribute or index root.
*
* @param IndexRecordSize
* The size, in bytes, of an index record for this index. AKA an index buffer. Usually set to 4096.
*
* @param MedianKey
* Pointer to a PB_TREE_KEY that will receive a pointer to the median key, should the node grow too large and need to be split.
* Will be set to NULL if the node isn't split.
*
* @param NewRightHandSibling
* Pointer to a PB_TREE_FILENAME_NODE that will receive a pointer to a newly-created right-hand sibling node,
* should the node grow too large and need to be split. Will be set to NULL if the node isn't split.
*
* @remarks
* A node is always sorted, with the least comparable filename stored first and a dummy key to mark the end.
*/
NTSTATUS
NtfsInsertKey(PB_TREE Tree,
ULONGLONG FileReference,
PFILENAME_ATTRIBUTE FileNameAttribute,
PB_TREE_FILENAME_NODE Node,
BOOLEAN CaseSensitive,
ULONG MaxIndexRootSize,
ULONG IndexRecordSize,
PB_TREE_KEY *MedianKey,
PB_TREE_FILENAME_NODE *NewRightHandSibling)
{
PB_TREE_KEY NewKey, CurrentKey, PreviousKey;
NTSTATUS Status = STATUS_SUCCESS;
ULONG NodeSize;
ULONG AllocatedNodeSize;
ULONG MaxNodeSizeWithoutHeader;
ULONG i;
*MedianKey = NULL;
*NewRightHandSibling = NULL;
DPRINT("NtfsInsertKey(%p, 0x%I64x, %p, %p, %s, %lu, %lu, %p, %p)\n",
Tree,
FileReference,
FileNameAttribute,
Node,
CaseSensitive ? "TRUE" : "FALSE",
MaxIndexRootSize,
IndexRecordSize,
MedianKey,
NewRightHandSibling);
// Create the key for the filename attribute
NewKey = CreateBTreeKeyFromFilename(FileReference, FileNameAttribute);
if (!NewKey)
return STATUS_INSUFFICIENT_RESOURCES;
// Find where to insert the key
CurrentKey = Node->FirstKey;
PreviousKey = NULL;
for (i = 0; i < Node->KeyCount; i++)
{
// Should the New Key go before the current key?
LONG Comparison = CompareTreeKeys(NewKey, CurrentKey, CaseSensitive);
if (Comparison == 0)
{
DPRINT1("\t\tComparison == 0: %.*S\n", NewKey->IndexEntry->FileName.NameLength, NewKey->IndexEntry->FileName.Name);
DPRINT1("\t\tComparison == 0: %.*S\n", CurrentKey->IndexEntry->FileName.NameLength, CurrentKey->IndexEntry->FileName.Name);
}
ASSERT(Comparison != 0);
// Is NewKey < CurrentKey?
if (Comparison < 0)
{
// Does CurrentKey have a sub-node?
if (CurrentKey->LesserChild)
{
PB_TREE_KEY NewLeftKey;
PB_TREE_FILENAME_NODE NewChild;
// Insert the key into the child node
Status = NtfsInsertKey(Tree,
FileReference,
FileNameAttribute,
CurrentKey->LesserChild,
CaseSensitive,
MaxIndexRootSize,
IndexRecordSize,
&NewLeftKey,
&NewChild);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to insert key.\n");
ExFreePoolWithTag(NewKey, TAG_NTFS);
return Status;
}
// Did the child node get split?
if (NewLeftKey)
{
ASSERT(NewChild != NULL);
// Insert the new left key to the left of the current key
NewLeftKey->NextKey = CurrentKey;
// Is CurrentKey the first key?
if (!PreviousKey)
Node->FirstKey = NewLeftKey;
else
PreviousKey->NextKey = NewLeftKey;
// CurrentKey->LesserChild will be the right-hand sibling
CurrentKey->LesserChild = NewChild;
Node->KeyCount++;
Node->DiskNeedsUpdating = TRUE;
#ifndef NDEBUG
DumpBTree(Tree);
#endif
}
}
else
{
// Insert New Key before Current Key
NewKey->NextKey = CurrentKey;
// Increase KeyCount and mark node as dirty
Node->KeyCount++;
Node->DiskNeedsUpdating = TRUE;
// was CurrentKey the first key?
if (CurrentKey == Node->FirstKey)
Node->FirstKey = NewKey;
else
PreviousKey->NextKey = NewKey;
}
break;
}
PreviousKey = CurrentKey;
CurrentKey = CurrentKey->NextKey;
}
// Determine how much space the index entries will need
NodeSize = GetSizeOfIndexEntries(Node);
// Is Node not the root node?
if (Node != Tree->RootNode)
{
// Calculate maximum size of index entries without any headers
AllocatedNodeSize = IndexRecordSize - FIELD_OFFSET(INDEX_BUFFER, Header);
// TODO: Replace magic with math
MaxNodeSizeWithoutHeader = AllocatedNodeSize - 0x28;
// Has the node grown larger than its allocated size?
if (NodeSize > MaxNodeSizeWithoutHeader)
{
NTSTATUS Status;
Status = SplitBTreeNode(Tree, Node, MedianKey, NewRightHandSibling, CaseSensitive);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to split B-Tree node!\n");
return Status;
}
return Status;
}
}
// NewEntry and NewKey will be destroyed later by DestroyBTree()
return Status;
}
/**
* @name SplitBTreeNode
* @implemented
*
* Splits a B-Tree node that has grown too large. Finds the median key and sets up a right-hand-sibling
* node to contain the keys to the right of the median key.
*
* @param Tree
* Pointer to the B_TREE which contains the node being split
*
* @param Node
* Pointer to the B_TREE_FILENAME_NODE that needs to be split
*
* @param MedianKey
* Pointer a PB_TREE_KEY that will receive the pointer to the key in the middle of the node being split
*
* @param NewRightHandSibling
* Pointer to a PB_TREE_FILENAME_NODE that will receive a pointer to a newly-created B_TREE_FILENAME_NODE
* containing the keys to the right of MedianKey.
*
* @param CaseSensitive
* Boolean indicating if the function should operate in case-sensitive mode. This will be TRUE
* if an application created the file with the FILE_FLAG_POSIX_SEMANTICS flag.
*
* @return
* STATUS_SUCCESS on success.
* STATUS_INSUFFICIENT_RESOURCES if an allocation fails.
*
* @remarks
* It's the responsibility of the caller to insert the new median key into the parent node, as well as making the
* NewRightHandSibling the lesser child of the node that is currently Node's parent.
*/
NTSTATUS
SplitBTreeNode(PB_TREE Tree,
PB_TREE_FILENAME_NODE Node,
PB_TREE_KEY *MedianKey,
PB_TREE_FILENAME_NODE *NewRightHandSibling,
BOOLEAN CaseSensitive)
{
ULONG MedianKeyIndex;
PB_TREE_KEY LastKeyBeforeMedian, FirstKeyAfterMedian;
ULONG KeyCount;
ULONG HalfSize;
ULONG SizeSum;
ULONG i;
DPRINT("SplitBTreeNode(%p, %p, %p, %p, %s) called\n",
Tree,
Node,
MedianKey,
NewRightHandSibling,
CaseSensitive ? "TRUE" : "FALSE");
#ifndef NDEBUG
DumpBTreeNode(Node, 0, 0);
#endif
// Create the right hand sibling
*NewRightHandSibling = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_FILENAME_NODE), TAG_NTFS);
if (*NewRightHandSibling == NULL)
{
DPRINT1("Error: Failed to allocate memory for right hand sibling!\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory(*NewRightHandSibling, sizeof(B_TREE_FILENAME_NODE));
(*NewRightHandSibling)->DiskNeedsUpdating = TRUE;
// Find the last key before the median
// This is roughly how NTFS-3G calculates median, and it's not congruent with what Windows does:
/*
// find the median key index
MedianKeyIndex = (Node->KeyCount + 1) / 2;
MedianKeyIndex--;
LastKeyBeforeMedian = Node->FirstKey;
for (i = 0; i < MedianKeyIndex - 1; i++)
LastKeyBeforeMedian = LastKeyBeforeMedian->NextKey;*/
// The method we'll use is a little bit closer to how Windows determines the median but it's not identical.
// What Windows does is actually more complicated than this, I think because Windows allocates more slack space to Odd-numbered
// Index Records, leaving less room for index entries in these records (I haven't discovered why this is done).
// (Neither Windows nor chkdsk complain if we choose a different median than Windows would have chosen, as our median will be in the ballpark)
// Use size to locate the median key / index
LastKeyBeforeMedian = Node->FirstKey;
MedianKeyIndex = 0;
HalfSize = 2016; // half the allocated size after subtracting the first index entry offset (TODO: MATH)
SizeSum = 0;
for (i = 0; i < Node->KeyCount; i++)
{
SizeSum += LastKeyBeforeMedian->IndexEntry->Length;
if (SizeSum > HalfSize)
break;
MedianKeyIndex++;
LastKeyBeforeMedian = LastKeyBeforeMedian->NextKey;
}
// Now we can get the median key and the key that follows it
*MedianKey = LastKeyBeforeMedian->NextKey;
FirstKeyAfterMedian = (*MedianKey)->NextKey;
DPRINT1("%lu keys, %lu median\n", Node->KeyCount, MedianKeyIndex);
DPRINT1("\t\tMedian: %.*S\n", (*MedianKey)->IndexEntry->FileName.NameLength, (*MedianKey)->IndexEntry->FileName.Name);
// "Node" will be the left hand sibling after the split, containing all keys prior to the median key
// We need to create a dummy pointer at the end of the LHS. The dummy's child will be the median's child.
LastKeyBeforeMedian->NextKey = CreateDummyKey(BooleanFlagOn((*MedianKey)->IndexEntry->Flags, NTFS_INDEX_ENTRY_NODE));
if (LastKeyBeforeMedian->NextKey == NULL)
{
DPRINT1("Error: Couldn't allocate dummy key!\n");
LastKeyBeforeMedian->NextKey = *MedianKey;
ExFreePoolWithTag(*NewRightHandSibling, TAG_NTFS);
return STATUS_INSUFFICIENT_RESOURCES;
}
// Did the median key have a child node?
if ((*MedianKey)->IndexEntry->Flags & NTFS_INDEX_ENTRY_NODE)
{
// Set the child of the new dummy key
LastKeyBeforeMedian->NextKey->LesserChild = (*MedianKey)->LesserChild;
// Give the dummy key's index entry the same sub-node VCN the median
SetIndexEntryVCN(LastKeyBeforeMedian->NextKey->IndexEntry, GetIndexEntryVCN((*MedianKey)->IndexEntry));
}
else
{
// Median key didn't have a child node, but it will. Create a new index entry large enough to store a VCN.
PINDEX_ENTRY_ATTRIBUTE NewIndexEntry = ExAllocatePoolWithTag(NonPagedPool,
(*MedianKey)->IndexEntry->Length + sizeof(ULONGLONG),
TAG_NTFS);
if (!NewIndexEntry)
{
DPRINT1("Unable to allocate memory for new index entry!\n");
LastKeyBeforeMedian->NextKey = *MedianKey;
ExFreePoolWithTag(*NewRightHandSibling, TAG_NTFS);
return STATUS_INSUFFICIENT_RESOURCES;
}
// Copy the old index entry to the new one
RtlCopyMemory(NewIndexEntry, (*MedianKey)->IndexEntry, (*MedianKey)->IndexEntry->Length);
// Use the new index entry after freeing the old one
ExFreePoolWithTag((*MedianKey)->IndexEntry, TAG_NTFS);
(*MedianKey)->IndexEntry = NewIndexEntry;
// Update the length for the VCN
(*MedianKey)->IndexEntry->Length += sizeof(ULONGLONG);
// Set the node flag
(*MedianKey)->IndexEntry->Flags |= NTFS_INDEX_ENTRY_NODE;
}
// "Node" will become the child of the median key
(*MedianKey)->LesserChild = Node;
SetIndexEntryVCN((*MedianKey)->IndexEntry, Node->VCN);
// Update Node's KeyCount (remember to add 1 for the new dummy key)
Node->KeyCount = MedianKeyIndex + 2;
KeyCount = CountBTreeKeys(Node->FirstKey);
ASSERT(Node->KeyCount == KeyCount);
// everything to the right of MedianKey becomes the right hand sibling of Node
(*NewRightHandSibling)->FirstKey = FirstKeyAfterMedian;
(*NewRightHandSibling)->KeyCount = CountBTreeKeys(FirstKeyAfterMedian);
#ifndef NDEBUG
DPRINT1("Left-hand node after split:\n");
DumpBTreeNode(Node, 0, 0);
DPRINT1("Right-hand sibling node after split:\n");
DumpBTreeNode(*NewRightHandSibling, 0, 0);
#endif
return STATUS_SUCCESS;
}