[NTFS] - Add some helper functions for new features. Add some fixes. Add support for creating an index allocation, splitting a b-tree node, or "demoting" the index root. This allows for file creation without functional limitations.

+AddBitmap() - adds a $BITMAP attribute to a file record.
+AddIndexAllocation() - adds an $INDEX_ALLOCATION attribute to a file record.
+CountBTreeKeys() - Counts the number of linked B-Tree keys.
CreateIndexBufferFromBTreeNode() - Set INDEX_NODE_LARGE if the node has sub-nodes.
CreateIndexRootFromBTree() - Simplify the usage and math of MaxIndexSize; make it only account for the cumulative size of the index entries.
+DemoteBTreeRoot() - Replaces the contents of an index root with a dummy key, and puts those contents in a new node, which is made a child of the dummy key. This is done when an index root grows too large.
+GetIndexEntryVCN() - Retrieves the VCN from an index entry.
NtfsAddFilenameToDirectory() - Fix math for MaxIndexRootSize.
NtfsInsertKey() - Add support for splitting a B-Tree node. Don't check size of index root (that will be handled later).
+SplitBTreeNode() - Called when a B-Tree node grows too large.
UpdateIndexAllocation() - Create an $I30 index allocation attribute and bitmap attribute if needed.
UpdateIndexNode() - Update children before updating the current node. Store VCN of child nodes in the index entries of their respective keys.

svn path=/branches/GSoC_2016/NTFS/; revision=75707
This commit is contained in:
Trevor Thompson 2017-08-29 15:51:14 +00:00 committed by Thomas Faber
parent 5e7c11842a
commit 52c30fdf37
4 changed files with 895 additions and 134 deletions

View file

@ -36,6 +36,100 @@
/* FUNCTIONS ****************************************************************/
/**
* @name AddBitmap
* @implemented
*
* Adds a $BITMAP attribute to a given FileRecord.
*
* @param Vcb
* Pointer to an NTFS_VCB for the destination volume.
*
* @param FileRecord
* Pointer to a complete file record to add the attribute to.
*
* @param AttributeAddress
* Pointer to the region of memory that will receive the $INDEX_ALLOCATION attribute.
* This address must reside within FileRecord. Must be aligned to an 8-byte boundary (relative to FileRecord).
*
* @param Name
* Pointer to a string of 16-bit Unicode characters naming the attribute. Most often L"$I30".
*
* @param NameLength
* The number of wide-characters in the name. L"$I30" Would use 4 here.
*
* @return
* STATUS_SUCCESS on success. STATUS_NOT_IMPLEMENTED if target address isn't at the end
* of the given file record, or if the file record isn't large enough for the attribute.
*
* @remarks
* Only adding the attribute to the end of the file record is supported; AttributeAddress must
* be of type AttributeEnd.
* This could be improved by adding an $ATTRIBUTE_LIST to the file record if there's not enough space.
*
*/
NTSTATUS
AddBitmap(PNTFS_VCB Vcb,
PFILE_RECORD_HEADER FileRecord,
PNTFS_ATTR_RECORD AttributeAddress,
PCWSTR Name,
USHORT NameLength)
{
ULONG AttributeLength;
// Calculate the header length
ULONG ResidentHeaderLength = FIELD_OFFSET(NTFS_ATTR_RECORD, Resident.Reserved) + sizeof(UCHAR);
ULONG FileRecordEnd = AttributeAddress->Length;
ULONG NameOffset;
ULONG ValueOffset;
// We'll start out with 8 bytes of bitmap data
ULONG ValueLength = 8;
ULONG BytesAvailable;
if (AttributeAddress->Type != AttributeEnd)
{
DPRINT1("FIXME: Can only add $BITMAP attribute to the end of a file record.\n");
return STATUS_NOT_IMPLEMENTED;
}
NameOffset = ResidentHeaderLength;
// Calculate ValueOffset, which will be aligned to a 4-byte boundary
ValueOffset = ALIGN_UP_BY(NameOffset + (sizeof(WCHAR) * NameLength), VALUE_OFFSET_ALIGNMENT);
// Calculate length of attribute
AttributeLength = ValueOffset + ValueLength;
AttributeLength = ALIGN_UP_BY(AttributeLength, ATTR_RECORD_ALIGNMENT);
// Make sure the file record is large enough for the new attribute
BytesAvailable = Vcb->NtfsInfo.BytesPerFileRecord - FileRecord->BytesInUse;
if (BytesAvailable < AttributeLength)
{
DPRINT1("FIXME: Not enough room in file record for index allocation attribute!\n");
return STATUS_NOT_IMPLEMENTED;
}
// Set Attribute fields
RtlZeroMemory(AttributeAddress, AttributeLength);
AttributeAddress->Type = AttributeBitmap;
AttributeAddress->Length = AttributeLength;
AttributeAddress->NameLength = NameLength;
AttributeAddress->NameOffset = NameOffset;
AttributeAddress->Instance = FileRecord->NextAttributeNumber++;
AttributeAddress->Resident.ValueLength = ValueLength;
AttributeAddress->Resident.ValueOffset = ValueOffset;
// Set the name
RtlCopyMemory((PCHAR)((ULONG_PTR)AttributeAddress + NameOffset), Name, NameLength * sizeof(WCHAR));
// move the attribute-end and file-record-end markers to the end of the file record
AttributeAddress = (PNTFS_ATTR_RECORD)((ULONG_PTR)AttributeAddress + AttributeAddress->Length);
SetFileRecordEnd(FileRecord, AttributeAddress, FileRecordEnd);
return STATUS_SUCCESS;
}
/**
* @name AddData
* @implemented
@ -258,6 +352,105 @@ AddFileName(PFILE_RECORD_HEADER FileRecord,
return Status;
}
/**
* @name AddIndexAllocation
* @implemented
*
* Adds an $INDEX_ALLOCATION attribute to a given FileRecord.
*
* @param Vcb
* Pointer to an NTFS_VCB for the destination volume.
*
* @param FileRecord
* Pointer to a complete file record to add the attribute to.
*
* @param AttributeAddress
* Pointer to the region of memory that will receive the $INDEX_ALLOCATION attribute.
* This address must reside within FileRecord. Must be aligned to an 8-byte boundary (relative to FileRecord).
*
* @param Name
* Pointer to a string of 16-bit Unicode characters naming the attribute. Most often, this will be L"$I30".
*
* @param NameLength
* The number of wide-characters in the name. L"$I30" Would use 4 here.
*
* @return
* STATUS_SUCCESS on success. STATUS_NOT_IMPLEMENTED if target address isn't at the end
* of the given file record, or if the file record isn't large enough for the attribute.
*
* @remarks
* Only adding the attribute to the end of the file record is supported; AttributeAddress must
* be of type AttributeEnd.
* This could be improved by adding an $ATTRIBUTE_LIST to the file record if there's not enough space.
*
*/
NTSTATUS
AddIndexAllocation(PNTFS_VCB Vcb,
PFILE_RECORD_HEADER FileRecord,
PNTFS_ATTR_RECORD AttributeAddress,
PCWSTR Name,
USHORT NameLength)
{
ULONG RecordLength;
ULONG FileRecordEnd;
ULONG NameOffset;
ULONG DataRunOffset;
ULONG BytesAvailable;
if (AttributeAddress->Type != AttributeEnd)
{
DPRINT1("FIXME: Can only add $INDEX_ALLOCATION attribute to the end of a file record.\n");
return STATUS_NOT_IMPLEMENTED;
}
// Calculate the name offset
NameOffset = FIELD_OFFSET(NTFS_ATTR_RECORD, NonResident.CompressedSize);
// Calculate the offset to the first data run
DataRunOffset = (sizeof(WCHAR) * NameLength) + NameOffset;
// The data run offset must be aligned to a 4-byte boundary
DataRunOffset = ALIGN_UP_BY(DataRunOffset, DATA_RUN_ALIGNMENT);
// Calculate the length of the new attribute; the empty data run will consist of a single byte
RecordLength = DataRunOffset + 1;
// The size of the attribute itself must be aligned to an 8 - byte boundary
RecordLength = ALIGN_UP_BY(RecordLength, ATTR_RECORD_ALIGNMENT);
// Back up the last 4-bytes of the file record (even though this value doesn't matter)
FileRecordEnd = AttributeAddress->Length;
// Make sure the file record can contain the new attribute
BytesAvailable = Vcb->NtfsInfo.BytesPerFileRecord - FileRecord->BytesInUse;
if (BytesAvailable < RecordLength)
{
DPRINT1("FIXME: Not enough room in file record for index allocation attribute!\n");
return STATUS_NOT_IMPLEMENTED;
}
// Set fields of attribute header
RtlZeroMemory(AttributeAddress, RecordLength);
AttributeAddress->Type = AttributeIndexAllocation;
AttributeAddress->Length = RecordLength;
AttributeAddress->IsNonResident = TRUE;
AttributeAddress->NameLength = NameLength;
AttributeAddress->NameOffset = NameOffset;
AttributeAddress->Instance = FileRecord->NextAttributeNumber++;
AttributeAddress->NonResident.MappingPairsOffset = DataRunOffset;
AttributeAddress->NonResident.HighestVCN = (LONGLONG)-1;
// Set the name
RtlCopyMemory((PCHAR)((ULONG_PTR)AttributeAddress + NameOffset), Name, NameLength * sizeof(WCHAR));
// move the attribute-end and file-record-end markers to the end of the file record
AttributeAddress = (PNTFS_ATTR_RECORD)((ULONG_PTR)AttributeAddress + AttributeAddress->Length);
SetFileRecordEnd(FileRecord, AttributeAddress, FileRecordEnd);
return STATUS_SUCCESS;
}
/**
* @name AddIndexRoot
* @implemented

View file

@ -468,6 +468,33 @@ CompareTreeKeys(PB_TREE_KEY Key1, PB_TREE_KEY Key2, BOOLEAN CaseSensitive)
return Comparison;
}
/**
* @name CountBTreeKeys
* @implemented
*
* Counts the number of linked B-Tree keys, starting with FirstKey.
*
* @param FirstKey
* Pointer to a B_TREE_KEY that will be the first key to be counted.
*
* @return
* The number of keys in a linked-list, including FirstKey and the final dummy key.
*/
ULONG
CountBTreeKeys(PB_TREE_KEY FirstKey)
{
ULONG Count = 0;
PB_TREE_KEY Current = FirstKey;
while (Current != NULL)
{
Count++;
Current = Current->NextKey;
}
return Count;
}
PB_TREE_FILENAME_NODE
CreateBTreeNodeFromIndexNode(PDEVICE_EXTENSION Vcb,
PINDEX_ROOT_ATTRIBUTE IndexRoot,
@ -852,6 +879,9 @@ GetSizeOfIndexEntries(PB_TREE_FILENAME_NODE Node)
*
* @param MaxIndexSize
* Describes how large the index can be before it will take too much space in the file record.
* This is strictly the sum of the sizes of all index entries; it does not include the space
* required by the index root header (INDEX_ROOT_ATTRIBUTE), since that size will be constant.
*
* After reaching MaxIndexSize, an index can no longer be represented with just an index root
* attribute, and will require an index allocation and $I30 bitmap (TODO).
*
@ -885,6 +915,10 @@ CreateIndexRootFromBTree(PDEVICE_EXTENSION DeviceExt,
DPRINT1("CreateIndexRootFromBTree(%p, %p, 0x%lx, %p, %p)\n", DeviceExt, Tree, MaxIndexSize, IndexRoot, Length);
#ifndef NDEBUG
DumpBTree(Tree);
#endif
if (!NewIndexRoot)
{
DPRINT1("Failed to allocate memory for Index Root!\n");
@ -918,12 +952,10 @@ CreateIndexRootFromBTree(PDEVICE_EXTENSION DeviceExt,
for (i = 0; i < Tree->RootNode->KeyCount; i++)
{
// Would adding the current entry to the index increase the index size beyond the limit we've set?
ULONG IndexSize = FIELD_OFFSET(INDEX_ROOT_ATTRIBUTE, Header)
+ NewIndexRoot->Header.TotalSizeOfEntries
+ CurrentNodeEntry->Length;
ULONG IndexSize = NewIndexRoot->Header.TotalSizeOfEntries - NewIndexRoot->Header.FirstEntryOffset + CurrentKey->IndexEntry->Length;
if (IndexSize > MaxIndexSize)
{
DPRINT1("TODO: Adding file would require creating an index allocation!\n");
DPRINT1("TODO: Adding file would require creating an attribute list!\n");
ExFreePoolWithTag(NewIndexRoot, TAG_NTFS);
return STATUS_NOT_IMPLEMENTED;
}
@ -962,6 +994,7 @@ NTSTATUS
CreateIndexBufferFromBTreeNode(PDEVICE_EXTENSION DeviceExt,
PB_TREE_FILENAME_NODE Node,
ULONG BufferSize,
BOOLEAN HasChildren,
PINDEX_BUFFER IndexBuffer)
{
ULONG i;
@ -1014,7 +1047,9 @@ CreateIndexBufferFromBTreeNode(PDEVICE_EXTENSION DeviceExt,
// Add Length of Current Entry to Total Size of Entries
IndexBuffer->Header.TotalSizeOfEntries += CurrentNodeEntry->Length;
// TODO: Check for child nodes
// Check for child nodes
if (HasChildren)
IndexBuffer->Header.Flags = INDEX_NODE_LARGE;
// Go to the next node entry
CurrentNodeEntry = (PINDEX_ENTRY_ATTRIBUTE)((ULONG_PTR)CurrentNodeEntry + CurrentNodeEntry->Length);
@ -1026,6 +1061,89 @@ CreateIndexBufferFromBTreeNode(PDEVICE_EXTENSION DeviceExt,
return Status;
}
/**
* @name DemoteBTreeRoot
* @implemented
*
* Demoting the root means first putting all the keys in the root node into a new node, and making
* the new node a child of a dummy key. The dummy key then becomes the sole contents of the root node.
* The B-Tree gets one level deeper. This operation is needed when an index root grows too large for its file record.
* Demotion is my own term; I might change the name later if I think of something more descriptive or can find
* an appropriate name for this operation in existing B-Tree literature.
*
* @param Tree
* Pointer to the B_TREE whose root is being demoted
*
* @returns
* STATUS_SUCCESS on success.
* STATUS_INSUFFICIENT_RESOURCES if an allocation fails.
*/
NTSTATUS
DemoteBTreeRoot(PB_TREE Tree)
{
PB_TREE_FILENAME_NODE NewSubNode, NewIndexRoot;
PB_TREE_KEY DummyKey;
DPRINT1("Collapsing Index Root into sub-node.\n");
#ifndef NDEBUG
DumpBTree(Tree);
#endif
// Create a new node that will hold the keys currently in index root
NewSubNode = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_FILENAME_NODE), TAG_NTFS);
if (!NewSubNode)
{
DPRINT1("ERROR: Couldn't allocate memory for new sub-node.\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory(NewSubNode, sizeof(B_TREE_FILENAME_NODE));
// Copy the applicable data from the old index root node
NewSubNode->KeyCount = Tree->RootNode->KeyCount;
NewSubNode->FirstKey = Tree->RootNode->FirstKey;
NewSubNode->DiskNeedsUpdating = TRUE;
// Create a new dummy key, and make the new node it's child
DummyKey = CreateDummyKey(TRUE);
if (!DummyKey)
{
DPRINT1("ERROR: Couldn't allocate memory for new root node.\n");
ExFreePoolWithTag(NewSubNode, TAG_NTFS);
return STATUS_INSUFFICIENT_RESOURCES;
}
// Make the new node a child of the dummy key
DummyKey->LesserChild = NewSubNode;
// Create a new index root node
NewIndexRoot = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_FILENAME_NODE), TAG_NTFS);
if (!NewIndexRoot)
{
DPRINT1("ERROR: Couldn't allocate memory for new index root.\n");
ExFreePoolWithTag(NewSubNode, TAG_NTFS);
ExFreePoolWithTag(DummyKey, TAG_NTFS);
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory(NewIndexRoot, sizeof(B_TREE_FILENAME_NODE));
NewIndexRoot->DiskNeedsUpdating = TRUE;
// Insert the dummy key into the new node
NewIndexRoot->FirstKey = DummyKey;
NewIndexRoot->KeyCount = 1;
NewIndexRoot->DiskNeedsUpdating = TRUE;
// Make the new node the Tree's root node
Tree->RootNode = NewIndexRoot;
#ifndef NDEBUG
DumpBTree(Tree);
#endif;
return STATUS_SUCCESS;
}
/**
* @name SetIndexEntryVCN
* @implemented
@ -1060,7 +1178,7 @@ UpdateIndexAllocation(PDEVICE_EXTENSION DeviceExt,
PFILE_RECORD_HEADER FileRecord)
{
// Find the index allocation and bitmap
PNTFS_ATTR_CONTEXT IndexAllocationContext, BitmapContext;
PNTFS_ATTR_CONTEXT IndexAllocationContext;
PB_TREE_KEY CurrentKey;
NTSTATUS Status;
BOOLEAN HasIndexAllocation = FALSE;
@ -1074,14 +1192,12 @@ UpdateIndexAllocation(PDEVICE_EXTENSION DeviceExt,
{
HasIndexAllocation = TRUE;
#ifndef NDEBUG
PrintAllVCNs(DeviceExt,
IndexAllocationContext,
IndexBufferSize);
#endif
}
// TODO: Handle bitmap
BitmapContext = NULL;
// Walk through the root node and update all the sub-nodes
CurrentKey = Tree->RootNode->FirstKey;
for (i = 0; i < Tree->RootNode->KeyCount; i++)
@ -1090,8 +1206,46 @@ UpdateIndexAllocation(PDEVICE_EXTENSION DeviceExt,
{
if (!HasIndexAllocation)
{
DPRINT1("FIXME: Need to add index allocation\n");
return STATUS_NOT_IMPLEMENTED;
// We need to add an index allocation to the file record
PNTFS_ATTR_RECORD EndMarker = (PNTFS_ATTR_RECORD)((ULONG_PTR)FileRecord + FileRecord->BytesInUse - (sizeof(ULONG) * 2));
DPRINT1("Adding index allocation...\n");
// Add index allocation to the very end of the file record
Status = AddIndexAllocation(DeviceExt,
FileRecord,
EndMarker,
L"$I30",
4);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to add index allocation!\n");
return Status;
}
// Find the new attribute
Status = FindAttribute(DeviceExt, FileRecord, AttributeIndexAllocation, L"$I30", 4, &IndexAllocationContext, &IndexAllocationOffset);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Couldn't find newly-created index allocation!\n");
return Status;
}
// Advance end marker
EndMarker = (PNTFS_ATTR_RECORD)((ULONG_PTR)EndMarker + EndMarker->Length);
// Add index bitmap to the very end of the file record
Status = AddBitmap(DeviceExt,
FileRecord,
EndMarker,
L"$I30",
4);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to add index bitmap!\n");
return Status;
}
HasIndexAllocation = TRUE;
}
// Is the Index Entry large enough to store the VCN?
@ -1122,7 +1276,7 @@ UpdateIndexAllocation(PDEVICE_EXTENSION DeviceExt,
}
// Update the sub-node
Status = UpdateIndexNode(DeviceExt, FileRecord, CurrentKey->LesserChild, IndexBufferSize, IndexAllocationContext, IndexAllocationOffset, BitmapContext);
Status = UpdateIndexNode(DeviceExt, FileRecord, CurrentKey->LesserChild, IndexBufferSize, IndexAllocationContext, IndexAllocationOffset);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to update index node!\n");
@ -1136,12 +1290,17 @@ UpdateIndexAllocation(PDEVICE_EXTENSION DeviceExt,
CurrentKey = CurrentKey->NextKey;
}
#ifndef NDEBUG
DumpBTree(Tree);
#endif
if (HasIndexAllocation)
{
#ifndef NDEBUG
PrintAllVCNs(DeviceExt,
IndexAllocationContext,
IndexBufferSize);
#endif
ReleaseAttributeContext(IndexAllocationContext);
}
@ -1154,22 +1313,74 @@ UpdateIndexNode(PDEVICE_EXTENSION DeviceExt,
PB_TREE_FILENAME_NODE Node,
ULONG IndexBufferSize,
PNTFS_ATTR_CONTEXT IndexAllocationContext,
ULONG IndexAllocationOffset,
PNTFS_ATTR_CONTEXT BitmapContext)
ULONG IndexAllocationOffset)
{
ULONG i;
PB_TREE_KEY CurrentKey = Node->FirstKey;
BOOLEAN HasChildren = FALSE;
NTSTATUS Status;
DPRINT1("UpdateIndexNode(%p, %p, %p, %lu, %p, %lu, %p) called for index node with VCN %I64u\n",
DeviceExt,
FileRecord,
Node,
IndexBufferSize,
IndexAllocationContext,
IndexAllocationOffset,
BitmapContext,
Node->VCN);
DPRINT("UpdateIndexNode(%p, %p, %p, %lu, %p, %lu) called for index node with VCN %I64u\n",
DeviceExt,
FileRecord,
Node,
IndexBufferSize,
IndexAllocationContext,
IndexAllocationOffset,
Node->VCN);
// Walk through the node and look for children to update
for (i = 0; i < Node->KeyCount; i++)
{
ASSERT(CurrentKey);
// If there's a child node
if (CurrentKey->LesserChild)
{
HasChildren = TRUE;
// Update the child node on disk
Status = UpdateIndexNode(DeviceExt, FileRecord, CurrentKey->LesserChild, IndexBufferSize, IndexAllocationContext, IndexAllocationOffset);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to update child node!\n");
return Status;
}
// Is the Index Entry large enough to store the VCN?
if (!CurrentKey->IndexEntry->Flags & NTFS_INDEX_ENTRY_NODE)
{
// Allocate memory for the larger index entry
PINDEX_ENTRY_ATTRIBUTE NewEntry = ExAllocatePoolWithTag(NonPagedPool,
CurrentKey->IndexEntry->Length + sizeof(ULONGLONG),
TAG_NTFS);
if (!NewEntry)
{
DPRINT1("ERROR: Unable to allocate memory for new index entry!\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
// Copy the old entry to the new one
RtlCopyMemory(NewEntry, CurrentKey->IndexEntry, CurrentKey->IndexEntry->Length);
NewEntry->Length += sizeof(ULONGLONG);
// Free the old memory
ExFreePoolWithTag(CurrentKey->IndexEntry, TAG_NTFS);
CurrentKey->IndexEntry = NewEntry;
}
// Update the VCN stored in the index entry of CurrentKey
SetIndexEntryVCN(CurrentKey->IndexEntry, CurrentKey->LesserChild->VCN);
CurrentKey->IndexEntry->Flags |= NTFS_INDEX_ENTRY_NODE;
}
CurrentKey = CurrentKey->NextKey;
}
// Do we need to write this node to disk?
if (Node->DiskNeedsUpdating)
@ -1206,7 +1417,7 @@ UpdateIndexNode(PDEVICE_EXTENSION DeviceExt,
}
// Create the index buffer we'll be writing to disk to represent this node
Status = CreateIndexBufferFromBTreeNode(DeviceExt, Node, IndexBufferSize, IndexBuffer);
Status = CreateIndexBufferFromBTreeNode(DeviceExt, Node, IndexBufferSize, HasChildren, IndexBuffer);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to create index buffer from node!\n");
@ -1235,26 +1446,6 @@ UpdateIndexNode(PDEVICE_EXTENSION DeviceExt,
ExFreePoolWithTag(IndexBuffer, TAG_NTFS);
}
// Walk through the node and look for children to update
for (i = 0; i < Node->KeyCount; i++)
{
ASSERT(CurrentKey);
// If there's a child node
if (CurrentKey->LesserChild)
{
// Update the child node on disk
Status = UpdateIndexNode(DeviceExt, FileRecord, CurrentKey->LesserChild, IndexBufferSize, IndexAllocationContext, IndexAllocationOffset, BitmapContext);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to update child node!\n");
return Status;
}
}
CurrentKey = CurrentKey->NextKey;
}
return STATUS_SUCCESS;
}
@ -1438,6 +1629,16 @@ GetAllocationOffsetFromVCN(PDEVICE_EXTENSION DeviceExt,
return Vcn * DeviceExt->NtfsInfo.BytesPerCluster;
}
ULONGLONG
GetIndexEntryVCN(PINDEX_ENTRY_ATTRIBUTE IndexEntry)
{
PULONGLONG Destination = (PULONGLONG)((ULONG_PTR)IndexEntry + IndexEntry->Length - sizeof(ULONGLONG));
ASSERT(IndexEntry->Flags & NTFS_INDEX_ENTRY_NODE);
return *Destination;
}
/**
* @name NtfsInsertKey
* @implemented
@ -1464,6 +1665,17 @@ GetAllocationOffsetFromVCN(PDEVICE_EXTENSION DeviceExt,
* The maximum size, in bytes, of node entries that can be stored in the index root before it will grow too large for
* the file record. This number is just the size of the entries, without any headers for the attribute or index root.
*
* @param IndexRecordSize
* The size, in bytes, of an index record for this index. AKA an index buffer. Usually set to 4096.
*
* @param MedianKey
* Pointer to a PB_TREE_KEY that will receive a pointer to the median key, should the node grow too large and need to be split.
* Will be set to NULL if the node isn't split.
*
* @param NewRightHandSibling
* Pointer to a PB_TREE_FILENAME_NODE that will receive a pointer to a newly-created right-hand sibling node,
* should the node grow too large and need to be split. Will be set to NULL if the node isn't split.
*
* @remarks
* A node is always sorted, with the least comparable filename stored first and a dummy key to mark the end.
*/
@ -1473,7 +1685,10 @@ NtfsInsertKey(PB_TREE Tree,
PFILENAME_ATTRIBUTE FileNameAttribute,
PB_TREE_FILENAME_NODE Node,
BOOLEAN CaseSensitive,
ULONG MaxIndexRootSize)
ULONG MaxIndexRootSize,
ULONG IndexRecordSize,
PB_TREE_KEY *MedianKey,
PB_TREE_FILENAME_NODE *NewRightHandSibling)
{
PB_TREE_KEY NewKey, CurrentKey, PreviousKey;
NTSTATUS Status = STATUS_SUCCESS;
@ -1482,13 +1697,19 @@ NtfsInsertKey(PB_TREE Tree,
ULONG MaxNodeSizeWithoutHeader;
ULONG i;
DPRINT1("NtfsInsertKey(%p, 0x%I64x, %p, %p, %s, %lu)\n",
*MedianKey = NULL;
*NewRightHandSibling = NULL;
DPRINT1("NtfsInsertKey(%p, 0x%I64x, %p, %p, %s, %lu, %lu, %p, %p)\n",
Tree,
FileReference,
FileNameAttribute,
Node,
CaseSensitive ? "TRUE" : "FALSE",
MaxIndexRootSize);
MaxIndexRootSize,
IndexRecordSize,
MedianKey,
NewRightHandSibling);
// Create the key for the filename attribute
NewKey = CreateBTreeKeyFromFilename(FileReference, FileNameAttribute);
@ -1513,12 +1734,22 @@ NtfsInsertKey(PB_TREE Tree,
// Is NewKey < CurrentKey?
if (Comparison < 0)
{
// Does CurrentKey have a sub-node?
if (CurrentKey->LesserChild)
{
PB_TREE_KEY NewLeftKey;
PB_TREE_FILENAME_NODE NewChild;
// Insert the key into the child node
Status = NtfsInsertKey(Tree, FileReference, FileNameAttribute, CurrentKey->LesserChild, CaseSensitive, 0);
Status = NtfsInsertKey(Tree,
FileReference,
FileNameAttribute,
CurrentKey->LesserChild,
CaseSensitive,
MaxIndexRootSize,
IndexRecordSize,
&NewLeftKey,
&NewChild);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to insert key.\n");
@ -1526,6 +1757,30 @@ NtfsInsertKey(PB_TREE Tree,
return Status;
}
// Did the child node get split?
if (NewLeftKey)
{
ASSERT(NewChild != NULL);
// Insert the new left key to the left of the current key
NewLeftKey->NextKey = CurrentKey;
// Is CurrentKey the first key?
if (!PreviousKey)
Node->FirstKey = NewLeftKey;
else
PreviousKey->NextKey = NewLeftKey;
// CurrentKey->LesserChild will be the right-hand sibling
CurrentKey->LesserChild = NewChild;
Node->KeyCount++;
Node->DiskNeedsUpdating = TRUE;
#ifndef NDEBUG
DumpBTree(Tree);
#endif NDEBUG
}
}
else
{
@ -1541,8 +1796,8 @@ NtfsInsertKey(PB_TREE Tree,
Node->FirstKey = NewKey;
else
PreviousKey->NextKey = NewKey;
break;
}
break;
}
PreviousKey = CurrentKey;
@ -1552,88 +1807,202 @@ NtfsInsertKey(PB_TREE Tree,
// Determine how much space the index entries will need
NodeSize = GetSizeOfIndexEntries(Node);
// Is Node the root node?
if (Node == Tree->RootNode)
// Is Node not the root node?
if (Node != Tree->RootNode)
{
// Is the index root too large for the file record?
if (NodeSize > MaxIndexRootSize)
{
PB_TREE_FILENAME_NODE NewSubNode, NewIndexRoot;
PB_TREE_KEY DummyKey;
// Calculate maximum size of index entries without any headers
AllocatedNodeSize = IndexRecordSize - FIELD_OFFSET(INDEX_BUFFER, Header);
DPRINT1("Collapsing Index Root into sub-node.\n") ;
DumpBTree(Tree);
// Create a new node that will hold the keys currently in index root
NewSubNode = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_FILENAME_NODE), TAG_NTFS);
if (!NewSubNode)
{
DPRINT1("ERROR: Couldn't allocate memory for new sub-node.\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory(NewSubNode, sizeof(B_TREE_FILENAME_NODE));
// Copy the applicable data from the old index root node
NewSubNode->KeyCount = Node->KeyCount;
NewSubNode->FirstKey = Node->FirstKey;
NewSubNode->DiskNeedsUpdating = TRUE;
// Create a new dummy key, and make the new node it's child
DummyKey = CreateDummyKey(TRUE);
if (!DummyKey)
{
DPRINT1("ERROR: Couldn't allocate memory for new root node.\n");
ExFreePoolWithTag(NewSubNode, TAG_NTFS);
return STATUS_INSUFFICIENT_RESOURCES;
}
// Make the new node a child of the dummy key
DummyKey->LesserChild = NewSubNode;
// Create a new index root node
NewIndexRoot = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_FILENAME_NODE), TAG_NTFS);
if (!NewIndexRoot)
{
DPRINT1("ERROR: Couldn't allocate memory for new index root.\n");
ExFreePoolWithTag(NewSubNode, TAG_NTFS);
ExFreePoolWithTag(DummyKey, TAG_NTFS);
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory(NewIndexRoot, sizeof(B_TREE_FILENAME_NODE));
NewIndexRoot->DiskNeedsUpdating = TRUE;
// Insert the dummy key into the new node
NewIndexRoot->FirstKey = DummyKey;
NewIndexRoot->KeyCount = 1;
NewIndexRoot->DiskNeedsUpdating = TRUE;
// Make the new node the Tree's root node
Tree->RootNode = NewIndexRoot;
DumpBTree(Tree);
return STATUS_SUCCESS;
}
}
else
{
// TEMPTEMP: TODO: MATH
AllocatedNodeSize = 0xfe8;
// TODO: Replace magic with math
MaxNodeSizeWithoutHeader = AllocatedNodeSize - 0x28;
// Has the node grown larger than its allocated size?
if (NodeSize > MaxNodeSizeWithoutHeader)
{
DPRINT1("FIXME: Splitting a node is still a WIP!\n");
//SplitBTreeNode(NULL, Node);
//DumpBTree(Tree);
return STATUS_NOT_IMPLEMENTED;
NTSTATUS Status;
Status = SplitBTreeNode(Tree, Node, MedianKey, NewRightHandSibling, CaseSensitive);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to split B-Tree node!\n");
return Status;
}
return Status;
}
}
// NewEntry and NewKey will be destroyed later by DestroyBTree()
return Status;
}
/**
* @name SplitBTreeNode
* @implemented
*
* Splits a B-Tree node that has grown too large. Finds the median key and sets up a right-hand-sibling
* node to contain the keys to the right of the median key.
*
* @param Tree
* Pointer to the B_TREE which contains the node being split
*
* @param Node
* Pointer to the B_TREE_FILENAME_NODE that needs to be split
*
* @param MedianKey
* Pointer a PB_TREE_KEY that will receive the pointer to the key in the middle of the node being split
*
* @param NewRightHandSibling
* Pointer to a PB_TREE_FILENAME_NODE that will receive a pointer to a newly-created B_TREE_FILENAME_NODE
* containing the keys to the right of MedianKey.
*
* @param CaseSensitive
* Boolean indicating if the function should operate in case-sensitive mode. This will be TRUE
* if an application created the file with the FILE_FLAG_POSIX_SEMANTICS flag.
*
* @return
* STATUS_SUCCESS on success.
* STATUS_INSUFFICIENT_RESOURCES if an allocation fails.
*
* @remarks
* It's the responsibility of the caller to insert the new median key into the parent node, as well as making the
* NewRightHandSibling the lesser child of the node that is currently Node's parent.
*/
NTSTATUS
SplitBTreeNode(PB_TREE Tree,
PB_TREE_FILENAME_NODE Node,
PB_TREE_KEY *MedianKey,
PB_TREE_FILENAME_NODE *NewRightHandSibling,
BOOLEAN CaseSensitive)
{
ULONG MedianKeyIndex;
PB_TREE_KEY LastKeyBeforeMedian, FirstKeyAfterMedian;
ULONG i;
DPRINT1("SplitBTreeNode(%p, %p, %p, %p, %s) called\n",
Tree,
Node,
MedianKey,
NewRightHandSibling,
CaseSensitive ? "TRUE" : "FALSE");
//DumpBTreeNode(Node, 0, 0);
// Create the right hand sibling
*NewRightHandSibling = ExAllocatePoolWithTag(NonPagedPool, sizeof(B_TREE_FILENAME_NODE), TAG_NTFS);
if (*NewRightHandSibling == NULL)
{
DPRINT1("Error: Failed to allocate memory for right hand sibling!\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory(*NewRightHandSibling, sizeof(B_TREE_FILENAME_NODE));
(*NewRightHandSibling)->DiskNeedsUpdating = TRUE;
// find the median key index
MedianKeyIndex = (Node->KeyCount + 1) / 2;
MedianKeyIndex--;
// Find the last key before the median
LastKeyBeforeMedian = Node->FirstKey;
for (i = 0; i < MedianKeyIndex - 1; i++)
LastKeyBeforeMedian = LastKeyBeforeMedian->NextKey;
// Use size to locate the median key / index
ULONG HalfSize = 2016; // half the allocated size after subtracting the first index entry offset (TODO: MATH)
ULONG SizeSum = 0;
LastKeyBeforeMedian = Node->FirstKey;
MedianKeyIndex = 0;
for (i = 0; i < Node->KeyCount; i++)
{
SizeSum += LastKeyBeforeMedian->IndexEntry->Length;
if (SizeSum > HalfSize)
break;
MedianKeyIndex++;
LastKeyBeforeMedian = LastKeyBeforeMedian->NextKey;
}
// Now we can get the median key and the key that follows it
*MedianKey = LastKeyBeforeMedian->NextKey;
FirstKeyAfterMedian = (*MedianKey)->NextKey;
DPRINT1("%lu keys, %lu median\n", Node->KeyCount, MedianKeyIndex);
DPRINT1("\t\tMedian: %.*S\n", (*MedianKey)->IndexEntry->FileName.NameLength, (*MedianKey)->IndexEntry->FileName.Name);
// "Node" will be the left hand sibling after the split, containing all keys prior to the median key
// We need to create a dummy pointer at the end of the LHS. The dummy's child will be the median's child.
LastKeyBeforeMedian->NextKey = CreateDummyKey(BooleanFlagOn((*MedianKey)->IndexEntry->Flags, NTFS_INDEX_ENTRY_NODE));
if (LastKeyBeforeMedian->NextKey == NULL)
{
DPRINT1("Error: Couldn't allocate dummy key!\n");
LastKeyBeforeMedian->NextKey = *MedianKey;
ExFreePoolWithTag(*NewRightHandSibling, TAG_NTFS);
return STATUS_INSUFFICIENT_RESOURCES;
}
// Did the median key have a child node?
if ((*MedianKey)->IndexEntry->Flags & NTFS_INDEX_ENTRY_NODE)
{
// Set the child of the new dummy key
LastKeyBeforeMedian->NextKey->LesserChild = (*MedianKey)->LesserChild;
// Give the dummy key's index entry the same sub-node VCN the median
SetIndexEntryVCN(LastKeyBeforeMedian->NextKey->IndexEntry, GetIndexEntryVCN((*MedianKey)->IndexEntry));
}
else
{
// Median key didn't have a child node, but it will. Create a new index entry large enough to store a VCN.
PINDEX_ENTRY_ATTRIBUTE NewIndexEntry = ExAllocatePoolWithTag(NonPagedPool,
(*MedianKey)->IndexEntry->Length + sizeof(ULONGLONG),
TAG_NTFS);
if (!NewIndexEntry)
{
DPRINT1("Unable to allocate memory for new index entry!\n");
LastKeyBeforeMedian->NextKey = *MedianKey;
ExFreePoolWithTag(*NewRightHandSibling, TAG_NTFS);
return STATUS_INSUFFICIENT_RESOURCES;
}
// Copy the old index entry to the new one
RtlCopyMemory(NewIndexEntry, (*MedianKey)->IndexEntry, (*MedianKey)->IndexEntry->Length);
// Use the new index entry after freeing the old one
ExFreePoolWithTag((*MedianKey)->IndexEntry, TAG_NTFS);
(*MedianKey)->IndexEntry = NewIndexEntry;
// Update the length for the VCN
(*MedianKey)->IndexEntry->Length += sizeof(ULONGLONG);
// Set the node flag
(*MedianKey)->IndexEntry->Flags |= NTFS_INDEX_ENTRY_NODE;
}
// "Node" will become the child of the median key
(*MedianKey)->LesserChild = Node;
SetIndexEntryVCN((*MedianKey)->IndexEntry, Node->VCN);
// Update Node's KeyCount (remember to add 1 for the new dummy key)
Node->KeyCount = MedianKeyIndex + 2;
ULONG KeyCount = CountBTreeKeys(Node->FirstKey);
ASSERT(Node->KeyCount == KeyCount);
// everything to the right of MedianKey becomes the right hand sibling of Node
(*NewRightHandSibling)->FirstKey = FirstKeyAfterMedian;
(*NewRightHandSibling)->KeyCount = CountBTreeKeys(FirstKeyAfterMedian);
#ifndef NDEBUG
DPRINT1("Left-hand node after split:\n");
DumpBTreeNode(Node, 0, 0);
DPRINT1("Right-hand sibling node after split:\n");
DumpBTreeNode(*NewRightHandSibling, 0, 0);
#endif
return STATUS_SUCCESS;
}

View file

@ -786,6 +786,11 @@ SetNonResidentAttributeDataLength(PDEVICE_EXTENSION Vcb,
DestinationAttribute->NonResident.AllocatedSize = AllocationSize;
DestinationAttribute->NonResident.DataSize = DataSize->QuadPart;
DestinationAttribute->NonResident.InitializedSize = DataSize->QuadPart;
// HighestVCN seems to be set incorrectly somewhere. Apply a hack-fix to reset it.
// HACKHACK FIXME: Fix for sparse files; this math won't work in that case.
AttrContext->pRecord->NonResident.HighestVCN = ((ULONGLONG)AllocationSize / Vcb->NtfsInfo.BytesPerCluster) - 1;
DestinationAttribute->NonResident.HighestVCN = AttrContext->pRecord->NonResident.HighestVCN;
DPRINT("Allocated Size: %I64u\n", DestinationAttribute->NonResident.AllocatedSize);
@ -2131,6 +2136,8 @@ NtfsAddFilenameToDirectory(PDEVICE_EXTENSION DeviceExt,
PB_TREE NewTree;
ULONG BtreeIndexLength;
ULONG MaxIndexRootSize;
PB_TREE_KEY NewLeftKey;
PB_TREE_FILENAME_NODE NewRightHandNode;
// Allocate memory for the parent directory
ParentFileRecord = ExAllocatePoolWithTag(NonPagedPool,
@ -2152,8 +2159,10 @@ NtfsAddFilenameToDirectory(PDEVICE_EXTENSION DeviceExt,
return Status;
}
#ifndef NDEBUG
DPRINT1("Dumping old parent file record:\n");
NtfsDumpFileRecord(DeviceExt, ParentFileRecord);
#endif
// Find the index root attribute for the directory
Status = FindAttribute(DeviceExt,
@ -2176,7 +2185,7 @@ NtfsAddFilenameToDirectory(PDEVICE_EXTENSION DeviceExt,
MaxIndexRootSize = DeviceExt->NtfsInfo.BytesPerFileRecord // Start with the size of a file record
- IndexRootOffset // Subtract the length of everything that comes before index root
- IndexRootContext->pRecord->Resident.ValueOffset // Subtract the length of the attribute header for index root
- FIELD_OFFSET(INDEX_ROOT_ATTRIBUTE, Header) // Subtract the length of the index header for index root
- sizeof(INDEX_ROOT_ATTRIBUTE) // Subtract the length of the index root header
- (sizeof(ULONG) * 2); // Subtract the length of the file record end marker and padding
// Are there attributes after this one?
@ -2233,10 +2242,20 @@ NtfsAddFilenameToDirectory(PDEVICE_EXTENSION DeviceExt,
return Status;
}
#ifndef NDEBUG
DumpBTree(NewTree);
#endif
// Insert the key for the file we're adding
Status = NtfsInsertKey(NewTree, FileReferenceNumber, FilenameAttribute, NewTree->RootNode, CaseSensitive, MaxIndexRootSize);
Status = NtfsInsertKey(NewTree,
FileReferenceNumber,
FilenameAttribute,
NewTree->RootNode,
CaseSensitive,
MaxIndexRootSize,
I30IndexRoot->SizeOfEntry,
&NewLeftKey,
&NewRightHandNode);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to insert key into B-Tree!\n");
@ -2247,9 +2266,57 @@ NtfsAddFilenameToDirectory(PDEVICE_EXTENSION DeviceExt,
return Status;
}
#ifndef NDEBUG
DumpBTree(NewTree);
#endif
// Convert B*Tree back to Index, starting with the index allocation
// The root node can't be split
ASSERT(NewLeftKey == NULL);
ASSERT(NewRightHandNode == NULL);
// Convert B*Tree back to Index
// Updating the index allocation can change the size available for the index root,
// And if the index root is demoted, the index allocation will need to be updated again,
// which may change the size available for index root... etc.
// My solution is to decrease index root to the size it would be if it was demoted,
// then UpdateIndexAllocation will have an accurate representation of the maximum space
// it can use in the file record. There's still a chance that the act of allocating an
// index node after demoting the index root will increase the size of the file record beyond
// it's limit, but if that happens, an attribute-list will most definitely be needed.
// This a bit hacky, but it seems to be functional.
// Calculate the minimum size of the index root attribute, considering one dummy key and one VCN
LARGE_INTEGER MinIndexRootSize;
MinIndexRootSize.QuadPart = sizeof(INDEX_ROOT_ATTRIBUTE) // size of the index root headers
+ 0x18; // Size of dummy key with a VCN for a subnode
ASSERT(MinIndexRootSize.QuadPart % ATTR_RECORD_ALIGNMENT == 0);
// Temporarily shrink the index root to it's minimal size
AttributeLength = MinIndexRootSize.LowPart;
AttributeLength += sizeof(INDEX_ROOT_ATTRIBUTE);
// FIXME: IndexRoot will probably be invalid until we're finished. If we fail before we finish, the directory will probably be toast.
// The potential for catastrophic data-loss exists!!! :)
// Update the length of the attribute in the file record of the parent directory
Status = InternalSetResidentAttributeLength(DeviceExt,
IndexRootContext,
ParentFileRecord,
IndexRootOffset,
AttributeLength);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Unable to set length of index root!\n");
DestroyBTree(NewTree);
ReleaseAttributeContext(IndexRootContext);
ExFreePoolWithTag(I30IndexRoot, TAG_NTFS);
ExFreePoolWithTag(ParentFileRecord, TAG_NTFS);
return Status;
}
// Update the index allocation
Status = UpdateIndexAllocation(DeviceExt, NewTree, I30IndexRoot->SizeOfEntry, ParentFileRecord);
if (!NT_SUCCESS(Status))
{
@ -2261,8 +2328,99 @@ NtfsAddFilenameToDirectory(PDEVICE_EXTENSION DeviceExt,
return Status;
}
#ifndef NDEBUG
DPRINT1("Index Allocation updated\n");
DumpBTree(NewTree);
#endif
// Find the maximum index root size given what the file record can hold
// First, find the max index size assuming index root is the last attribute
ULONG NewMaxIndexRootSize =
DeviceExt->NtfsInfo.BytesPerFileRecord // Start with the size of a file record
- IndexRootOffset // Subtract the length of everything that comes before index root
- IndexRootContext->pRecord->Resident.ValueOffset // Subtract the length of the attribute header for index root
- sizeof(INDEX_ROOT_ATTRIBUTE) // Subtract the length of the index root header
- (sizeof(ULONG) * 2); // Subtract the length of the file record end marker and padding
// Are there attributes after this one?
NextAttribute = (PNTFS_ATTR_RECORD)((ULONG_PTR)ParentFileRecord + IndexRootOffset + IndexRootContext->pRecord->Length);
if (NextAttribute->Type != AttributeEnd)
{
// Find the length of all attributes after this one, not counting the end marker
ULONG LengthOfAttributes = 0;
PNTFS_ATTR_RECORD CurrentAttribute = NextAttribute;
while (CurrentAttribute->Type != AttributeEnd)
{
LengthOfAttributes += CurrentAttribute->Length;
CurrentAttribute = (PNTFS_ATTR_RECORD)((ULONG_PTR)CurrentAttribute + CurrentAttribute->Length);
}
// Leave room for the existing attributes
NewMaxIndexRootSize -= LengthOfAttributes;
}
// The index allocation and index bitmap may have grown, leaving less room for the index root,
// so now we need to double-check that index root isn't too large
ULONG NodeSize = GetSizeOfIndexEntries(NewTree->RootNode);
if (NodeSize > NewMaxIndexRootSize)
{
DPRINT1("Demoting index root.\nNodeSize: 0x%lx\nNewMaxIndexRootSize: 0x%lx\n", NodeSize, NewMaxIndexRootSize);
Status = DemoteBTreeRoot(NewTree);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to demote index root!\n");
DestroyBTree(NewTree);
ReleaseAttributeContext(IndexRootContext);
ExFreePoolWithTag(I30IndexRoot, TAG_NTFS);
ExFreePoolWithTag(ParentFileRecord, TAG_NTFS);
return Status;
}
// We need to update the index allocation once more
Status = UpdateIndexAllocation(DeviceExt, NewTree, I30IndexRoot->SizeOfEntry, ParentFileRecord);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to update index allocation from B-Tree!\n");
DestroyBTree(NewTree);
ReleaseAttributeContext(IndexRootContext);
ExFreePoolWithTag(I30IndexRoot, TAG_NTFS);
ExFreePoolWithTag(ParentFileRecord, TAG_NTFS);
return Status;
}
// re-recalculate max size of index root
NewMaxIndexRootSize =
// Find the maximum index size given what the file record can hold
// First, find the max index size assuming index root is the last attribute
DeviceExt->NtfsInfo.BytesPerFileRecord // Start with the size of a file record
- IndexRootOffset // Subtract the length of everything that comes before index root
- IndexRootContext->pRecord->Resident.ValueOffset // Subtract the length of the attribute header for index root
- sizeof(INDEX_ROOT_ATTRIBUTE) // Subtract the length of the index root header
- (sizeof(ULONG) * 2); // Subtract the length of the file record end marker and padding
// Are there attributes after this one?
NextAttribute = (PNTFS_ATTR_RECORD)((ULONG_PTR)ParentFileRecord + IndexRootOffset + IndexRootContext->pRecord->Length);
if (NextAttribute->Type != AttributeEnd)
{
// Find the length of all attributes after this one, not counting the end marker
ULONG LengthOfAttributes = 0;
PNTFS_ATTR_RECORD CurrentAttribute = NextAttribute;
while (CurrentAttribute->Type != AttributeEnd)
{
LengthOfAttributes += CurrentAttribute->Length;
CurrentAttribute = (PNTFS_ATTR_RECORD)((ULONG_PTR)CurrentAttribute + CurrentAttribute->Length);
}
// Leave room for the existing attributes
NewMaxIndexRootSize -= LengthOfAttributes;
}
}
// Create the Index Root from the B*Tree
Status = CreateIndexRootFromBTree(DeviceExt, NewTree, MaxIndexRootSize, &NewIndexRoot, &BtreeIndexLength);
Status = CreateIndexRootFromBTree(DeviceExt, NewTree, NewMaxIndexRootSize, &NewIndexRoot, &BtreeIndexLength);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Failed to create Index root from B-Tree!\n");
@ -2280,9 +2438,7 @@ NtfsAddFilenameToDirectory(PDEVICE_EXTENSION DeviceExt,
// First, we need to resize the attribute.
// CreateIndexRootFromBTree() should have verified that the index root fits within MaxIndexSize.
// We can't set the size as we normally would, because if we extend past the file record,
// we must create an index allocation and index bitmap (TODO). Also TODO: support file records with
// $ATTRIBUTE_LIST's.
// We can't set the size as we normally would, because $INDEX_ROOT must always be resident.
AttributeLength = NewIndexRoot->Header.AllocatedSize + FIELD_OFFSET(INDEX_ROOT_ATTRIBUTE, Header);
if (AttributeLength != IndexRootContext->pRecord->Resident.ValueLength)
@ -2344,8 +2500,22 @@ NtfsAddFilenameToDirectory(PDEVICE_EXTENSION DeviceExt,
}
else
{
DPRINT1("Dumping new parent file record:\n");
#ifndef NDEBUG
DPRINT1("Dumping new B-Tree:\n");
Status = CreateBTreeFromIndex(DeviceExt, ParentFileRecord, IndexRootContext, NewIndexRoot, &NewTree);
if (!NT_SUCCESS(Status))
{
DPRINT1("ERROR: Couldn't re-create b-tree\n");
return Status;
}
DumpBTree(NewTree);
DestroyBTree(NewTree);
NtfsDumpFileRecord(DeviceExt, ParentFileRecord);
#endif
}
// Cleanup

View file

@ -564,6 +564,13 @@ NtfsMarkIrpContextForQueue(PNTFS_IRP_CONTEXT IrpContext)
//VOID
//NtfsDumpAttribute(PATTRIBUTE Attribute);
NTSTATUS
AddBitmap(PNTFS_VCB Vcb,
PFILE_RECORD_HEADER FileRecord,
PNTFS_ATTR_RECORD AttributeAddress,
PCWSTR Name,
USHORT NameLength);
NTSTATUS
AddData(PFILE_RECORD_HEADER FileRecord,
PNTFS_ATTR_RECORD AttributeAddress);
@ -576,6 +583,13 @@ AddRun(PNTFS_VCB Vcb,
ULONGLONG NextAssignedCluster,
ULONG RunLength);
NTSTATUS
AddIndexAllocation(PNTFS_VCB Vcb,
PFILE_RECORD_HEADER FileRecord,
PNTFS_ATTR_RECORD AttributeAddress,
PCWSTR Name,
USHORT NameLength);
NTSTATUS
AddIndexRoot(PNTFS_VCB Vcb,
PFILE_RECORD_HEADER FileRecord,
@ -723,6 +737,9 @@ CreateIndexRootFromBTree(PDEVICE_EXTENSION DeviceExt,
PINDEX_ROOT_ATTRIBUTE *IndexRoot,
ULONG *Length);
NTSTATUS
DemoteBTreeRoot(PB_TREE Tree);
VOID
DestroyBTree(PB_TREE Tree);
@ -752,13 +769,26 @@ GetAllocationOffsetFromVCN(PDEVICE_EXTENSION DeviceExt,
ULONG IndexBufferSize,
ULONGLONG Vcn);
ULONG
GetSizeOfIndexEntries(PB_TREE_FILENAME_NODE Node);
NTSTATUS
NtfsInsertKey(PB_TREE Tree,
ULONGLONG FileReference,
PFILENAME_ATTRIBUTE FileNameAttribute,
PB_TREE_FILENAME_NODE Node,
BOOLEAN CaseSensitive,
ULONG MaxIndexRootSize);
ULONG MaxIndexRootSize,
ULONG IndexRecordSize,
PB_TREE_KEY *MedianKey,
PB_TREE_FILENAME_NODE *NewRightHandSibling);
NTSTATUS
SplitBTreeNode(PB_TREE Tree,
PB_TREE_FILENAME_NODE Node,
PB_TREE_KEY *MedianKey,
PB_TREE_FILENAME_NODE *NewRightHandSibling,
BOOLEAN CaseSensitive);
NTSTATUS
UpdateIndexAllocation(PDEVICE_EXTENSION DeviceExt,
@ -772,8 +802,7 @@ UpdateIndexNode(PDEVICE_EXTENSION DeviceExt,
PB_TREE_FILENAME_NODE Node,
ULONG IndexBufferSize,
PNTFS_ATTR_CONTEXT IndexAllocationContext,
ULONG IndexAllocationOffset,
PNTFS_ATTR_CONTEXT BitmapContext);
ULONG IndexAllocationOffset);
/* close.c */