plan9fox/sys/src/9/zynq/mmu.c
cinap_lenrek 128ea44a89 kernel: expose no execute bit to portable mmu code as SG_NOEXEC / PTENOEXEC, add PTECACHED bits
a portable SG_NOEXEC segment attribute was added to allow
non-executable (physical) segments. which will set the
PTENOEXEC bits for putmmu().

in the future, this can be used to make non-executable
stack / bss segments.

the SG_DEVICE attribute was added to distinguish between
mmio regions and uncached memory. only matterns on arm64.

on arm, theres the issue that PTEUNCACHED would have
no bits set when using the hardware bit definitions.
this is the reason bcm, kw, teg2 and omap kernels use
arteficial PTE constants. on zynq, the XN bit was used
as a hack to give PTEUNCACHED a non-zero value and when
the bit is clear then cache attributes where added to
the pte.

to fix this, PTECACHED constant was added.

the portable mmu code in fault.c will now explicitely set
PTECACHED bits for cached memory and PTEUNCACHED for
uncached memory. that way the hardware bit definitions
can be used everywhere.
2019-08-26 22:34:38 +02:00

432 lines
7.9 KiB
C

#include "u.h"
#include "../port/lib.h"
#include "mem.h"
#include "dat.h"
#include "fns.h"
#include "io.h"
ulong *mpcore, *slcr;
uchar *ocm;
void
mmuinit(void)
{
m->l1.pa = ttbget();
m->l1.va = KADDR(m->l1.pa);
memset((uchar*)TMAPL2(m->machno), 0, TMAPL2SZ);
m->l1.va[L1X(TMAP)] = PADDR(TMAPL2(m->machno)) | L1PT;
incref(&m->l1);
if(mpcore != nil)
return;
mpcore = vmap(MPCORE_BASE, 0x2000);
slcr = vmap(SLCR_BASE, 0x1000);
ocm = vmap(OCM_BASE, -OCM_BASE);
}
void
l1switch(L1 *p, int flush)
{
assert(!islo());
ttbput(p->pa);
if(flush){
if(++m->asid == 0)
flushtlb();
setasid(m->asid);
}
}
static L1 *
l1alloc(void)
{
L1 *p;
int s;
s = splhi();
p = m->l1free;
if(p != nil){
m->l1free = p->next;
p->next = nil;
m->nfree--;
splx(s);
return p;
}
splx(s);
p = smalloc(sizeof(L1));
for(;;){
p->va = mallocalign(L1SZ, L1SZ, 0, 0);
if(p->va != nil)
break;
if(!waserror()){
resrcwait("no memory for L1 table");
poperror();
}
}
p->pa = PADDR(p->va);
memmove(p->va, m->l1.va, L1SZ);
return p;
}
static void
l1free(L1 *l1)
{
if(islo())
panic("l1free: islo");
if(m->nfree >= 40){
free(l1->va);
free(l1);
}else{
l1->next = m->l1free;
m->l1free = l1;
m->nfree++;
}
}
static void
upallocl1(void)
{
L1 *p;
int s;
if(up->l1 != nil)
return;
p = l1alloc();
s = splhi();
if(up->l1 != nil)
panic("upalloc1: up->l1 != nil");
up->l1 = p;
l1switch(p, 1);
splx(s);
}
static void
l2free(Proc *proc)
{
ulong *t;
Page *p, **l;
if(proc->l1 == nil || proc->mmuused == nil)
return;
l = &proc->mmuused;
for(p = *l; p != nil; p = p->next){
t = proc->l1->va + p->daddr;
*t++ = 0;
*t++ = 0;
*t++ = 0;
*t = 0;
l = &p->next;
}
proc->l1->va[L1X(TMAP)] = 0;
*l = proc->mmufree;
proc->mmufree = proc->mmuused;
proc->mmuused = 0;
}
void
mmuswitch(Proc *p)
{
if(p->newtlb){
p->newtlb = 0;
l2free(p);
}
if(p->l1 != nil)
l1switch(p->l1, 1);
else
l1switch(&m->l1, 1);
}
void
putmmu(uintptr va, uintptr pa, Page *pg)
{
Page *p;
ulong *e;
ulong *l2;
ulong old;
uintptr l2p;
int s;
if(up->l1 == nil)
upallocl1();
e = &up->l1->va[L1RX(va)];
if((*e & 3) == 0){
p = up->mmufree;
if(p != nil)
up->mmufree = p->next;
else
p = newpage(0, 0, 0);
p->daddr = L1RX(va);
p->next = up->mmuused;
up->mmuused = p;
s = splhi();
l2p = p->pa;
l2 = tmpmap(l2p);
memset(l2, 0, BY2PG);
coherence();
e[0] = p->pa | L1PT;
e[1] = e[0] + L2SZ;
e[2] = e[1] + L2SZ;
e[3] = e[2] + L2SZ;
coherence();
}else{
s = splhi();
l2p = *e & ~(BY2PG - 1);
l2 = tmpmap(l2p);
}
e = &l2[L2RX(va)];
old = *e;
*e = pa | L2VALID | L2USER | L2LOCAL;
tmpunmap(l2);
splx(s);
if((old & L2VALID) != 0)
flushpg((void *) va);
if(pg->txtflush & (1<<m->machno)){
cleandse((void *) va, (void *) (va + BY2PG));
invalise((void *) va, (void *) (va + BY2PG));
pg->txtflush &= ~(1<<m->machno);
}
}
void
checkmmu(uintptr, uintptr)
{
}
void
flushmmu(void)
{
int s;
s = splhi();
up->newtlb = 1;
mmuswitch(up);
splx(s);
}
void
mmurelease(Proc *proc)
{
Page *p, *n;
if(islo())
panic("mmurelease: islo");
l1switch(&m->l1, 0);
if(proc->kmaptable != nil){
if(proc->l1 == nil)
panic("mmurelease: no l1");
if(decref(proc->kmaptable) != 0)
panic("mmurelease: kmap ref %ld", proc->kmaptable->ref);
if(proc->nkmap)
panic("mmurelease: nkmap %d", proc->nkmap);
if(PPN(proc->l1->va[L1X(KMAP)]) != proc->kmaptable->pa)
panic("mmurelease: bad kmap l2 %#.8lux kmap %#.8lux", proc->l1->va[L1X(KMAP)], proc->kmaptable->pa);
proc->l1->va[L1X(KMAP)] = 0;
pagechainhead(proc->kmaptable);
proc->kmaptable = nil;
}
if(proc->l1 != nil){
l2free(proc);
l1free(proc->l1);
proc->l1 = nil;
}
for(p = proc->mmufree; p != nil; p = n){
n = p->next;
if(decref(p) != 0)
panic("mmurelease: p->ref %ld", p->ref);
pagechainhead(p);
}
if(proc->mmufree != nil)
pagechaindone();
proc->mmufree = nil;
}
uintptr
paddr(void *v)
{
if((uintptr)v >= KZERO)
return (uintptr)v-KZERO;
if((uintptr)v >= VMAP)
return ((uintptr)v & (BY2PG-1)) | PPN(((ulong*)VMAPL2)[(uintptr)v-VMAP >> PGSHIFT]);
panic("paddr: va=%#p pc=%#p", v, getcallerpc(&v));
return 0;
}
void *
kaddr(uintptr u)
{
if(u < (uintptr)-KZERO)
return (void *)(u + KZERO);
if(u >= OCM_BASE)
return (void *)(ocm + (u - OCM_BASE));
panic("kaddr: pa=%#p pc=%#p", u, getcallerpc(&u));
return nil;
}
uintptr
cankaddr(uintptr u)
{
if(u < (uintptr)-KZERO)
return -KZERO - u;
if(u >= OCM_BASE)
return -u;
return 0;
}
KMap *
kmap(Page *page)
{
ulong *e, *v;
int i, s;
if(cankaddr(page->pa))
return (KMap*)KADDR(page->pa);
if(up == nil)
panic("kmap: up=0 pc=%#.8lux", getcallerpc(&page));
if(up->l1 == nil)
upallocl1();
if(up->nkmap < 0)
panic("kmap %lud %s: nkmap=%d", up->pid, up->text, up->nkmap);
up->nkmap++;
e = &up->l1->va[L1X(KMAP)];
if((*e & 3) == 0){
if(up->kmaptable != nil)
panic("kmaptable != nil");
up->kmaptable = newpage(0, 0, 0);
s = splhi();
v = tmpmap(up->kmaptable->pa);
memset(v, 0, BY2PG);
v[0] = page->pa | L2KERRW | L2VALID | L2CACHED | L2LOCAL;
v[NKMAP] = up->kmaptable->pa | L2KERRW | L2VALID | L2CACHED | L2LOCAL;
tmpunmap(v);
splx(s);
*e = up->kmaptable->pa | L1PT;
coherence();
return (KMap *) KMAP;
}
if(up->kmaptable == nil)
panic("kmaptable == nil");
e = (ulong *) (KMAP + NKMAP * BY2PG);
for(i = 0; i < NKMAP; i++)
if((e[i] & 3) == 0){
e[i] = page->pa | L2KERRW | L2VALID | L2CACHED | L2LOCAL;
coherence();
return (KMap *) (KMAP + i * BY2PG);
}
panic("out of kmap");
return nil;
}
void
kunmap(KMap *arg)
{
uintptr va;
ulong *e;
va = (uintptr) arg;
if(va >= KZERO)
return;
if(up->l1 == nil || (up->l1->va[L1X(KMAP)] & 3) == 0)
panic("kunmap: no kmaps");
if(va < KMAP || va >= KMAP + NKMAP * BY2PG)
panic("kunmap: bad address %#.8lux pc=%#p", va, getcallerpc(&arg));
e = (ulong *) (KMAP + NKMAP * BY2PG) + L2X(va);
if((*e & 3) == 0)
panic("kunmap: not mapped %#.8lux pc=%#p", va, getcallerpc(&arg));
up->nkmap--;
if(up->nkmap < 0)
panic("kunmap %lud %s: nkmap=%d", up->pid, up->text, up->nkmap);
*e = 0;
coherence();
flushpg((void *) va);
}
void *
tmpmap(ulong pa)
{
ulong *u, *ub, *ue;
if(islo())
panic("tmpmap: islow %#p", getcallerpc(&pa));
if(cankaddr(pa))
return KADDR(pa);
ub = (ulong *) TMAPL2(m->machno);
ue = ub + NL2;
for(u = ub; u < ue; u++)
if((*u & 3) == 0){
*u = pa | L2VALID | L2CACHED | L2KERRW;
assert(m->l1.va[L1X(TMAP)] != 0);
if(up != nil && up->l1 != nil)
up->l1->va[L1X(TMAP)] = m->l1.va[L1X(TMAP)];
coherence();
return (void *) ((u - ub) * BY2PG + TMAP);
}
panic("tmpmap: full (pa=%#.8lux)", pa);
return nil;
}
void
tmpunmap(void *v)
{
ulong *u;
if(v >= (void*) KZERO)
return;
if(v < (void*)TMAP || v >= (void*)(TMAP + TMAPSZ))
panic("tmpunmap: invalid address (va=%#.8lux)", (uintptr) v);
u = (ulong *) TMAPL2(m->machno) + L2X(v);
if((*u & 3) == 0)
panic("tmpunmap: double unmap (va=%#.8lux)", (uintptr) v);
*u = 0;
coherence();
flushpg(v);
}
void *
vmap(uintptr pa, ulong sz)
{
ulong np;
void *vr, *ve;
static ulong *vp = (ulong *) VMAPL2 + 1; /* first page is uart */
if((pa & BY2PG - 1) != 0)
panic("vmap: misaligned pa=%#.8lux", pa);
np = (sz + BY2PG - 1) >> PGSHIFT;
vr = (char*) VMAP + (vp - (ulong *)VMAPL2 << PGSHIFT);
ve = (ulong *) (VMAPL2 + VMAPL2SZ);
while(np-- != 0){
if(vp == ve)
panic("vmap: out of vmap space (pa=%#.8lux)", pa);
*vp++ = pa | L2VALID | L2DEVICE | L2NOEXEC | L2KERRW;
pa += BY2PG;
}
coherence();
return vr;
}
/* nasty things happen when there are cache entries for uncached memory
so must make sure memory is not mapped ANYWHERE cached */
void*
ucalloc(ulong len)
{
static uchar *free = nil;
static Lock l;
uchar *va;
if(len == 0)
panic("ualloc: len == 0");
ilock(&l);
if(free == nil)
free = ocm + -OCM_BASE - BY2PG; /* last page is cpu1 bootstrap */
len = PGROUND(len);
free -= len;
if(free < ocm)
panic("ualloc: out of uncached memory");
va = free;
iunlock(&l);
invaldse(va, va + len);
return (void*)va;
}