plan9fox/sys/src/9/port/pci.c
2022-07-03 11:36:50 +00:00

1222 lines
23 KiB
C

#include "u.h"
#include "../port/lib.h"
#include "mem.h"
#include "dat.h"
#include "fns.h"
#include "io.h"
#include "../port/pci.h"
typedef struct Pcisiz Pcisiz;
struct Pcisiz
{
Pcidev* dev;
vlong siz;
int bar;
int typ;
};
int pcimaxdno;
Pcidev *pciparentdev;
static Lock pcicfglock;
static Pcidev *pcilist, **pcitail;
static char* bustypes[] = {
"CBUSI",
"CBUSII",
"EISA",
"FUTURE",
"INTERN",
"ISA",
"MBI",
"MBII",
"MCA",
"MPI",
"MPSA",
"NUBUS",
"PCI",
"PCMCIA",
"TC",
"VL",
"VME",
"XPRESS",
};
int
tbdffmt(Fmt* fmt)
{
int type, tbdf;
switch(fmt->r){
default:
return fmtstrcpy(fmt, "(tbdffmt)");
case 'T':
tbdf = va_arg(fmt->args, int);
if(tbdf == BUSUNKNOWN) {
return fmtstrcpy(fmt, "unknown");
} else {
type = BUSTYPE(tbdf);
if(type < nelem(bustypes)) {
return fmtprint(fmt, "%s.%d.%d.%d",
bustypes[type], BUSBNO(tbdf), BUSDNO(tbdf), BUSFNO(tbdf));
} else {
return fmtprint(fmt, "%d.%d.%d.%d",
type, BUSBNO(tbdf), BUSDNO(tbdf), BUSFNO(tbdf));
}
}
}
}
static Pcidev*
pcidevalloc(void)
{
Pcidev *p;
p = xalloc(sizeof(*p));
if(p == nil)
panic("pci: no memory for Pcidev");
return p;
}
void
pcidevfree(Pcidev *p)
{
Pcidev **l;
if(p == nil)
return;
while(p->bridge != nil)
pcidevfree(p->bridge);
if(p->parent != nil){
for(l = &p->parent->bridge; *l != nil; l = &(*l)->link) {
if(*l == p) {
*l = p->link;
break;
}
}
}
for(l = &pcilist; *l != nil; l = &(*l)->list) {
if(*l == p) {
if((*l = p->list) == nil)
pcitail = l;
break;
}
}
/* leaked */
}
int
pcicfgr8(Pcidev* p, int rno)
{
int data;
ilock(&pcicfglock);
pciparentdev = p->parent;
data = pcicfgrw8(p->tbdf, rno, 0, 1);
iunlock(&pcicfglock);
return data;
}
void
pcicfgw8(Pcidev* p, int rno, int data)
{
ilock(&pcicfglock);
pciparentdev = p->parent;
pcicfgrw8(p->tbdf, rno, data, 0);
iunlock(&pcicfglock);
}
int
pcicfgr16(Pcidev* p, int rno)
{
int data;
ilock(&pcicfglock);
pciparentdev = p->parent;
data = pcicfgrw16(p->tbdf, rno, 0, 1);
iunlock(&pcicfglock);
return data;
}
void
pcicfgw16(Pcidev* p, int rno, int data)
{
ilock(&pcicfglock);
pciparentdev = p->parent;
pcicfgrw16(p->tbdf, rno, data, 0);
iunlock(&pcicfglock);
}
int
pcicfgr32(Pcidev* p, int rno)
{
int data;
ilock(&pcicfglock);
pciparentdev = p->parent;
data = pcicfgrw32(p->tbdf, rno, 0, 1);
iunlock(&pcicfglock);
return data;
}
void
pcicfgw32(Pcidev* p, int rno, int data)
{
ilock(&pcicfglock);
pciparentdev = p->parent;
pcicfgrw32(p->tbdf, rno, data, 0);
iunlock(&pcicfglock);
}
vlong
pcibarsize(Pcidev *p, int rno)
{
vlong size;
int v;
ilock(&pcicfglock);
pciparentdev = p->parent;
v = pcicfgrw32(p->tbdf, rno, 0, 1);
pcicfgrw32(p->tbdf, rno, -1, 0);
size = (int)pcicfgrw32(p->tbdf, rno, 0, 1);
pcicfgrw32(p->tbdf, rno, v, 0);
if(rno == PciEBAR0 || rno == PciEBAR1)
size &= ~0x7FFLL;
else if(v & 1)
size = (short)size & ~0x3LL;
else {
size &= ~0xFLL;
if(size >= 0 && (v&7)==4 && rno < PciBAR0+4*(nelem(p->mem)-1)){
rno += 4;
v = pcicfgrw32(p->tbdf, rno, 0, 1);
pcicfgrw32(p->tbdf, rno, -1, 0);
size |= (vlong)pcicfgrw32(p->tbdf, rno, 0, 1)<<32;
pcicfgrw32(p->tbdf, rno, v, 0);
}
}
size = -size;
iunlock(&pcicfglock);
if(size < 0 || (size & size-1) != 0){
print("pcibarsize: %T invalid bar rno %#x size %#llux mask %#llux\n",
p->tbdf, rno, size, -size);
return 0;
}
return size;
}
void
pcisetbar(Pcidev *p, int rno, uvlong bar)
{
ilock(&pcicfglock);
pciparentdev = p->parent;
pcicfgrw32(p->tbdf, rno, bar, 0);
if((bar&7) == 4 && rno >= PciBAR0 && rno < PciBAR0+4*(nelem(p->mem)-1))
pcicfgrw32(p->tbdf, rno+4, bar>>32, 0);
iunlock(&pcicfglock);
}
void
pcisetwin(Pcidev *p, uvlong base, uvlong limit)
{
ilock(&pcicfglock);
pciparentdev = p->parent;
if(base & 1){
pcicfgrw16(p->tbdf, PciIBR, (limit & 0xF000)|((base & 0xF000)>>8), 0);
pcicfgrw32(p->tbdf, PciIUBR, (limit & 0xFFFF0000)|(base>>16), 0);
} else if(base & 8){
pcicfgrw32(p->tbdf, PciPMBR, (limit & 0xFFF00000)|((base & 0xFFF00000)>>16), 0);
pcicfgrw32(p->tbdf, PciPUBR, base >> 32, 0);
pcicfgrw32(p->tbdf, PciPULR, limit >> 32, 0);
} else {
pcicfgrw32(p->tbdf, PciMBR, (limit & 0xFFF00000)|((base & 0xFFF00000)>>16), 0);
}
iunlock(&pcicfglock);
}
static int
pcisizcmp(void *a, void *b)
{
Pcisiz *aa = a, *bb = b;
if(aa->siz > bb->siz)
return 1;
if(aa->siz < bb->siz)
return -1;
return 0;
}
static vlong
pcimask(vlong v)
{
uvlong m;
for(m = 1ULL<<63; m != 0; m >>= 1) {
if(m & v)
break;
}
m--;
if(v & m){
v |= m;
v++;
}
return v;
}
void
pcibusmap(Pcidev *root, uvlong *pmema, ulong *pioa, int wrreg)
{
Pcidev *p;
int ntb, i, rno;
uvlong mema, smema;
ulong ioa, sioa, v;
vlong hole, size;
Pcisiz *table, *tptr, *mtb, *itb;
ioa = *pioa;
mema = *pmema;
ntb = 0;
for(p = root; p != nil; p = p->link)
ntb++;
ntb *= (PciCIS-PciBAR0)/4;
table = malloc((2*ntb+1)*sizeof(Pcisiz));
if(table == nil)
panic("pcibusmap: can't allocate memory");
itb = table;
mtb = table+ntb;
/*
* Build a table of sizes
*/
for(p = root; p != nil; p = p->link) {
if(p->ccrb == 0x06) {
/* carbus bridge? */
if(p->ccru == 0x07){
if(pcicfgr32(p, PciBAR0) & 1)
continue;
size = pcibarsize(p, PciBAR0);
if(size == 0)
continue;
mtb->dev = p;
mtb->bar = 0;
mtb->siz = size;
mtb->typ = 0;
mtb++;
continue;
}
/* pci bridge? */
if(p->ccru != 0x04 || p->bridge == nil)
continue;
sioa = ioa;
smema = mema;
pcibusmap(p->bridge, &smema, &sioa, 0);
hole = pcimask(sioa-ioa);
if(hole < (1<<12))
hole = 1<<12;
itb->dev = p;
itb->bar = -1;
itb->siz = hole;
itb->typ = 0;
itb++;
hole = pcimask(smema-mema);
if(hole < (1<<20))
hole = 1<<20;
mtb->dev = p;
mtb->bar = -1;
mtb->siz = hole;
mtb->typ = 0;
mtb++;
size = pcibarsize(p, PciEBAR1);
if(size != 0){
mtb->dev = p;
mtb->bar = -3;
mtb->siz = size;
mtb->typ = 0;
mtb++;
}
continue;
}
size = pcibarsize(p, PciEBAR0);
if(size != 0){
mtb->dev = p;
mtb->bar = -2;
mtb->siz = size;
mtb->typ = 0;
mtb++;
}
for(i = 0; i < nelem(p->mem); i++) {
rno = PciBAR0 + i*4;
v = pcicfgr32(p, rno);
size = pcibarsize(p, rno);
if(size == 0)
continue;
if(v & 1) {
itb->dev = p;
itb->bar = i;
itb->siz = size;
itb->typ = 1;
itb++;
} else {
mtb->dev = p;
mtb->bar = i;
mtb->siz = size;
mtb->typ = v & 7;
if(mtb->typ == 4)
i++;
mtb++;
}
}
}
/*
* Sort both tables IO smallest first, Memory largest
*/
qsort(table, itb-table, sizeof(Pcisiz), pcisizcmp);
tptr = table+ntb;
qsort(tptr, mtb-tptr, sizeof(Pcisiz), pcisizcmp);
/*
* Allocate IO address space on this bus
*/
for(tptr = table; tptr < itb; tptr++) {
hole = tptr->siz;
if(tptr->bar == -1)
hole = 1<<12;
ioa = (ioa+hole-1) & ~(hole-1);
if(wrreg){
p = tptr->dev;
if(tptr->bar == -1) {
p->ioa.bar = ioa;
p->ioa.size = tptr->siz;
} else {
p->mem[tptr->bar].size = tptr->siz;
p->mem[tptr->bar].bar = ioa|1;
pcisetbar(p, PciBAR0+tptr->bar*4, p->mem[tptr->bar].bar);
}
}
ioa += tptr->siz;
}
/*
* Allocate Memory address space on this bus
*/
for(tptr = table+ntb; tptr < mtb; tptr++) {
hole = tptr->siz;
if(tptr->bar == -1)
hole = 1<<20;
mema = (mema+hole-1) & ~((uvlong)hole-1);
if(wrreg){
p = tptr->dev;
if(tptr->bar == -1) {
p->mema.bar = mema;
p->mema.size = tptr->siz;
} else if(tptr->bar == -2) {
p->rom.bar = mema|1;
p->rom.size = tptr->siz;
pcisetbar(p, PciEBAR0, p->rom.bar);
} else if(tptr->bar == -3) {
p->rom.bar = mema|1;
p->rom.size = tptr->siz;
pcisetbar(p, PciEBAR1, p->rom.bar);
} else {
p->mem[tptr->bar].size = tptr->siz;
p->mem[tptr->bar].bar = mema|tptr->typ;
pcisetbar(p, PciBAR0+tptr->bar*4, p->mem[tptr->bar].bar);
}
}
mema += tptr->siz;
}
*pmema = mema;
*pioa = ioa;
free(table);
if(wrreg == 0)
return;
/*
* Finally set all the bridge addresses & registers
*/
for(p = root; p != nil; p = p->link) {
if(p->bridge == nil) {
pcienable(p);
continue;
}
/* Set I/O and Mem windows */
pcisetwin(p, p->ioa.bar|1, p->ioa.bar+p->ioa.size-1);
pcisetwin(p, p->mema.bar|0, p->mema.bar+p->mema.size-1);
/* Disable prefetch */
pcisetwin(p, 0xFFF00000|8, 0);
/* Enable the bridge */
pcienable(p);
sioa = p->ioa.bar;
smema = p->mema.bar;
pcibusmap(p->bridge, &smema, &sioa, 1);
}
}
static int
pcivalidwin(Pcidev *p, uvlong base, uvlong limit)
{
Pcidev *bridge = p->parent;
char *typ;
if(base & 1){
typ = "io";
base &= ~3;
if(base > limit)
return 0;
if(bridge == nil)
return 1;
if(base >= bridge->ioa.bar && limit < (bridge->ioa.bar + bridge->ioa.size))
return 1;
} else {
typ = "mem";
base &= ~0xFULL;
if(base > limit)
return 0;
if(bridge == nil)
return 1;
if(base >= bridge->mema.bar && limit < (bridge->mema.bar + bridge->mema.size))
return 1;
if(base >= bridge->prefa.bar && limit < (bridge->prefa.bar + bridge->prefa.size))
return 1;
}
print("%T: %.2uX invalid %s-window: %.8llux-%.8llux\n", p->tbdf, p->ccrb, typ, base, limit);
return 0;
}
static int
pcivalidbar(Pcidev *p, uvlong bar, vlong size)
{
if(bar & 1){
bar &= ~3;
if(bar == 0 || size < 4 || (bar & (size-1)) != 0)
return 0;
return pcivalidwin(p, bar|1, bar+size-1);
} else {
bar &= ~0xFULL;
if(bar == 0 || size < 16 || (bar & (size-1)) != 0)
return 0;
return pcivalidwin(p, bar|0, bar+size-1);
}
}
int
pciscan(int bno, Pcidev** list, Pcidev *parent)
{
Pcidev *p, *head, **tail;
int dno, fno, i, hdt, l, maxfno, maxubn, rno, sbn, tbdf, ubn;
maxubn = bno;
head = nil;
tail = nil;
for(dno = 0; dno <= pcimaxdno; dno++){
maxfno = 0;
for(fno = 0; fno <= maxfno; fno++){
/*
* For this possible device, form the
* bus+device+function triplet needed to address it
* and try to read the vendor and device ID.
* If successful, allocate a device struct and
* start to fill it in with some useful information
* from the device's configuration space.
*/
tbdf = MKBUS(BusPCI, bno, dno, fno);
lock(&pcicfglock);
pciparentdev = parent;
l = pcicfgrw32(tbdf, PciVID, 0, 1);
unlock(&pcicfglock);
if(l == 0xFFFFFFFF || l == 0)
continue;
p = pcidevalloc();
p->parent = parent;
p->tbdf = tbdf;
p->vid = l;
p->did = l>>16;
p->pcr = pcicfgr16(p, PciPCR);
p->rid = pcicfgr8(p, PciRID);
p->ccrp = pcicfgr8(p, PciCCRp);
p->ccru = pcicfgr8(p, PciCCRu);
p->ccrb = pcicfgr8(p, PciCCRb);
p->cls = pcicfgr8(p, PciCLS);
p->ltr = pcicfgr8(p, PciLTR);
p->intl = pcicfgr8(p, PciINTL);
/*
* If the device is a multi-function device adjust the
* loop count so all possible functions are checked.
*/
hdt = pcicfgr8(p, PciHDT);
if(hdt & 0x80)
maxfno = MaxFNO;
/*
* If appropriate, read the base address registers
* and work out the sizes.
*/
switch(p->ccrb) {
case 0x00: /* prehistoric */
case 0x01: /* mass storage controller */
case 0x02: /* network controller */
case 0x03: /* display controller */
case 0x04: /* multimedia device */
case 0x07: /* simple comm. controllers */
case 0x08: /* base system peripherals */
case 0x09: /* input devices */
case 0x0A: /* docking stations */
case 0x0B: /* processors */
case 0x0C: /* serial bus controllers */
case 0x0D: /* wireless controllers */
case 0x0E: /* intelligent I/O controllers */
case 0x0F: /* sattelite communication controllers */
case 0x10: /* encryption/decryption controllers */
case 0x11: /* signal processing controllers */
if((hdt & 0x7F) != 0)
break;
rno = PciBAR0;
for(i = 0; i < nelem(p->mem); i++) {
p->mem[i].bar = (ulong)pcicfgr32(p, rno);
p->mem[i].size = pcibarsize(p, rno);
if((p->mem[i].bar & 7) == 4 && i < nelem(p->mem)-1){
rno += 4;
p->mem[i].bar |= (uvlong)pcicfgr32(p, rno) << 32;
i++;
p->mem[i].bar = 0;
p->mem[i].size = 0;
}
rno += 4;
}
p->rom.bar = (ulong)pcicfgr32(p, PciEBAR0);
p->rom.size = pcibarsize(p, PciEBAR0);
break;
case 0x06: /* bridge device */
/* cardbus bridge? */
if(p->ccru == 0x07){
p->mem[0].bar = (ulong)pcicfgr32(p, PciBAR0);
p->mem[0].size = pcibarsize(p, PciBAR0);
break;
}
/* pci bridge? */
if(p->ccru != 0x04)
break;
p->rom.bar = (ulong)pcicfgr32(p, PciEBAR1);
p->rom.size = pcibarsize(p, PciEBAR1);
break;
case 0x05: /* memory controller */
default:
break;
}
if(head != nil)
*tail = p;
else
head = p;
tail = &p->link;
if(pcilist != nil)
*pcitail = p;
else
pcilist = p;
pcitail = &p->list;
}
}
*list = head;
for(p = head; p != nil; p = p->link){
/*
* Find PCI-PCI bridges and recursively descend the tree.
*/
switch(p->ccrb) {
case 0x06:
if(p->ccru == 0x04)
break;
default:
/* check and clear invalid membars for non bridges */
for(i = 0; i < nelem(p->mem); i++) {
if(p->mem[i].size == 0)
continue;
if(!pcivalidbar(p, p->mem[i].bar, p->mem[i].size)){
if(p->mem[i].bar & 1)
p->mem[i].bar &= 3;
else
p->mem[i].bar &= 0xF;
pcisetbar(p, PciBAR0 + i*4, p->mem[i].bar);
}
}
if(p->rom.size) {
if((p->rom.bar & 1) == 0
|| !pcivalidbar(p, p->rom.bar & ~0x7FFULL, p->rom.size)){
p->rom.bar = 0;
pcisetbar(p, PciEBAR0, p->rom.bar);
}
}
continue;
}
if(p->rom.size) {
if((p->rom.bar & 1) == 0
|| !pcivalidbar(p, p->rom.bar & ~0x7FFULL, p->rom.size)){
p->rom.bar = 0;
pcisetbar(p, PciEBAR1, p->rom.bar);
}
}
/*
* If the secondary or subordinate bus number is not
* initialised try to do what the PCI BIOS should have
* done and fill in the numbers as the tree is descended.
* On the way down the subordinate bus number is set to
* the maximum as it's not known how many buses are behind
* this one; the final value is set on the way back up.
*/
sbn = pcicfgr8(p, PciSBN);
ubn = pcicfgr8(p, PciUBN);
if(sbn == 0 || ubn == 0) {
sbn = maxubn+1;
/*
* Make sure memory, I/O and master enables are
* off, set the primary, secondary and subordinate
* bus numbers and clear the secondary status before
* attempting to scan the secondary bus.
*
* Initialisation of the bridge should be done here.
*/
p->pcr = 0;
pcicfgw32(p, PciPCR, 0xFFFF0000);
l = (MaxUBN<<16)|(sbn<<8)|bno;
pcicfgw32(p, PciPBN, l);
pcicfgw16(p, PciSPSR, 0xFFFF);
p->ioa.bar = 0;
p->ioa.size = 0;
p->mema.bar = 0;
p->mema.size = 0;
p->prefa.bar = 0;
p->prefa.size = 0;
pcisetwin(p, 0xFFFFF000|1, 0);
pcisetwin(p, 0xFFF00000|0, 0);
pcisetwin(p, 0xFFF00000|8, 0);
maxubn = pciscan(sbn, &p->bridge, p);
l = (maxubn<<16)|(sbn<<8)|bno;
pcicfgw32(p, PciPBN, l);
}
else {
uvlong base, limit;
ulong v;
v = pcicfgr16(p, PciIBR);
limit = (v & 0xF000) | 0x0FFF;
base = (v & 0x00F0) << 8;
if((v & 0x0F) == 0x01){
v = pcicfgr32(p, PciIUBR);
limit |= (v & 0xFFFF0000);
base |= (v & 0x0000FFFF) << 16;
}
if(pcivalidwin(p, base|1, limit)){
p->ioa.bar = base;
p->ioa.size = (limit - base)+1;
} else {
pcisetwin(p, 0xFFFFF000|1, 0);
p->ioa.bar = 0;
p->ioa.size = 0;
}
v = pcicfgr32(p, PciMBR);
limit = (v & 0xFFF00000) | 0x000FFFFF;
base = (v & 0x0000FFF0) << 16;
if(pcivalidwin(p, base|0, limit)){
p->mema.bar = base;
p->mema.size = (limit - base)+1;
} else {
pcisetwin(p, 0xFFF00000|0, 0);
p->mema.bar = 0;
p->mema.size = 0;
}
v = pcicfgr32(p, PciPMBR);
limit = (v & 0xFFF00000) | 0x000FFFFF;
limit |= (uvlong)pcicfgr32(p, PciPULR) << 32;
base = (v & 0x0000FFF0) << 16;
base |= (uvlong)pcicfgr32(p, PciPUBR) << 32;
if(pcivalidwin(p, base|8, limit)){
p->prefa.bar = base;
p->prefa.size = (limit - base)+1;
} else {
pcisetwin(p, 0xFFF00000|8, 0);
p->prefa.bar = 0;
p->prefa.size = 0;
}
if(ubn > maxubn)
maxubn = ubn;
pciscan(sbn, &p->bridge, p);
}
}
return maxubn;
}
void
pcibussize(Pcidev *root, uvlong *msize, ulong *iosize)
{
*msize = 0;
*iosize = 0;
pcibusmap(root, msize, iosize, 0);
}
Pcidev*
pcimatch(Pcidev* prev, int vid, int did)
{
if(prev == nil)
prev = pcilist;
else
prev = prev->list;
while(prev != nil){
if((vid == 0 || prev->vid == vid)
&& (did == 0 || prev->did == did))
break;
prev = prev->list;
}
return prev;
}
Pcidev*
pcimatchtbdf(int tbdf)
{
Pcidev *pcidev;
for(pcidev = pcilist; pcidev != nil; pcidev = pcidev->list) {
if(pcidev->tbdf == tbdf)
break;
}
return pcidev;
}
uchar
pciipin(Pcidev *pci, uchar pin)
{
if (pci == nil)
pci = pcilist;
while (pci != nil) {
uchar intl;
if (pcicfgr8(pci, PciINTP) == pin && pci->intl != 0 && pci->intl != 0xff)
return pci->intl;
if (pci->bridge && (intl = pciipin(pci->bridge, pin)) != 0)
return intl;
pci = pci->list;
}
return 0;
}
static void
pcilhinv(Pcidev* p)
{
int i;
Pcidev *t;
for(t = p; t != nil; t = t->link) {
print("%d %2d/%d %.2ux %.2ux %.2ux %.4ux %.4ux %3d ",
BUSBNO(t->tbdf), BUSDNO(t->tbdf), BUSFNO(t->tbdf),
t->ccrb, t->ccru, t->ccrp, t->vid, t->did, t->intl);
for(i = 0; i < nelem(p->mem); i++) {
if(t->mem[i].size == 0)
continue;
print("%d:%.8llux %lld ", i, t->mem[i].bar, t->mem[i].size);
}
if(t->rom.bar || t->rom.size)
print("rom:%.8llux %lld ", t->rom.bar, t->rom.size);
if(t->ioa.bar || t->ioa.size)
print("ioa:%.8llux-%.8llux %lld ", t->ioa.bar, t->ioa.bar+t->ioa.size, t->ioa.size);
if(t->mema.bar || t->mema.size)
print("mema:%.8llux-%.8llux %lld ", t->mema.bar, t->mema.bar+t->mema.size, t->mema.size);
if(t->prefa.bar || t->prefa.size)
print("prefa:%.8llux-%.8llux %lld ", t->prefa.bar, t->prefa.bar+t->prefa.size, t->prefa.size);
if(t->bridge)
print("->%d", BUSBNO(t->bridge->tbdf));
print("\n");
}
while(p != nil) {
if(p->bridge != nil)
pcilhinv(p->bridge);
p = p->link;
}
}
void
pcihinv(Pcidev* p)
{
print("bus dev type vid did intl memory\n");
pcilhinv(p);
}
void
pcireset(void)
{
Pcidev *p;
for(p = pcilist; p != nil; p = p->list) {
/* don't mess with the bridges */
if(p->ccrb == 0x06)
continue;
pcidisable(p);
}
}
void
pcisetioe(Pcidev* p)
{
p->pcr |= IOen;
pcicfgw16(p, PciPCR, p->pcr);
}
void
pciclrioe(Pcidev* p)
{
p->pcr &= ~IOen;
pcicfgw16(p, PciPCR, p->pcr);
}
void
pcisetbme(Pcidev* p)
{
p->pcr |= MASen;
pcicfgw16(p, PciPCR, p->pcr);
}
void
pciclrbme(Pcidev* p)
{
p->pcr &= ~MASen;
pcicfgw16(p, PciPCR, p->pcr);
}
void
pcisetmwi(Pcidev* p)
{
p->pcr |= MemWrInv;
pcicfgw16(p, PciPCR, p->pcr);
}
void
pciclrmwi(Pcidev* p)
{
p->pcr &= ~MemWrInv;
pcicfgw16(p, PciPCR, p->pcr);
}
int
pcienumcaps(Pcidev *p, int (*fmatch)(Pcidev*, int, int, int), int arg)
{
int i, r, cap, off;
/* status register bit 4 has capabilities */
if((pcicfgr16(p, PciPSR) & 1<<4) == 0)
return -1;
switch(pcicfgr8(p, PciHDT) & 0x7F){
default:
return -1;
case 0: /* etc */
case 1: /* pci to pci bridge */
off = 0x34;
break;
case 2: /* cardbus bridge */
off = 0x14;
break;
}
for(i = 48; i--;){
off = pcicfgr8(p, off);
if(off < 0x40 || (off & 3))
break;
off &= ~3;
cap = pcicfgr8(p, off);
if(cap == 0xff)
break;
r = (*fmatch)(p, cap, off, arg);
if(r < 0)
break;
if(r == 0)
return off;
off++;
}
return -1;
}
static int
matchcap(Pcidev *, int cap, int, int arg)
{
return cap != arg;
}
static int
matchhtcap(Pcidev *p, int cap, int off, int arg)
{
int mask;
if(cap != PciCapHTC)
return 1;
if(arg == 0x00 || arg == 0x20)
mask = 0xE0;
else
mask = 0xF8;
cap = pcicfgr8(p, off+3);
return (cap & mask) != arg;
}
int
pcicap(Pcidev *p, int cap)
{
return pcienumcaps(p, matchcap, cap);
}
int
pcihtcap(Pcidev *p, int cap)
{
return pcienumcaps(p, matchhtcap, cap);
}
static int
pcigetmsi(Pcidev *p)
{
if(p->msi != 0)
return p->msi;
return p->msi = pcicap(p, PciCapMSI);
}
enum {
MSICtrl = 0x02, /* message control register (16 bit) */
MSIAddr = 0x04, /* message address register (64 bit) */
MSIData32 = 0x08, /* message data register for 32 bit MSI (16 bit) */
MSIData64 = 0x0C, /* message data register for 64 bit MSI (16 bit) */
};
int
pcimsienable(Pcidev *p, uvlong addr, ulong data)
{
int off, ok64;
if((off = pcigetmsi(p)) < 0)
return -1;
ok64 = (pcicfgr16(p, off + MSICtrl) & (1<<7)) != 0;
pcicfgw32(p, off + MSIAddr, addr);
if(ok64) pcicfgw32(p, off + MSIAddr+4, addr >> 32);
pcicfgw16(p, off + (ok64 ? MSIData64 : MSIData32), data);
pcicfgw16(p, off + MSICtrl, 1);
return 0;
}
int
pcimsidisable(Pcidev *p)
{
int off;
if((off = pcigetmsi(p)) < 0)
return -1;
pcicfgw16(p, off + MSICtrl, 0);
return 0;
}
enum {
MSIXCtrl = 0x02,
};
static int
pcimsixdisable(Pcidev *p)
{
int off;
if((off = pcicap(p, PciCapMSIX)) < 0)
return -1;
pcicfgw16(p, off + MSIXCtrl, 0);
return 0;
}
static int
pcigetpmrb(Pcidev *p)
{
if(p->pmrb != 0)
return p->pmrb;
return p->pmrb = pcicap(p, PciCapPMG);
}
int
pcigetpms(Pcidev* p)
{
int pmcsr, ptr;
if((ptr = pcigetpmrb(p)) == -1)
return -1;
/*
* Power Management Register Block:
* offset 0: Capability ID
* 1: next item pointer
* 2: capabilities
* 4: control/status
* 6: bridge support extensions
* 7: data
*/
pmcsr = pcicfgr16(p, ptr+4);
return pmcsr & 0x0003;
}
int
pcisetpms(Pcidev* p, int state)
{
int ostate, pmc, pmcsr, ptr;
if((ptr = pcigetpmrb(p)) == -1)
return -1;
pmc = pcicfgr16(p, ptr+2);
pmcsr = pcicfgr16(p, ptr+4);
ostate = pmcsr & 0x0003;
pmcsr &= ~0x0003;
switch(state){
default:
return -1;
case 0:
break;
case 1:
if(!(pmc & 0x0200))
return -1;
break;
case 2:
if(!(pmc & 0x0400))
return -1;
break;
case 3:
break;
}
pmcsr |= state;
pcicfgw16(p, ptr+4, pmcsr);
return ostate;
}
void
pcienable(Pcidev *p)
{
uint pcr;
int i;
if(p == nil)
return;
pcienable(p->parent);
switch(pcisetpms(p, 0)){
case 1:
print("pcienable %T: wakeup from D1\n", p->tbdf);
break;
case 2:
print("pcienable %T: wakeup from D2\n", p->tbdf);
if(p->bridge != nil)
delay(100); /* B2: minimum delay 50ms */
else
delay(1); /* D2: minimum delay 200µs */
break;
case 3:
print("pcienable %T: wakeup from D3\n", p->tbdf);
delay(100); /* D3: minimum delay 50ms */
/* restore registers */
for(i = 0; i < nelem(p->mem); i++){
if(p->mem[i].size == 0)
continue;
pcisetbar(p, PciBAR0+i*4, p->mem[i].bar);
}
pcicfgw8(p, PciINTL, p->intl);
pcicfgw8(p, PciLTR, p->ltr);
pcicfgw8(p, PciCLS, p->cls);
pcicfgw16(p, PciPCR, p->pcr);
break;
}
if(p->ltr == 0 || p->ltr == 0xFF){
p->ltr = 64;
pcicfgw8(p,PciLTR, p->ltr);
}
if(p->cls == 0 || p->cls == 0xFF){
p->cls = 64/4;
pcicfgw8(p, PciCLS, p->cls);
}
if(p->bridge != nil)
pcr = IOen|MEMen|MASen;
else {
pcr = 0;
for(i = 0; i < nelem(p->mem); i++){
if(p->mem[i].size == 0)
continue;
if(p->mem[i].bar & 1)
pcr |= IOen;
else
pcr |= MEMen;
}
}
if((p->pcr & pcr) != pcr){
print("pcienable %T: pcr %ux->%ux\n", p->tbdf, p->pcr, p->pcr|pcr);
p->pcr |= pcr;
pcicfgw32(p, PciPCR, 0xFFFF0000|p->pcr);
}
}
void
pcidisable(Pcidev *p)
{
if(p == nil)
return;
pcimsixdisable(p);
pcimsidisable(p);
pciclrbme(p);
}