plan9fox/sys/src/9/xen/l.s
2020-12-06 21:28:11 +01:00

678 lines
18 KiB
ArmAsm

#include "xendefs.h"
#include "mem.h"
/*
* Some machine instructions not handled by 8[al].
*/
#define OP16 BYTE $0x66
#define DELAY BYTE $0xEB; BYTE $0x00 /* JMP .+2 */
#define CPUID BYTE $0x0F; BYTE $0xA2 /* CPUID, argument in AX */
#define WRMSR BYTE $0x0F; BYTE $0x30 /* WRMSR, argument in AX/DX (lo/hi) */
#define RDTSC BYTE $0x0F; BYTE $0x31 /* RDTSC, result in AX/DX (lo/hi) */
#define RDMSR BYTE $0x0F; BYTE $0x32 /* RDMSR, result in AX/DX (lo/hi) */
#define HLT BYTE $0xF4
#define BSFL BYTE $0xf; BYTE $0xbc; BYTE $0xc0 /* bsfl AX,AX */
/*
* Macros for calculating offsets within the page directory base
* and page tables. Note that these are assembler-specific hence
* the '<<2'.
*/
#define PDO(a) (((((a))>>22) & 0x03FF)<<2)
#define PTO(a) (((((a))>>12) & 0x03FF)<<2)
/*
* Entry point from XEN's "linux" builder.
* At this point RAM from 0..4M ("physical") is mapped at KZERO,
* the kernel is loaded, we're running on a boot stack and a
* boot page table. The start_info structure describes the
* situation, and is pointed to by SI.
* The stack is the highest used address.
*/
TEXT _start(SB), $0
MOVL SP, xentop(SB) /* set global for top of mapped region */
MOVL SI, xenstart(SB) /* set global to start_info_t */
MOVL $0, AX /* clear EFLAGS */
PUSHL AX
POPFL
CALL mmumapcpu0(SB) /* make mapping before using stack */
MOVL $(MACHADDR+MACHSIZE-4), SP /* set stack */
CALL main(SB)
/*
* Park a processor. Should never fall through a return from main to here,
* should only be called by application processors when shutting down.
*/
TEXT idle(SB), $0
_idle:
STI
HLT
JMP _idle
/*
* Read/write various system registers.
* CR4 and the 'model specific registers' should only be read/written
* after it has been determined the processor supports them
*/
TEXT _cycles(SB), $0 /* time stamp counter; cycles since power up */
RDTSC
MOVL vlong+0(FP), CX /* &vlong */
MOVL AX, 0(CX) /* lo */
MOVL DX, 4(CX) /* hi */
RET
TEXT rdmsr(SB), $0 /* model-specific register */
MOVL index+0(FP), CX
RDMSR
MOVL vlong+4(FP), CX /* &vlong */
MOVL AX, 0(CX) /* lo */
MOVL DX, 4(CX) /* hi */
RET
/* Xen doesn't let us do this */
TEXT wrmsr(SB), $0
MOVL $-1, AX
RET
/*
* Try to determine the CPU type which requires fiddling with EFLAGS.
* If the Id bit can be toggled then the CPUID instruction can be used
* to determine CPU identity and features. First have to check if it's
* a 386 (Ac bit can't be set). If it's not a 386 and the Id bit can't be
* toggled then it's an older 486 of some kind.
*
* cpuid(fun, regs[4]);
*/
TEXT cpuid(SB), $0
MOVL $0x240000, AX
PUSHL AX
POPFL /* set Id|Ac */
PUSHFL
POPL BX /* retrieve value */
MOVL $0, AX
PUSHL AX
POPFL /* clear Id|Ac, EFLAGS initialised */
PUSHFL
POPL AX /* retrieve value */
XORL BX, AX
TESTL $0x040000, AX /* Ac */
JZ _cpu386 /* can't set this bit on 386 */
TESTL $0x200000, AX /* Id */
JZ _cpu486 /* can't toggle this bit on some 486 */
MOVL fn+0(FP), AX
CPUID
JMP _cpuid
_cpu486:
MOVL $0x400, AX
JMP _maybezapax
_cpu386:
MOVL $0x300, AX
_maybezapax:
CMPL fn+0(FP), $1
JE _zaprest
XORL AX, AX
_zaprest:
XORL BX, BX
XORL CX, CX
XORL DX, DX
_cpuid:
MOVL regs+4(FP), BP
MOVL AX, 0(BP)
MOVL BX, 4(BP)
MOVL CX, 8(BP)
MOVL DX, 12(BP)
RET
/*
* Floating point.
* Note: the encodings for the FCLEX, FINIT, FSAVE, FSTCW, FSENV and FSTSW
* instructions do NOT have the WAIT prefix byte (i.e. they act like their
* FNxxx variations) so WAIT instructions must be explicitly placed in the
* code as necessary.
*/
#define FPOFF(l) ;\
MOVL CR0, AX ;\
ANDL $0xC, AX /* EM, TS */ ;\
CMPL AX, $0x8 ;\
JEQ l ;\
WAIT ;\
l: ;\
MOVL CR0, AX ;\
ANDL $~0x4, AX /* EM=0 */ ;\
ORL $0x28, AX /* NE=1, TS=1 */ ;\
MOVL AX, CR0
#define FPON ;\
MOVL CR0, AX ;\
ANDL $~0xC, AX /* EM=0, TS=0 */ ;\
MOVL AX, CR0
TEXT fpoff(SB), $0 /* disable */
FPOFF(l1)
RET
TEXT fpinit(SB), $0 /* enable and init */
FPON
FINIT
WAIT
/* setfcr(FPPDBL|FPRNR|FPINVAL|FPZDIV|FPOVFL) */
/* note that low 6 bits are masks, not enables, on this chip */
PUSHW $0x0232
FLDCW 0(SP)
POPW AX
WAIT
RET
TEXT fpx87save0(SB), $0 /* save state and disable */
MOVL p+0(FP), AX
FSAVE 0(AX) /* no WAIT */
FPOFF(l2)
RET
TEXT fpx87restore0(SB), $0 /* enable and restore state */
FPON
MOVL p+0(FP), AX
FRSTOR 0(AX)
WAIT
RET
TEXT fpclear(SB), $0 /* clear pending exceptions */
FPON
FCLEX /* no WAIT */
FPOFF(l3)
RET
TEXT fpssesave(SB), $0 /* save state and disable */
MOVL p+0(FP), AX
FXSAVE 0(AX) /* no WAIT */
FPOFF(l4)
RET
TEXT fpsserestore(SB), $0 /* enable and restore state */
FPON
MOVL p+0(FP), AX
FXRSTOR 0(AX)
WAIT
RET
TEXT ldmxcsr(SB), $0 /* Load MXCSR */
LDMXCSR mxcsr+0(FP)
RET
/*
* Test-And-Set
*/
TEXT tas(SB), $0
TEXT _tas(SB), $0
MOVL $0xDEADDEAD, AX
MOVL lock+0(FP), BX
XCHGL AX, (BX) /* lock->key */
RET
TEXT getstack(SB), $0
MOVL SP, AX
RET
TEXT mb386(SB), $0
POPL AX /* return PC */
PUSHFL
PUSHL CS
PUSHL AX
IRETL
TEXT mb586(SB), $0
XORL AX, AX
CPUID
RET
TEXT sfence(SB), $0
BYTE $0x0f
BYTE $0xae
BYTE $0xf8
RET
TEXT lfence(SB), $0
BYTE $0x0f
BYTE $0xae
BYTE $0xe8
RET
TEXT mfence(SB), $0
BYTE $0x0f
BYTE $0xae
BYTE $0xf0
RET
TEXT xchgw(SB), $0
MOVL v+4(FP), AX
MOVL p+0(FP), BX
XCHGW AX, (BX)
RET
TEXT xchgb(SB), $0
MOVL v+4(FP), AX
MOVL p+0(FP), BX
XCHGB AX, (BX)
RET
TEXT xchgl(SB), $0
MOVL v+4(FP), AX
MOVL p+0(FP), BX
XCHGL AX, (BX)
RET
/* Return the position of the first bit set. Undefined if zero. */
TEXT ffs(SB), $0
MOVL v+0(FP), AX
BSFL
RET
TEXT cmpswap486(SB), $0
MOVL addr+0(FP), BX
MOVL old+4(FP), AX
MOVL new+8(FP), CX
LOCK
BYTE $0x0F; BYTE $0xB1; BYTE $0x0B /* CMPXCHGL CX, (BX) */
JNZ didnt
MOVL $1, AX
RET
didnt:
XORL AX,AX
RET
TEXT mul64fract(SB), $0
MOVL r+0(FP), CX
XORL BX, BX /* BX = 0 */
MOVL a+8(FP), AX
MULL b+16(FP) /* a1*b1 */
MOVL AX, 4(CX) /* r2 = lo(a1*b1) */
MOVL a+8(FP), AX
MULL b+12(FP) /* a1*b0 */
MOVL AX, 0(CX) /* r1 = lo(a1*b0) */
ADDL DX, 4(CX) /* r2 += hi(a1*b0) */
MOVL a+4(FP), AX
MULL b+16(FP) /* a0*b1 */
ADDL AX, 0(CX) /* r1 += lo(a0*b1) */
ADCL DX, 4(CX) /* r2 += hi(a0*b1) + carry */
MOVL a+4(FP), AX
MULL b+12(FP) /* a0*b0 */
ADDL DX, 0(CX) /* r1 += hi(a0*b0) */
ADCL BX, 4(CX) /* r2 += carry */
RET
#define RDRANDAX BYTE $0x0f; BYTE $0xc7; BYTE $0xf0
TEXT rdrand32(SB), $-4
_rloop32:
RDRANDAX
JCC _rloop32
RET
TEXT rdrandbuf(SB), $0
MOVL buf+0(FP), DI
MOVL cnt+4(FP), CX
CLD
MOVL CX, DX
SHRL $2, CX
CMPL CX, $0
JE _rndleft
_rnddwords:
CALL rdrand32(SB)
STOSL
LOOP _rnddwords
_rndleft:
MOVL DX, CX
ANDL $3, CX
CMPL CX, $0
JE _rnddone
_rndbytes:
CALL rdrand32(SB)
STOSB
LOOP _rndbytes
_rnddone:
RET
/*
* label consists of a stack pointer and a PC
*/
TEXT gotolabel(SB), $0
MOVL label+0(FP), AX
MOVL 0(AX), SP /* restore sp */
MOVL 4(AX), AX /* put return pc on the stack */
MOVL AX, 0(SP)
MOVL $1, AX /* return 1 */
RET
TEXT setlabel(SB), $0
MOVL label+0(FP), AX
MOVL SP, 0(AX) /* store sp */
MOVL 0(SP), BX /* store return pc */
MOVL BX, 4(AX)
MOVL $0, AX /* return 0 */
RET
TEXT mwait(SB), $0
MOVL addr+0(FP), AX
MOVL (AX), CX
ORL CX, CX
JNZ _mwaitdone
XORL DX, DX
BYTE $0x0f; BYTE $0x01; BYTE $0xc8 /* MONITOR */
MOVL (AX), CX
ORL CX, CX
JNZ _mwaitdone
XORL AX, AX
BYTE $0x0f; BYTE $0x01; BYTE $0xc9 /* MWAIT */
_mwaitdone:
RET
/*
* Interrupt/exception handling.
* Each entry in the vector table calls either _strayintr or _strayintrx depending
* on whether an error code has been automatically pushed onto the stack
* (_strayintrx) or not, in which case a dummy entry must be pushed before retrieving
* the trap type from the vector table entry and placing it on the stack as part
* of the Ureg structure.
* Exceptions to this are the syscall vector and the page fault
* vector. Syscalls are dispatched seperately. Page faults
* have to take care of the extra cr2 parameter that xen places
* at the top of the stack.
* The size of each entry in the vector table (6 bytes) is known in trapinit().
*/
TEXT _strayintr(SB), $0
PUSHL AX /* save AX */
MOVL 4(SP), AX /* return PC from vectortable(SB) */
JMP intrcommon
TEXT _strayintrx(SB), $0
XCHGL AX, (SP) /* swap AX with vectortable CALL PC */
intrcommon:
PUSHL DS /* save DS */
PUSHL $(KDSEL)
POPL DS /* fix up DS */
MOVBLZX (AX), AX /* trap type -> AX */
XCHGL AX, 4(SP) /* exchange trap type with saved AX */
PUSHL ES /* save ES */
PUSHL $(KDSEL)
POPL ES /* fix up ES */
PUSHL FS /* save the rest of the Ureg struct */
PUSHL GS
PUSHAL
PUSHL SP /* Ureg* argument to trap */
CALL trap(SB)
TEXT forkret(SB), $0
POPL AX
POPAL
POPL GS
POPL FS
POPL ES
POPL DS
ADDL $8, SP /* pop error code and trap type */
IRETL
TEXT vectortable(SB), $0
CALL _strayintr(SB); BYTE $0x00 /* divide error */
CALL _strayintr(SB); BYTE $0x01 /* debug exception */
CALL _strayintr(SB); BYTE $0x02 /* NMI interrupt */
CALL _strayintr(SB); BYTE $0x03 /* breakpoint */
CALL _strayintr(SB); BYTE $0x04 /* overflow */
CALL _strayintr(SB); BYTE $0x05 /* bound */
CALL _strayintr(SB); BYTE $0x06 /* invalid opcode */
CALL _strayintr(SB); BYTE $0x07 /* no coprocessor available */
CALL _strayintrx(SB); BYTE $0x08 /* double fault */
CALL _strayintr(SB); BYTE $0x09 /* coprocessor segment overflow */
CALL _strayintrx(SB); BYTE $0x0A /* invalid TSS */
CALL _strayintrx(SB); BYTE $0x0B /* segment not available */
CALL _strayintrx(SB); BYTE $0x0C /* stack exception */
CALL _strayintrx(SB); BYTE $0x0D /* general protection error */
CALL _strayintrx(SB); BYTE $0x0E /* page fault */
CALL _strayintr(SB); BYTE $0x0F /* */
CALL _strayintr(SB); BYTE $0x10 /* coprocessor error */
CALL _strayintrx(SB); BYTE $0x11 /* alignment check */
CALL _strayintr(SB); BYTE $0x12 /* machine check */
CALL _strayintr(SB); BYTE $0x13
CALL _strayintr(SB); BYTE $0x14
CALL _strayintr(SB); BYTE $0x15
CALL _strayintr(SB); BYTE $0x16
CALL _strayintr(SB); BYTE $0x17
CALL _strayintr(SB); BYTE $0x18
CALL _strayintr(SB); BYTE $0x19
CALL _strayintr(SB); BYTE $0x1A
CALL _strayintr(SB); BYTE $0x1B
CALL _strayintr(SB); BYTE $0x1C
CALL _strayintr(SB); BYTE $0x1D
CALL _strayintr(SB); BYTE $0x1E
CALL _strayintr(SB); BYTE $0x1F
CALL _strayintr(SB); BYTE $0x20 /* VectorLAPIC */
CALL _strayintr(SB); BYTE $0x21
CALL _strayintr(SB); BYTE $0x22
CALL _strayintr(SB); BYTE $0x23
CALL _strayintr(SB); BYTE $0x24
CALL _strayintr(SB); BYTE $0x25
CALL _strayintr(SB); BYTE $0x26
CALL _strayintr(SB); BYTE $0x27
CALL _strayintr(SB); BYTE $0x28
CALL _strayintr(SB); BYTE $0x29
CALL _strayintr(SB); BYTE $0x2A
CALL _strayintr(SB); BYTE $0x2B
CALL _strayintr(SB); BYTE $0x2C
CALL _strayintr(SB); BYTE $0x2D
CALL _strayintr(SB); BYTE $0x2E
CALL _strayintr(SB); BYTE $0x2F
CALL _strayintr(SB); BYTE $0x30
CALL _strayintr(SB); BYTE $0x31
CALL _strayintr(SB); BYTE $0x32
CALL _strayintr(SB); BYTE $0x33
CALL _strayintr(SB); BYTE $0x34
CALL _strayintr(SB); BYTE $0x35
CALL _strayintr(SB); BYTE $0x36
CALL _strayintr(SB); BYTE $0x37
CALL _strayintr(SB); BYTE $0x38
CALL _strayintr(SB); BYTE $0x39
CALL _strayintr(SB); BYTE $0x3A
CALL _strayintr(SB); BYTE $0x3B
CALL _strayintr(SB); BYTE $0x3C
CALL _strayintr(SB); BYTE $0x3D
CALL _strayintr(SB); BYTE $0x3E
CALL _strayintr(SB); BYTE $0x3F
CALL _syscallintr(SB); BYTE $0x40 /* VectorSYSCALL */
CALL _strayintr(SB); BYTE $0x41
CALL _strayintr(SB); BYTE $0x42
CALL _strayintr(SB); BYTE $0x43
CALL _strayintr(SB); BYTE $0x44
CALL _strayintr(SB); BYTE $0x45
CALL _strayintr(SB); BYTE $0x46
CALL _strayintr(SB); BYTE $0x47
CALL _strayintr(SB); BYTE $0x48
CALL _strayintr(SB); BYTE $0x49
CALL _strayintr(SB); BYTE $0x4A
CALL _strayintr(SB); BYTE $0x4B
CALL _strayintr(SB); BYTE $0x4C
CALL _strayintr(SB); BYTE $0x4D
CALL _strayintr(SB); BYTE $0x4E
CALL _strayintr(SB); BYTE $0x4F
CALL _strayintr(SB); BYTE $0x50
CALL _strayintr(SB); BYTE $0x51
CALL _strayintr(SB); BYTE $0x52
CALL _strayintr(SB); BYTE $0x53
CALL _strayintr(SB); BYTE $0x54
CALL _strayintr(SB); BYTE $0x55
CALL _strayintr(SB); BYTE $0x56
CALL _strayintr(SB); BYTE $0x57
CALL _strayintr(SB); BYTE $0x58
CALL _strayintr(SB); BYTE $0x59
CALL _strayintr(SB); BYTE $0x5A
CALL _strayintr(SB); BYTE $0x5B
CALL _strayintr(SB); BYTE $0x5C
CALL _strayintr(SB); BYTE $0x5D
CALL _strayintr(SB); BYTE $0x5E
CALL _strayintr(SB); BYTE $0x5F
CALL _strayintr(SB); BYTE $0x60
CALL _strayintr(SB); BYTE $0x61
CALL _strayintr(SB); BYTE $0x62
CALL _strayintr(SB); BYTE $0x63
CALL _strayintr(SB); BYTE $0x64
CALL _strayintr(SB); BYTE $0x65
CALL _strayintr(SB); BYTE $0x66
CALL _strayintr(SB); BYTE $0x67
CALL _strayintr(SB); BYTE $0x68
CALL _strayintr(SB); BYTE $0x69
CALL _strayintr(SB); BYTE $0x6A
CALL _strayintr(SB); BYTE $0x6B
CALL _strayintr(SB); BYTE $0x6C
CALL _strayintr(SB); BYTE $0x6D
CALL _strayintr(SB); BYTE $0x6E
CALL _strayintr(SB); BYTE $0x6F
CALL _strayintr(SB); BYTE $0x70
CALL _strayintr(SB); BYTE $0x71
CALL _strayintr(SB); BYTE $0x72
CALL _strayintr(SB); BYTE $0x73
CALL _strayintr(SB); BYTE $0x74
CALL _strayintr(SB); BYTE $0x75
CALL _strayintr(SB); BYTE $0x76
CALL _strayintr(SB); BYTE $0x77
CALL _strayintr(SB); BYTE $0x78
CALL _strayintr(SB); BYTE $0x79
CALL _strayintr(SB); BYTE $0x7A
CALL _strayintr(SB); BYTE $0x7B
CALL _strayintr(SB); BYTE $0x7C
CALL _strayintr(SB); BYTE $0x7D
CALL _strayintr(SB); BYTE $0x7E
CALL _strayintr(SB); BYTE $0x7F
CALL _strayintr(SB); BYTE $0x80 /* Vector[A]PIC */
CALL _strayintr(SB); BYTE $0x81
CALL _strayintr(SB); BYTE $0x82
CALL _strayintr(SB); BYTE $0x83
CALL _strayintr(SB); BYTE $0x84
CALL _strayintr(SB); BYTE $0x85
CALL _strayintr(SB); BYTE $0x86
CALL _strayintr(SB); BYTE $0x87
CALL _strayintr(SB); BYTE $0x88
CALL _strayintr(SB); BYTE $0x89
CALL _strayintr(SB); BYTE $0x8A
CALL _strayintr(SB); BYTE $0x8B
CALL _strayintr(SB); BYTE $0x8C
CALL _strayintr(SB); BYTE $0x8D
CALL _strayintr(SB); BYTE $0x8E
CALL _strayintr(SB); BYTE $0x8F
CALL _strayintr(SB); BYTE $0x90
CALL _strayintr(SB); BYTE $0x91
CALL _strayintr(SB); BYTE $0x92
CALL _strayintr(SB); BYTE $0x93
CALL _strayintr(SB); BYTE $0x94
CALL _strayintr(SB); BYTE $0x95
CALL _strayintr(SB); BYTE $0x96
CALL _strayintr(SB); BYTE $0x97
CALL _strayintr(SB); BYTE $0x98
CALL _strayintr(SB); BYTE $0x99
CALL _strayintr(SB); BYTE $0x9A
CALL _strayintr(SB); BYTE $0x9B
CALL _strayintr(SB); BYTE $0x9C
CALL _strayintr(SB); BYTE $0x9D
CALL _strayintr(SB); BYTE $0x9E
CALL _strayintr(SB); BYTE $0x9F
CALL _strayintr(SB); BYTE $0xA0
CALL _strayintr(SB); BYTE $0xA1
CALL _strayintr(SB); BYTE $0xA2
CALL _strayintr(SB); BYTE $0xA3
CALL _strayintr(SB); BYTE $0xA4
CALL _strayintr(SB); BYTE $0xA5
CALL _strayintr(SB); BYTE $0xA6
CALL _strayintr(SB); BYTE $0xA7
CALL _strayintr(SB); BYTE $0xA8
CALL _strayintr(SB); BYTE $0xA9
CALL _strayintr(SB); BYTE $0xAA
CALL _strayintr(SB); BYTE $0xAB
CALL _strayintr(SB); BYTE $0xAC
CALL _strayintr(SB); BYTE $0xAD
CALL _strayintr(SB); BYTE $0xAE
CALL _strayintr(SB); BYTE $0xAF
CALL _strayintr(SB); BYTE $0xB0
CALL _strayintr(SB); BYTE $0xB1
CALL _strayintr(SB); BYTE $0xB2
CALL _strayintr(SB); BYTE $0xB3
CALL _strayintr(SB); BYTE $0xB4
CALL _strayintr(SB); BYTE $0xB5
CALL _strayintr(SB); BYTE $0xB6
CALL _strayintr(SB); BYTE $0xB7
CALL _strayintr(SB); BYTE $0xB8
CALL _strayintr(SB); BYTE $0xB9
CALL _strayintr(SB); BYTE $0xBA
CALL _strayintr(SB); BYTE $0xBB
CALL _strayintr(SB); BYTE $0xBC
CALL _strayintr(SB); BYTE $0xBD
CALL _strayintr(SB); BYTE $0xBE
CALL _strayintr(SB); BYTE $0xBF
CALL _strayintr(SB); BYTE $0xC0
CALL _strayintr(SB); BYTE $0xC1
CALL _strayintr(SB); BYTE $0xC2
CALL _strayintr(SB); BYTE $0xC3
CALL _strayintr(SB); BYTE $0xC4
CALL _strayintr(SB); BYTE $0xC5
CALL _strayintr(SB); BYTE $0xC6
CALL _strayintr(SB); BYTE $0xC7
CALL _strayintr(SB); BYTE $0xC8
CALL _strayintr(SB); BYTE $0xC9
CALL _strayintr(SB); BYTE $0xCA
CALL _strayintr(SB); BYTE $0xCB
CALL _strayintr(SB); BYTE $0xCC
CALL _strayintr(SB); BYTE $0xCD
CALL _strayintr(SB); BYTE $0xCE
CALL _strayintr(SB); BYTE $0xCF
CALL _strayintr(SB); BYTE $0xD0
CALL _strayintr(SB); BYTE $0xD1
CALL _strayintr(SB); BYTE $0xD2
CALL _strayintr(SB); BYTE $0xD3
CALL _strayintr(SB); BYTE $0xD4
CALL _strayintr(SB); BYTE $0xD5
CALL _strayintr(SB); BYTE $0xD6
CALL _strayintr(SB); BYTE $0xD7
CALL _strayintr(SB); BYTE $0xD8
CALL _strayintr(SB); BYTE $0xD9
CALL _strayintr(SB); BYTE $0xDA
CALL _strayintr(SB); BYTE $0xDB
CALL _strayintr(SB); BYTE $0xDC
CALL _strayintr(SB); BYTE $0xDD
CALL _strayintr(SB); BYTE $0xDE
CALL _strayintr(SB); BYTE $0xDF
CALL _strayintr(SB); BYTE $0xE0
CALL _strayintr(SB); BYTE $0xE1
CALL _strayintr(SB); BYTE $0xE2
CALL _strayintr(SB); BYTE $0xE3
CALL _strayintr(SB); BYTE $0xE4
CALL _strayintr(SB); BYTE $0xE5
CALL _strayintr(SB); BYTE $0xE6
CALL _strayintr(SB); BYTE $0xE7
CALL _strayintr(SB); BYTE $0xE8
CALL _strayintr(SB); BYTE $0xE9
CALL _strayintr(SB); BYTE $0xEA
CALL _strayintr(SB); BYTE $0xEB
CALL _strayintr(SB); BYTE $0xEC
CALL _strayintr(SB); BYTE $0xED
CALL _strayintr(SB); BYTE $0xEE
CALL _strayintr(SB); BYTE $0xEF
CALL _strayintr(SB); BYTE $0xF0
CALL _strayintr(SB); BYTE $0xF1
CALL _strayintr(SB); BYTE $0xF2
CALL _strayintr(SB); BYTE $0xF3
CALL _strayintr(SB); BYTE $0xF4
CALL _strayintr(SB); BYTE $0xF5
CALL _strayintr(SB); BYTE $0xF6
CALL _strayintr(SB); BYTE $0xF7
CALL _strayintr(SB); BYTE $0xF8
CALL _strayintr(SB); BYTE $0xF9
CALL _strayintr(SB); BYTE $0xFA
CALL _strayintr(SB); BYTE $0xFB
CALL _strayintr(SB); BYTE $0xFC
CALL _strayintr(SB); BYTE $0xFD
CALL _strayintr(SB); BYTE $0xFE
CALL _strayintr(SB); BYTE $0xFF