plan9fox/sys/src/9/pc/etheriwl.c

2551 lines
52 KiB
C

/*
* Intel WiFi Link driver.
*
* Written without any documentation but Damien Bergaminis
* OpenBSD iwn(4) driver sources. Requires intel firmware
* to be present in /lib/firmware/iwn-* on attach.
*/
#include "u.h"
#include "../port/lib.h"
#include "mem.h"
#include "dat.h"
#include "fns.h"
#include "io.h"
#include "../port/error.h"
#include "../port/netif.h"
#include "etherif.h"
#include "wifi.h"
enum {
Ntxlog = 8,
Ntx = 1<<Ntxlog,
Nrxlog = 8,
Nrx = 1<<Nrxlog,
Rstatsize = 16,
Rbufsize = 4*1024,
Rdscsize = 8,
Tbufsize = 4*1024,
Tdscsize = 128,
Tcmdsize = 140,
};
/* registers */
enum {
Cfg = 0x000, /* config register */
MacSi = 1<<8,
RadioSi = 1<<9,
EepromLocked = 1<<21,
NicReady = 1<<22,
HapwakeL1A = 1<<23,
PrepareDone = 1<<25,
Prepare = 1<<27,
Isr = 0x008, /* interrupt status */
Imr = 0x00c, /* interrupt mask */
Ialive = 1<<0,
Iwakeup = 1<<1,
Iswrx = 1<<3,
Ictreached = 1<<6,
Irftoggled = 1<<7,
Iswerr = 1<<25,
Isched = 1<<26,
Ifhtx = 1<<27,
Irxperiodic = 1<<28,
Ihwerr = 1<<29,
Ifhrx = 1<<31,
Ierr = Iswerr | Ihwerr,
Idefmask = Ierr | Ifhtx | Ifhrx | Ialive | Iwakeup | Iswrx | Ictreached | Irftoggled,
FhIsr = 0x010, /* second interrupt status */
Reset = 0x020,
Rev = 0x028, /* hardware revision */
EepromIo = 0x02c, /* EEPROM i/o register */
EepromGp = 0x030,
OtpromGp = 0x034,
DevSelOtp = 1<<16,
RelativeAccess = 1<<17,
EccCorrStts = 1<<20,
EccUncorrStts = 1<<21,
Gpc = 0x024, /* gp cntrl */
MacAccessEna = 1<<0,
MacClockReady = 1<<0,
InitDone = 1<<2,
MacAccessReq = 1<<3,
NicSleep = 1<<4,
RfKill = 1<<27,
Gio = 0x03c,
EnaL0S = 1<<1,
GpDrv = 0x050,
GpDrvCalV6 = 1<<2,
GpDrv1X2 = 1<<3,
GpDrvRadioIqInvert = 1<<7,
Led = 0x094,
LedBsmCtrl = 1<<5,
LedOn = 0x38,
LedOff = 0x78,
UcodeGp1Clr = 0x05c,
UcodeGp1RfKill = 1<<1,
UcodeGp1CmdBlocked = 1<<2,
UcodeGp1CtempStopRf = 1<<3,
ShadowRegCtrl = 0x0a8,
Giochicken = 0x100,
L1AnoL0Srx = 1<<23,
DisL0Stimer = 1<<29,
AnaPll = 0x20c,
Dbghpetmem = 0x240,
Dbglinkpwrmgmt = 0x250,
MemRaddr = 0x40c,
MemWaddr = 0x410,
MemWdata = 0x418,
MemRdata = 0x41c,
PrphWaddr = 0x444,
PrphRaddr = 0x448,
PrphWdata = 0x44c,
PrphRdata = 0x450,
HbusTargWptr = 0x460,
};
/*
* Flow-Handler registers.
*/
enum {
FhTfbdCtrl0 = 0x1900, // +q*8
FhTfbdCtrl1 = 0x1904, // +q*8
FhKwAddr = 0x197c,
FhSramAddr = 0x19a4, // +q*4
FhCbbcQueue = 0x19d0, // +q*4
FhStatusWptr = 0x1bc0,
FhRxBase = 0x1bc4,
FhRxWptr = 0x1bc8,
FhRxConfig = 0x1c00,
FhRxConfigEna = 1<<31,
FhRxConfigRbSize8K = 1<<16,
FhRxConfigSingleFrame = 1<<15,
FhRxConfigIrqDstHost = 1<<12,
FhRxConfigIgnRxfEmpty = 1<<2,
FhRxConfigNrbdShift = 20,
FhRxConfigRbTimeoutShift= 4,
FhRxStatus = 0x1c44,
FhTxConfig = 0x1d00, // +q*32
FhTxConfigDmaCreditEna = 1<<3,
FhTxConfigDmaEna = 1<<31,
FhTxConfigCirqHostEndTfd= 1<<20,
FhTxBufStatus = 0x1d08, // +q*32
FhTxBufStatusTbNumShift = 20,
FhTxBufStatusTbIdxShift = 12,
FhTxBufStatusTfbdValid = 3,
FhTxChicken = 0x1e98,
FhTxStatus = 0x1eb0,
};
/*
* NIC internal memory offsets.
*/
enum {
ApmgClkCtrl = 0x3000,
ApmgClkEna = 0x3004,
ApmgClkDis = 0x3008,
DmaClkRqt = 1<<9,
BsmClkRqt = 1<<11,
ApmgPs = 0x300c,
EarlyPwroffDis = 1<<22,
PwrSrcVMain = 0<<24,
PwrSrcVAux = 2<<24,
PwrSrcMask = 3<<24,
ResetReq = 1<<26,
ApmgDigitalSvr = 0x3058,
ApmgAnalogSvr = 0x306c,
ApmgPciStt = 0x3010,
BsmWrCtrl = 0x3400,
BsmWrMemSrc = 0x3404,
BsmWrMemDst = 0x3408,
BsmWrDwCount = 0x340c,
BsmDramTextAddr = 0x3490,
BsmDramTextSize = 0x3494,
BsmDramDataAddr = 0x3498,
BsmDramDataSize = 0x349c,
BsmSramBase = 0x3800,
};
/*
* TX scheduler registers.
*/
enum {
SchedBase = 0xa02c00,
SchedSramAddr = SchedBase,
SchedDramAddr4965 = SchedBase+0x010,
SchedTxFact4965 = SchedBase+0x01c,
SchedQueueRdptr4965 = SchedBase+0x064, // +q*4
SchedQChainSel4965 = SchedBase+0x0d0,
SchedIntrMask4965 = SchedBase+0x0e4,
SchedQueueStatus4965 = SchedBase+0x104, // +q*4
SchedDramAddr5000 = SchedBase+0x008,
SchedTxFact5000 = SchedBase+0x010,
SchedQueueRdptr5000 = SchedBase+0x068, // +q*4
SchedQChainSel5000 = SchedBase+0x0e8,
SchedIntrMask5000 = SchedBase+0x108,
SchedQueueStatus5000 = SchedBase+0x10c, // +q*4
SchedAggrSel5000 = SchedBase+0x248,
};
enum {
SchedCtxOff4965 = 0x380,
SchedCtxLen4965 = 416,
SchedCtxOff5000 = 0x600,
SchedCtxLen5000 = 512,
};
enum {
FilterPromisc = 1<<0,
FilterCtl = 1<<1,
FilterMulticast = 1<<2,
FilterNoDecrypt = 1<<3,
FilterBSS = 1<<5,
FilterBeacon = 1<<6,
};
enum {
RFlag24Ghz = 1<<0,
RFlagCCK = 1<<1,
RFlagAuto = 1<<2,
RFlagShSlot = 1<<4,
RFlagShPreamble = 1<<5,
RFlagNoDiversity = 1<<7,
RFlagAntennaA = 1<<8,
RFlagAntennaB = 1<<9,
RFlagTSF = 1<<15,
RFlagCTSToSelf = 1<<30,
};
typedef struct FWInfo FWInfo;
typedef struct FWImage FWImage;
typedef struct FWSect FWSect;
typedef struct TXQ TXQ;
typedef struct RXQ RXQ;
typedef struct Ctlr Ctlr;
struct FWSect
{
uchar *data;
uint size;
};
struct FWImage
{
struct {
FWSect text;
FWSect data;
} init, main, boot;
uint rev;
uint build;
char descr[64+1];
uchar data[];
};
struct FWInfo
{
uchar major;
uchar minjor;
uchar type;
uchar subtype;
u32int logptr;
u32int errptr;
u32int tstamp;
u32int valid;
};
struct TXQ
{
uint n;
uint i;
Block **b;
uchar *d;
uchar *c;
uint lastcmd;
Rendez;
QLock;
};
struct RXQ
{
uint i;
Block **b;
u32int *p;
uchar *s;
};
struct Ctlr {
Lock;
QLock;
Ctlr *link;
Pcidev *pdev;
Wifi *wifi;
int type;
int port;
int power;
int active;
int broken;
int attached;
u32int ie;
u32int *nic;
uchar *kwpage;
/* assigned node ids in hardware node table or -1 if unassigned */
int bcastnodeid;
int bssnodeid;
/* current receiver settings */
uchar bssid[Eaddrlen];
int channel;
int prom;
int aid;
RXQ rx;
TXQ tx[20];
struct {
Rendez;
u32int m;
u32int w;
} wait;
struct {
uchar type;
uchar step;
uchar dash;
uchar txantmask;
uchar rxantmask;
} rfcfg;
struct {
int otp;
uint off;
uchar version;
uchar type;
u16int volt;
u16int temp;
u16int rawtemp;
char regdom[4+1];
u32int crystal;
} eeprom;
struct {
Block *cmd[21];
int done;
} calib;
struct {
u32int base;
uchar *s;
} sched;
FWInfo fwinfo;
FWImage *fw;
};
/* controller types */
enum {
Type4965 = 0,
Type5300 = 2,
Type5350 = 3,
Type5150 = 4,
Type5100 = 5,
Type1000 = 6,
Type6000 = 7,
Type6050 = 8,
Type6005 = 11, /* also Centrino Advanced-N 6030, 6235 */
Type2030 = 12,
};
static char *fwname[32] = {
[Type4965] "iwn-4965",
[Type5300] "iwn-5000",
[Type5350] "iwn-5000",
[Type5150] "iwn-5150",
[Type5100] "iwn-5000",
[Type1000] "iwn-1000",
[Type6000] "iwn-6000",
[Type6050] "iwn-6050",
[Type6005] "iwn-6005", /* see in iwlattach() below */
[Type2030] "iwn-2030",
};
static char *qcmd(Ctlr *ctlr, uint qid, uint code, uchar *data, int size, Block *block);
static char *flushq(Ctlr *ctlr, uint qid);
static char *cmd(Ctlr *ctlr, uint code, uchar *data, int size);
#define csr32r(c, r) (*((c)->nic+((r)/4)))
#define csr32w(c, r, v) (*((c)->nic+((r)/4)) = (v))
static uint
get16(uchar *p){
return *((u16int*)p);
}
static uint
get32(uchar *p){
return *((u32int*)p);
}
static void
put32(uchar *p, uint v){
*((u32int*)p) = v;
}
static void
put16(uchar *p, uint v){
*((u16int*)p) = v;
};
static char*
niclock(Ctlr *ctlr)
{
int i;
csr32w(ctlr, Gpc, csr32r(ctlr, Gpc) | MacAccessReq);
for(i=0; i<1000; i++){
if((csr32r(ctlr, Gpc) & (NicSleep | MacAccessEna)) == MacAccessEna)
return 0;
delay(10);
}
return "niclock: timeout";
}
static void
nicunlock(Ctlr *ctlr)
{
csr32w(ctlr, Gpc, csr32r(ctlr, Gpc) & ~MacAccessReq);
}
static u32int
prphread(Ctlr *ctlr, uint off)
{
csr32w(ctlr, PrphRaddr, ((sizeof(u32int)-1)<<24) | off);
coherence();
return csr32r(ctlr, PrphRdata);
}
static void
prphwrite(Ctlr *ctlr, uint off, u32int data)
{
csr32w(ctlr, PrphWaddr, ((sizeof(u32int)-1)<<24) | off);
coherence();
csr32w(ctlr, PrphWdata, data);
}
static u32int
memread(Ctlr *ctlr, uint off)
{
csr32w(ctlr, MemRaddr, off);
coherence();
return csr32r(ctlr, MemRdata);
}
static void
memwrite(Ctlr *ctlr, uint off, u32int data)
{
csr32w(ctlr, MemWaddr, off);
coherence();
csr32w(ctlr, MemWdata, data);
}
static void
setfwinfo(Ctlr *ctlr, uchar *d, int len)
{
FWInfo *i;
if(len < 32)
return;
i = &ctlr->fwinfo;
i->minjor = *d++;
i->major = *d++;
d += 2+8;
i->type = *d++;
i->subtype = *d++;
d += 2;
i->logptr = get32(d); d += 4;
i->errptr = get32(d); d += 4;
i->tstamp = get32(d); d += 4;
i->valid = get32(d);
};
static void
dumpctlr(Ctlr *ctlr)
{
u32int dump[13];
int i;
print("lastcmd: %ud (0x%ux)\n", ctlr->tx[4].lastcmd, ctlr->tx[4].lastcmd);
if(ctlr->fwinfo.errptr == 0){
print("no error pointer\n");
return;
}
for(i=0; i<nelem(dump); i++)
dump[i] = memread(ctlr, ctlr->fwinfo.errptr + i*4);
print( "error:\tid %ux, pc %ux,\n"
"\tbranchlink %.8ux %.8ux, interruptlink %.8ux %.8ux,\n"
"\terrordata %.8ux %.8ux, srcline %ud, tsf %ux, time %ux\n",
dump[1], dump[2],
dump[4], dump[3], dump[6], dump[5],
dump[7], dump[8], dump[9], dump[10], dump[11]);
}
static char*
eepromlock(Ctlr *ctlr)
{
int i, j;
for(i=0; i<100; i++){
csr32w(ctlr, Cfg, csr32r(ctlr, Cfg) | EepromLocked);
for(j=0; j<100; j++){
if(csr32r(ctlr, Cfg) & EepromLocked)
return 0;
delay(10);
}
}
return "eepromlock: timeout";
}
static void
eepromunlock(Ctlr *ctlr)
{
csr32w(ctlr, Cfg, csr32r(ctlr, Cfg) & ~EepromLocked);
}
static char*
eepromread(Ctlr *ctlr, void *data, int count, uint off)
{
uchar *out = data;
u32int w, s;
int i;
w = 0;
off += ctlr->eeprom.off;
for(; count > 0; count -= 2, off++){
csr32w(ctlr, EepromIo, off << 2);
for(i=0; i<10; i++){
w = csr32r(ctlr, EepromIo);
if(w & 1)
break;
delay(5);
}
if(i == 10)
return "eepromread: timeout";
if(ctlr->eeprom.otp){
s = csr32r(ctlr, OtpromGp);
if(s & EccUncorrStts)
return "eepromread: otprom ecc error";
if(s & EccCorrStts)
csr32w(ctlr, OtpromGp, s);
}
*out++ = w >> 16;
if(count > 1)
*out++ = w >> 24;
}
return 0;
}
static char*
handover(Ctlr *ctlr)
{
int i;
csr32w(ctlr, Cfg, csr32r(ctlr, Cfg) | NicReady);
for(i=0; i<5; i++){
if(csr32r(ctlr, Cfg) & NicReady)
return 0;
delay(10);
}
csr32w(ctlr, Cfg, csr32r(ctlr, Cfg) | Prepare);
for(i=0; i<15000; i++){
if((csr32r(ctlr, Cfg) & PrepareDone) == 0)
break;
delay(10);
}
if(i >= 15000)
return "handover: timeout";
csr32w(ctlr, Cfg, csr32r(ctlr, Cfg) | NicReady);
for(i=0; i<5; i++){
if(csr32r(ctlr, Cfg) & NicReady)
return 0;
delay(10);
}
return "handover: timeout";
}
static char*
clockwait(Ctlr *ctlr)
{
int i;
/* Set "initialization complete" bit. */
csr32w(ctlr, Gpc, csr32r(ctlr, Gpc) | InitDone);
for(i=0; i<2500; i++){
if(csr32r(ctlr, Gpc) & MacClockReady)
return 0;
delay(10);
}
return "clockwait: timeout";
}
static char*
poweron(Ctlr *ctlr)
{
int capoff;
char *err;
/* Disable L0s exit timer (NMI bug workaround). */
csr32w(ctlr, Giochicken, csr32r(ctlr, Giochicken) | DisL0Stimer);
/* Don't wait for ICH L0s (ICH bug workaround). */
csr32w(ctlr, Giochicken, csr32r(ctlr, Giochicken) | L1AnoL0Srx);
/* Set FH wait threshold to max (HW bug under stress workaround). */
csr32w(ctlr, Dbghpetmem, csr32r(ctlr, Dbghpetmem) | 0xffff0000);
/* Enable HAP INTA to move adapter from L1a to L0s. */
csr32w(ctlr, Cfg, csr32r(ctlr, Cfg) | HapwakeL1A);
capoff = pcicap(ctlr->pdev, PciCapPCIe);
if(capoff != -1){
/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
if(pcicfgr16(ctlr->pdev, capoff + 0x10) & 0x2) /* LCSR -> L1 Entry enabled. */
csr32w(ctlr, Gio, csr32r(ctlr, Gio) | EnaL0S);
else
csr32w(ctlr, Gio, csr32r(ctlr, Gio) & ~EnaL0S);
}
if(ctlr->type != Type4965 && ctlr->type <= Type1000)
csr32w(ctlr, AnaPll, csr32r(ctlr, AnaPll) | 0x00880300);
/* Wait for clock stabilization before accessing prph. */
if((err = clockwait(ctlr)) != nil)
return err;
if((err = niclock(ctlr)) != nil)
return err;
/* Enable DMA and BSM (Bootstrap State Machine). */
if(ctlr->type == Type4965)
prphwrite(ctlr, ApmgClkEna, DmaClkRqt | BsmClkRqt);
else
prphwrite(ctlr, ApmgClkEna, DmaClkRqt);
delay(20);
/* Disable L1-Active. */
prphwrite(ctlr, ApmgPciStt, prphread(ctlr, ApmgPciStt) | (1<<11));
nicunlock(ctlr);
ctlr->power = 1;
return 0;
}
static void
poweroff(Ctlr *ctlr)
{
int i, j;
csr32w(ctlr, Reset, 1);
/* Disable interrupts */
ctlr->ie = 0;
csr32w(ctlr, Imr, 0);
csr32w(ctlr, Isr, ~0);
csr32w(ctlr, FhIsr, ~0);
/* Stop scheduler */
if(ctlr->type != Type4965)
prphwrite(ctlr, SchedTxFact5000, 0);
else
prphwrite(ctlr, SchedTxFact4965, 0);
/* Stop TX ring */
if(niclock(ctlr) == nil){
for(i = (ctlr->type != Type4965) ? 7 : 6; i >= 0; i--){
csr32w(ctlr, FhTxConfig + i*32, 0);
for(j = 0; j < 200; j++){
if(csr32r(ctlr, FhTxStatus) & (0x10000<<i))
break;
delay(10);
}
}
nicunlock(ctlr);
}
/* Stop RX ring */
if(niclock(ctlr) == nil){
csr32w(ctlr, FhRxConfig, 0);
for(j = 0; j < 200; j++){
if(csr32r(ctlr, FhRxStatus) & 0x1000000)
break;
delay(10);
}
nicunlock(ctlr);
}
/* Disable DMA */
if(niclock(ctlr) == nil){
prphwrite(ctlr, ApmgClkDis, DmaClkRqt);
nicunlock(ctlr);
}
delay(5);
/* Stop busmaster DMA activity. */
csr32w(ctlr, Reset, csr32r(ctlr, Reset) | (1<<9));
for(j = 0; j < 100; j++){
if(csr32r(ctlr, Reset) & (1<<8))
break;
delay(10);
}
/* Reset the entire device. */
csr32w(ctlr, Reset, csr32r(ctlr, Reset) | (1<<7));
delay(10);
/* Clear "initialization complete" bit. */
csr32w(ctlr, Gpc, csr32r(ctlr, Gpc) & ~InitDone);
ctlr->power = 0;
}
static char*
rominit(Ctlr *ctlr)
{
uint prev, last;
uchar buf[2];
char *err;
int i;
ctlr->eeprom.otp = 0;
ctlr->eeprom.off = 0;
if(ctlr->type < Type1000 || (csr32r(ctlr, OtpromGp) & DevSelOtp) == 0)
return nil;
/* Wait for clock stabilization before accessing prph. */
if((err = clockwait(ctlr)) != nil)
return err;
if((err = niclock(ctlr)) != nil)
return err;
prphwrite(ctlr, ApmgPs, prphread(ctlr, ApmgPs) | ResetReq);
delay(5);
prphwrite(ctlr, ApmgPs, prphread(ctlr, ApmgPs) & ~ResetReq);
nicunlock(ctlr);
/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
if(ctlr->type != Type1000)
csr32w(ctlr, Dbglinkpwrmgmt, csr32r(ctlr, Dbglinkpwrmgmt) | (1<<31));
csr32w(ctlr, EepromGp, csr32r(ctlr, EepromGp) & ~0x00000180);
/* Clear ECC status. */
csr32w(ctlr, OtpromGp, csr32r(ctlr, OtpromGp) | (EccCorrStts | EccUncorrStts));
ctlr->eeprom.otp = 1;
if(ctlr->type != Type1000)
return nil;
/* Switch to absolute addressing mode. */
csr32w(ctlr, OtpromGp, csr32r(ctlr, OtpromGp) & ~RelativeAccess);
/*
* Find the block before last block (contains the EEPROM image)
* for HW without OTP shadow RAM.
*/
prev = last = 0;
for(i=0; i<3; i++){
if((err = eepromread(ctlr, buf, 2, last)) != nil)
return err;
if(get16(buf) == 0)
break;
prev = last;
last = get16(buf);
}
if(i == 0 || i >= 3)
return "rominit: missing eeprom image";
ctlr->eeprom.off = prev+1;
return nil;
}
static int
iwlinit(Ether *edev)
{
Ctlr *ctlr;
char *err;
uchar b[4];
uint u, caloff, regoff;
ctlr = edev->ctlr;
if((err = handover(ctlr)) != nil)
goto Err;
if((err = poweron(ctlr)) != nil)
goto Err;
if((csr32r(ctlr, EepromGp) & 0x7) == 0){
err = "bad rom signature";
goto Err;
}
if((err = eepromlock(ctlr)) != nil)
goto Err;
if((err = rominit(ctlr)) != nil)
goto Err2;
if((err = eepromread(ctlr, edev->ea, sizeof(edev->ea), 0x15)) != nil){
eepromunlock(ctlr);
goto Err;
}
if((err = eepromread(ctlr, b, 2, 0x048)) != nil){
Err2:
eepromunlock(ctlr);
goto Err;
}
u = get16(b);
ctlr->rfcfg.type = u & 3; u >>= 2;
ctlr->rfcfg.step = u & 3; u >>= 2;
ctlr->rfcfg.dash = u & 3; u >>= 4;
ctlr->rfcfg.txantmask = u & 15; u >>= 4;
ctlr->rfcfg.rxantmask = u & 15;
if((err = eepromread(ctlr, b, 2, 0x66)) != nil)
goto Err2;
regoff = get16(b);
if((err = eepromread(ctlr, b, 4, regoff+1)) != nil)
goto Err2;
strncpy(ctlr->eeprom.regdom, (char*)b, 4);
ctlr->eeprom.regdom[4] = 0;
if((err = eepromread(ctlr, b, 2, 0x67)) != nil)
goto Err2;
caloff = get16(b);
if((err = eepromread(ctlr, b, 4, caloff)) != nil)
goto Err2;
ctlr->eeprom.version = b[0];
ctlr->eeprom.type = b[1];
ctlr->eeprom.volt = get16(b+2);
ctlr->eeprom.temp = 0;
ctlr->eeprom.rawtemp = 0;
if(ctlr->type == Type2030){
if((err = eepromread(ctlr, b, 2, caloff + 0x12a)) != nil)
goto Err2;
ctlr->eeprom.temp = get16(b);
if((err = eepromread(ctlr, b, 2, caloff + 0x12b)) != nil)
goto Err2;
ctlr->eeprom.rawtemp = get16(b);
}
if(ctlr->type != Type4965 && ctlr->type != Type5150){
if((err = eepromread(ctlr, b, 4, caloff + 0x128)) != nil)
goto Err2;
ctlr->eeprom.crystal = get32(b);
}
eepromunlock(ctlr);
switch(ctlr->type){
case Type4965:
ctlr->rfcfg.txantmask = 3;
ctlr->rfcfg.rxantmask = 7;
break;
case Type5100:
ctlr->rfcfg.txantmask = 2;
ctlr->rfcfg.rxantmask = 3;
break;
case Type6000:
if(ctlr->pdev->did == 0x422c || ctlr->pdev->did == 0x4230){
ctlr->rfcfg.txantmask = 6;
ctlr->rfcfg.rxantmask = 6;
}
break;
}
poweroff(ctlr);
return 0;
Err:
print("iwlinit: %s\n", err);
poweroff(ctlr);
return -1;
}
static char*
crackfw(FWImage *i, uchar *data, uint size, int alt)
{
uchar *p, *e;
FWSect *s;
memset(i, 0, sizeof(*i));
if(size < 4){
Tooshort:
return "firmware image too short";
}
p = data;
e = p + size;
i->rev = get32(p); p += 4;
if(i->rev == 0){
uvlong altmask;
if(size < (4+64+4+4+8))
goto Tooshort;
if(memcmp(p, "IWL\n", 4) != 0)
return "bad firmware signature";
p += 4;
strncpy(i->descr, (char*)p, 64);
i->descr[64] = 0;
p += 64;
i->rev = get32(p); p += 4;
i->build = get32(p); p += 4;
altmask = get32(p); p += 4;
altmask |= (uvlong)get32(p) << 32; p += 4;
while(alt > 0 && (altmask & (1ULL<<alt)) == 0)
alt--;
while(p < e){
FWSect dummy;
if((p + 2+2+4) > e)
goto Tooshort;
switch(get16(p)){
case 1: s = &i->main.text; break;
case 2: s = &i->main.data; break;
case 3: s = &i->init.text; break;
case 4: s = &i->init.data; break;
case 5: s = &i->boot.text; break;
default:s = &dummy;
}
p += 2;
if(get16(p) != 0 && get16(p) != alt)
s = &dummy;
p += 2;
s->size = get32(p); p += 4;
s->data = p;
if((p + s->size) > e)
goto Tooshort;
p += (s->size + 3) & ~3;
}
} else {
if(((i->rev>>8) & 0xFF) < 2)
return "need firmware api >= 2";
if(((i->rev>>8) & 0xFF) >= 3){
i->build = get32(p); p += 4;
}
if((p + 5*4) > e)
goto Tooshort;
i->main.text.size = get32(p); p += 4;
i->main.data.size = get32(p); p += 4;
i->init.text.size = get32(p); p += 4;
i->init.data.size = get32(p); p += 4;
i->boot.text.size = get32(p); p += 4;
i->main.text.data = p; p += i->main.text.size;
i->main.data.data = p; p += i->main.data.size;
i->init.text.data = p; p += i->init.text.size;
i->init.data.data = p; p += i->init.data.size;
i->boot.text.data = p; p += i->boot.text.size;
if(p > e)
goto Tooshort;
}
return 0;
}
static FWImage*
readfirmware(char *name)
{
uchar dirbuf[sizeof(Dir)+100], *data;
char buf[128], *err;
FWImage *fw;
int n, r;
Chan *c;
Dir d;
if(!iseve())
error(Eperm);
if(!waserror()){
snprint(buf, sizeof buf, "/boot/%s", name);
c = namec(buf, Aopen, OREAD, 0);
poperror();
} else {
snprint(buf, sizeof buf, "/lib/firmware/%s", name);
c = namec(buf, Aopen, OREAD, 0);
}
if(waserror()){
cclose(c);
nexterror();
}
n = devtab[c->type]->stat(c, dirbuf, sizeof dirbuf);
if(n <= 0)
error("can't stat firmware");
convM2D(dirbuf, n, &d, nil);
fw = smalloc(sizeof(*fw) + 16 + d.length);
data = (uchar*)(fw+1);
if(waserror()){
free(fw);
nexterror();
}
r = 0;
while(r < d.length){
n = devtab[c->type]->read(c, data+r, d.length-r, (vlong)r);
if(n <= 0)
break;
r += n;
}
if((err = crackfw(fw, data, r, 1)) != nil)
error(err);
poperror();
poperror();
cclose(c);
return fw;
}
static int
gotirq(void *arg)
{
Ctlr *ctlr = arg;
return (ctlr->wait.m & ctlr->wait.w) != 0;
}
static u32int
irqwait(Ctlr *ctlr, u32int mask, int timeout)
{
u32int r;
ilock(ctlr);
r = ctlr->wait.m & mask;
if(r == 0){
ctlr->wait.w = mask;
iunlock(ctlr);
if(!waserror()){
tsleep(&ctlr->wait, gotirq, ctlr, timeout);
poperror();
}
ilock(ctlr);
ctlr->wait.w = 0;
r = ctlr->wait.m & mask;
}
ctlr->wait.m &= ~r;
iunlock(ctlr);
return r;
}
static int
rbplant(Ctlr *ctlr, int i)
{
Block *b;
b = iallocb(Rbufsize + 256);
if(b == nil)
return -1;
b->rp = b->wp = (uchar*)ROUND((uintptr)b->base, 256);
memset(b->rp, 0, Rdscsize);
ctlr->rx.b[i] = b;
ctlr->rx.p[i] = PCIWADDR(b->rp) >> 8;
return 0;
}
static char*
initring(Ctlr *ctlr)
{
RXQ *rx;
TXQ *tx;
int i, q;
rx = &ctlr->rx;
if(rx->b == nil)
rx->b = malloc(sizeof(Block*) * Nrx);
if(rx->p == nil)
rx->p = mallocalign(sizeof(u32int) * Nrx, 256, 0, 0);
if(rx->s == nil)
rx->s = mallocalign(Rstatsize, 16, 0, 0);
if(rx->b == nil || rx->p == nil || rx->s == nil)
return "no memory for rx ring";
memset(ctlr->rx.s, 0, Rstatsize);
for(i=0; i<Nrx; i++){
rx->p[i] = 0;
if(rx->b[i] != nil){
freeb(rx->b[i]);
rx->b[i] = nil;
}
if(rbplant(ctlr, i) < 0)
return "no memory for rx descriptors";
}
rx->i = 0;
if(ctlr->sched.s == nil)
ctlr->sched.s = mallocalign(512 * nelem(ctlr->tx) * 2, 1024, 0, 0);
if(ctlr->sched.s == nil)
return "no memory for sched buffer";
memset(ctlr->sched.s, 0, 512 * nelem(ctlr->tx));
for(q=0; q<nelem(ctlr->tx); q++){
tx = &ctlr->tx[q];
if(tx->b == nil)
tx->b = malloc(sizeof(Block*) * Ntx);
if(tx->d == nil)
tx->d = mallocalign(Tdscsize * Ntx, 256, 0, 0);
if(tx->c == nil)
tx->c = mallocalign(Tcmdsize * Ntx, 4, 0, 0);
if(tx->b == nil || tx->d == nil || tx->c == nil)
return "no memory for tx ring";
memset(tx->d, 0, Tdscsize * Ntx);
memset(tx->c, 0, Tcmdsize * Ntx);
for(i=0; i<Ntx; i++){
if(tx->b[i] != nil){
freeb(tx->b[i]);
tx->b[i] = nil;
}
}
tx->i = 0;
tx->n = 0;
tx->lastcmd = 0;
}
if(ctlr->kwpage == nil)
ctlr->kwpage = mallocalign(4096, 4096, 0, 0);
if(ctlr->kwpage == nil)
return "no memory for kwpage";
memset(ctlr->kwpage, 0, 4096);
return nil;
}
static char*
reset(Ctlr *ctlr)
{
char *err;
int i, q;
if(ctlr->power)
poweroff(ctlr);
if((err = initring(ctlr)) != nil)
return err;
if((err = poweron(ctlr)) != nil)
return err;
if((err = niclock(ctlr)) != nil)
return err;
prphwrite(ctlr, ApmgPs, (prphread(ctlr, ApmgPs) & ~PwrSrcMask) | PwrSrcVMain);
nicunlock(ctlr);
csr32w(ctlr, Cfg, csr32r(ctlr, Cfg) | RadioSi | MacSi);
if((err = niclock(ctlr)) != nil)
return err;
if(ctlr->type != Type4965)
prphwrite(ctlr, ApmgPs, prphread(ctlr, ApmgPs) | EarlyPwroffDis);
if(ctlr->type == Type1000){
/*
* Select first Switching Voltage Regulator (1.32V) to
* solve a stability issue related to noisy DC2DC line
* in the silicon of 1000 Series.
*/
prphwrite(ctlr, ApmgDigitalSvr,
(prphread(ctlr, ApmgDigitalSvr) & ~(0xf<<5)) | (3<<5));
}
nicunlock(ctlr);
if((err = niclock(ctlr)) != nil)
return err;
if((ctlr->type == Type6005 || ctlr->type == Type6050) && ctlr->eeprom.version == 6)
csr32w(ctlr, GpDrv, csr32r(ctlr, GpDrv) | GpDrvCalV6);
if(ctlr->type == Type6005)
csr32w(ctlr, GpDrv, csr32r(ctlr, GpDrv) | GpDrv1X2);
if(ctlr->type == Type2030)
csr32w(ctlr, GpDrv, csr32r(ctlr, GpDrv) | GpDrvRadioIqInvert);
nicunlock(ctlr);
if((err = niclock(ctlr)) != nil)
return err;
csr32w(ctlr, FhRxConfig, 0);
csr32w(ctlr, FhRxWptr, 0);
csr32w(ctlr, FhRxBase, PCIWADDR(ctlr->rx.p) >> 8);
csr32w(ctlr, FhStatusWptr, PCIWADDR(ctlr->rx.s) >> 4);
csr32w(ctlr, FhRxConfig,
FhRxConfigEna |
FhRxConfigIgnRxfEmpty |
FhRxConfigIrqDstHost |
FhRxConfigSingleFrame |
(Nrxlog << FhRxConfigNrbdShift));
csr32w(ctlr, FhRxWptr, (Nrx-1) & ~7);
nicunlock(ctlr);
if((err = niclock(ctlr)) != nil)
return err;
if(ctlr->type != Type4965)
prphwrite(ctlr, SchedTxFact5000, 0);
else
prphwrite(ctlr, SchedTxFact4965, 0);
csr32w(ctlr, FhKwAddr, PCIWADDR(ctlr->kwpage) >> 4);
for(q = (ctlr->type != Type4965) ? 19 : 15; q >= 0; q--)
csr32w(ctlr, FhCbbcQueue + q*4, PCIWADDR(ctlr->tx[q].d) >> 8);
nicunlock(ctlr);
for(i = (ctlr->type != Type4965) ? 7 : 6; i >= 0; i--)
csr32w(ctlr, FhTxConfig + i*32, FhTxConfigDmaEna | FhTxConfigDmaCreditEna);
csr32w(ctlr, UcodeGp1Clr, UcodeGp1RfKill);
csr32w(ctlr, UcodeGp1Clr, UcodeGp1CmdBlocked);
ctlr->broken = 0;
ctlr->wait.m = 0;
ctlr->wait.w = 0;
ctlr->ie = Idefmask;
csr32w(ctlr, Imr, ctlr->ie);
csr32w(ctlr, Isr, ~0);
if(ctlr->type >= Type6000)
csr32w(ctlr, ShadowRegCtrl, csr32r(ctlr, ShadowRegCtrl) | 0x800fffff);
return nil;
}
static char*
sendbtcoexadv(Ctlr *ctlr)
{
static u32int btcoex3wire[12] = {
0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa,
0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
};
uchar c[Tcmdsize], *p;
char *err;
int i;
/* set BT config */
memset(c, 0, sizeof(c));
p = c;
if(ctlr->type == Type2030){
*p++ = 145; /* flags */
p++; /* lead time */
*p++ = 5; /* max kill */
*p++ = 1; /* bt3 t7 timer */
put32(p, 0xffff0000); /* kill ack */
p += 4;
put32(p, 0xffff0000); /* kill cts */
p += 4;
*p++ = 2; /* sample time */
*p++ = 0xc; /* bt3 t2 timer */
p += 2; /* bt4 reaction */
for (i = 0; i < nelem(btcoex3wire); i++){
put32(p, btcoex3wire[i]);
p += 4;
}
p += 2; /* bt4 decision */
put16(p, 0xff); /* valid */
p += 2;
put32(p, 0xf0); /* prio boost */
p += 4;
p++; /* reserved */
p++; /* tx prio boost */
p += 2; /* rx prio boost */
}
if((err = cmd(ctlr, 155, c, p-c)) != nil)
return err;
/* set BT priority */
memset(c, 0, sizeof(c));
p = c;
*p++ = 0x6; /* init1 */
*p++ = 0x7; /* init2 */
*p++ = 0x2; /* periodic low1 */
*p++ = 0x3; /* periodic low2 */
*p++ = 0x4; /* periodic high1 */
*p++ = 0x5; /* periodic high2 */
*p++ = 0x6; /* dtim */
*p++ = 0x8; /* scan52 */
*p++ = 0xa; /* scan24 */
p += 7; /* reserved */
if((err = cmd(ctlr, 204, c, p-c)) != nil)
return err;
/* force BT state machine change */
memset(c, 0, sizeof(c));
p = c;
*p++ = 1; /* open */
*p++ = 1; /* type */
p += 2; /* reserved */
if((err = cmd(ctlr, 205, c, p-c)) != nil)
return err;
c[0] = 0; /* open */
return cmd(ctlr, 205, c, p-c);
}
static char*
postboot(Ctlr *ctlr)
{
uint ctxoff, ctxlen, dramaddr;
char *err;
int i, q;
if((err = niclock(ctlr)) != nil)
return err;
if(ctlr->type != Type4965){
dramaddr = SchedDramAddr5000;
ctxoff = SchedCtxOff5000;
ctxlen = SchedCtxLen5000;
} else {
dramaddr = SchedDramAddr4965;
ctxoff = SchedCtxOff4965;
ctxlen = SchedCtxLen4965;
}
ctlr->sched.base = prphread(ctlr, SchedSramAddr);
for(i=0; i < ctxlen; i += 4)
memwrite(ctlr, ctlr->sched.base + ctxoff + i, 0);
prphwrite(ctlr, dramaddr, PCIWADDR(ctlr->sched.s)>>10);
csr32w(ctlr, FhTxChicken, csr32r(ctlr, FhTxChicken) | 2);
if(ctlr->type != Type4965){
/* Enable chain mode for all queues, except command queue 4. */
prphwrite(ctlr, SchedQChainSel5000, 0xfffef);
prphwrite(ctlr, SchedAggrSel5000, 0);
for(q=0; q<20; q++){
prphwrite(ctlr, SchedQueueRdptr5000 + q*4, 0);
csr32w(ctlr, HbusTargWptr, q << 8);
memwrite(ctlr, ctlr->sched.base + ctxoff + q*8, 0);
/* Set scheduler window size and frame limit. */
memwrite(ctlr, ctlr->sched.base + ctxoff + q*8 + 4, 64<<16 | 64);
}
/* Enable interrupts for all our 20 queues. */
prphwrite(ctlr, SchedIntrMask5000, 0xfffff);
/* Identify TX FIFO rings (0-7). */
prphwrite(ctlr, SchedTxFact5000, 0xff);
} else {
/* Disable chain mode for all our 16 queues. */
prphwrite(ctlr, SchedQChainSel4965, 0);
for(q=0; q<16; q++) {
prphwrite(ctlr, SchedQueueRdptr4965 + q*4, 0);
csr32w(ctlr, HbusTargWptr, q << 8);
/* Set scheduler window size. */
memwrite(ctlr, ctlr->sched.base + ctxoff + q*8, 64);
/* Set scheduler window size and frame limit. */
memwrite(ctlr, ctlr->sched.base + ctxoff + q*8 + 4, 64<<16);
}
/* Enable interrupts for all our 16 queues. */
prphwrite(ctlr, SchedIntrMask4965, 0xffff);
/* Identify TX FIFO rings (0-7). */
prphwrite(ctlr, SchedTxFact4965, 0xff);
}
/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
for(q=0; q<7; q++){
if(ctlr->type != Type4965){
static uchar qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
prphwrite(ctlr, SchedQueueStatus5000 + q*4, 0x00ff0018 | qid2fifo[q]);
} else {
static uchar qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
prphwrite(ctlr, SchedQueueStatus4965 + q*4, 0x0007fc01 | qid2fifo[q]<<1);
}
}
nicunlock(ctlr);
if(ctlr->type != Type4965){
uchar c[Tcmdsize];
/* disable wimax coexistance */
memset(c, 0, sizeof(c));
if((err = cmd(ctlr, 90, c, 4+4*16)) != nil)
return err;
if(ctlr->type != Type5150){
/* calibrate crystal */
memset(c, 0, sizeof(c));
c[0] = 15; /* code */
c[1] = 0; /* group */
c[2] = 1; /* ngroup */
c[3] = 1; /* isvalid */
c[4] = ctlr->eeprom.crystal;
c[5] = ctlr->eeprom.crystal>>16;
/* for some reason 8086:4238 needs a second try */
if(cmd(ctlr, 176, c, 8) != nil && (err = cmd(ctlr, 176, c, 8)) != nil)
return err;
}
if(ctlr->calib.done == 0){
/* query calibration (init firmware) */
memset(c, 0, sizeof(c));
put32(c + 0*(5*4) + 0, 0xffffffff);
put32(c + 0*(5*4) + 4, 0xffffffff);
put32(c + 0*(5*4) + 8, 0xffffffff);
put32(c + 2*(5*4) + 0, 0xffffffff);
if((err = cmd(ctlr, 101, c, (((2*(5*4))+4)*2)+4)) != nil)
return err;
/* wait to collect calibration records */
if(irqwait(ctlr, Ierr, 2000))
return "calibration failed";
if(ctlr->calib.done == 0){
print("iwl: no calibration results\n");
ctlr->calib.done = 1;
}
} else {
static uchar cmds[] = {8, 9, 11, 17, 16};
/* send calibration records (runtime firmware) */
for(q=0; q<nelem(cmds); q++){
Block *b;
i = cmds[q];
if(i == 8 && ctlr->type != Type5150 && ctlr->type != Type2030)
continue;
if(i == 17 && (ctlr->type >= Type6000 || ctlr->type == Type5150) &&
ctlr->type != Type2030)
continue;
if((b = ctlr->calib.cmd[i]) == nil)
continue;
b = copyblock(b, BLEN(b));
if((err = qcmd(ctlr, 4, 176, nil, 0, b)) != nil){
freeb(b);
return err;
}
if((err = flushq(ctlr, 4)) != nil)
return err;
}
/* temperature sensor offset */
switch (ctlr->type){
case Type6005:
memset(c, 0, sizeof(c));
c[0] = 18;
c[1] = 0;
c[2] = 1;
c[3] = 1;
put16(c + 4, 2700);
if((err = cmd(ctlr, 176, c, 4+2+2)) != nil)
return err;
break;
case Type2030:
memset(c, 0, sizeof(c));
c[0] = 18;
c[1] = 0;
c[2] = 1;
c[3] = 1;
if(ctlr->eeprom.rawtemp != 0){
put16(c + 4, ctlr->eeprom.temp);
put16(c + 6, ctlr->eeprom.rawtemp);
} else{
put16(c + 4, 2700);
put16(c + 6, 2700);
}
put16(c + 8, ctlr->eeprom.volt);
if((err = cmd(ctlr, 176, c, 4+2+2+2+2)) != nil)
return err;
break;
}
if(ctlr->type == Type6005 || ctlr->type == Type6050){
/* runtime DC calibration */
memset(c, 0, sizeof(c));
put32(c + 0*(5*4) + 0, 0xffffffff);
put32(c + 0*(5*4) + 4, 1<<1);
if((err = cmd(ctlr, 101, c, (((2*(5*4))+4)*2)+4)) != nil)
return err;
}
/* set tx antenna config */
put32(c, ctlr->rfcfg.txantmask & 7);
if((err = cmd(ctlr, 152, c, 4)) != nil)
return err;
if(ctlr->type == Type2030){
if((err = sendbtcoexadv(ctlr)) != nil)
return err;
}
}
}
return nil;
}
static char*
loadfirmware1(Ctlr *ctlr, u32int dst, uchar *data, int size)
{
uchar *dma;
char *err;
dma = mallocalign(size, 16, 0, 0);
if(dma == nil)
return "no memory for dma";
memmove(dma, data, size);
coherence();
if((err = niclock(ctlr)) != 0){
free(dma);
return err;
}
csr32w(ctlr, FhTxConfig + 9*32, 0);
csr32w(ctlr, FhSramAddr + 9*4, dst);
csr32w(ctlr, FhTfbdCtrl0 + 9*8, PCIWADDR(dma));
csr32w(ctlr, FhTfbdCtrl1 + 9*8, size);
csr32w(ctlr, FhTxBufStatus + 9*32,
(1<<FhTxBufStatusTbNumShift) |
(1<<FhTxBufStatusTbIdxShift) |
FhTxBufStatusTfbdValid);
csr32w(ctlr, FhTxConfig + 9*32, FhTxConfigDmaEna | FhTxConfigCirqHostEndTfd);
nicunlock(ctlr);
if(irqwait(ctlr, Ifhtx|Ierr, 5000) != Ifhtx){
free(dma);
return "dma error / timeout";
}
free(dma);
return 0;
}
static char*
boot(Ctlr *ctlr)
{
int i, n, size;
uchar *p, *dma;
FWImage *fw;
char *err;
fw = ctlr->fw;
if(fw->boot.text.size == 0){
if(ctlr->calib.done == 0){
if((err = loadfirmware1(ctlr, 0x00000000, fw->init.text.data, fw->init.text.size)) != nil)
return err;
if((err = loadfirmware1(ctlr, 0x00800000, fw->init.data.data, fw->init.data.size)) != nil)
return err;
csr32w(ctlr, Reset, 0);
if(irqwait(ctlr, Ierr|Ialive, 5000) != Ialive)
return "init firmware boot failed";
if((err = postboot(ctlr)) != nil)
return err;
if((err = reset(ctlr)) != nil)
return err;
}
if((err = loadfirmware1(ctlr, 0x00000000, fw->main.text.data, fw->main.text.size)) != nil)
return err;
if((err = loadfirmware1(ctlr, 0x00800000, fw->main.data.data, fw->main.data.size)) != nil)
return err;
csr32w(ctlr, Reset, 0);
if(irqwait(ctlr, Ierr|Ialive, 5000) != Ialive)
return "main firmware boot failed";
return postboot(ctlr);
}
size = ROUND(fw->init.data.size, 16) + ROUND(fw->init.text.size, 16);
dma = mallocalign(size, 16, 0, 0);
if(dma == nil)
return "no memory for dma";
if((err = niclock(ctlr)) != nil){
free(dma);
return err;
}
p = dma;
memmove(p, fw->init.data.data, fw->init.data.size);
coherence();
prphwrite(ctlr, BsmDramDataAddr, PCIWADDR(p) >> 4);
prphwrite(ctlr, BsmDramDataSize, fw->init.data.size);
p += ROUND(fw->init.data.size, 16);
memmove(p, fw->init.text.data, fw->init.text.size);
coherence();
prphwrite(ctlr, BsmDramTextAddr, PCIWADDR(p) >> 4);
prphwrite(ctlr, BsmDramTextSize, fw->init.text.size);
nicunlock(ctlr);
if((err = niclock(ctlr)) != nil){
free(dma);
return err;
}
p = fw->boot.text.data;
n = fw->boot.text.size/4;
for(i=0; i<n; i++, p += 4)
prphwrite(ctlr, BsmSramBase+i*4, get32(p));
prphwrite(ctlr, BsmWrMemSrc, 0);
prphwrite(ctlr, BsmWrMemDst, 0);
prphwrite(ctlr, BsmWrDwCount, n);
prphwrite(ctlr, BsmWrCtrl, 1<<31);
for(i=0; i<1000; i++){
if((prphread(ctlr, BsmWrCtrl) & (1<<31)) == 0)
break;
delay(10);
}
if(i == 1000){
nicunlock(ctlr);
free(dma);
return "bootcode timeout";
}
prphwrite(ctlr, BsmWrCtrl, 1<<30);
nicunlock(ctlr);
csr32w(ctlr, Reset, 0);
if(irqwait(ctlr, Ierr|Ialive, 5000) != Ialive){
free(dma);
return "init firmware boot failed";
}
free(dma);
size = ROUND(fw->main.data.size, 16) + ROUND(fw->main.text.size, 16);
dma = mallocalign(size, 16, 0, 0);
if(dma == nil)
return "no memory for dma";
if((err = niclock(ctlr)) != nil){
free(dma);
return err;
}
p = dma;
memmove(p, fw->main.data.data, fw->main.data.size);
coherence();
prphwrite(ctlr, BsmDramDataAddr, PCIWADDR(p) >> 4);
prphwrite(ctlr, BsmDramDataSize, fw->main.data.size);
p += ROUND(fw->main.data.size, 16);
memmove(p, fw->main.text.data, fw->main.text.size);
coherence();
prphwrite(ctlr, BsmDramTextAddr, PCIWADDR(p) >> 4);
prphwrite(ctlr, BsmDramTextSize, fw->main.text.size | (1<<31));
nicunlock(ctlr);
if(irqwait(ctlr, Ierr|Ialive, 5000) != Ialive){
free(dma);
return "main firmware boot failed";
}
free(dma);
return postboot(ctlr);
}
static int
txqready(void *arg)
{
TXQ *q = arg;
return q->n < Ntx;
}
static char*
qcmd(Ctlr *ctlr, uint qid, uint code, uchar *data, int size, Block *block)
{
uchar *d, *c;
TXQ *q;
assert(qid < nelem(ctlr->tx));
assert(size <= Tcmdsize-4);
ilock(ctlr);
q = &ctlr->tx[qid];
while(q->n >= Ntx && !ctlr->broken){
iunlock(ctlr);
qlock(q);
if(!waserror()){
tsleep(q, txqready, q, 10);
poperror();
}
qunlock(q);
ilock(ctlr);
}
if(ctlr->broken){
iunlock(ctlr);
return "qcmd: broken";
}
q->n++;
q->lastcmd = code;
q->b[q->i] = block;
c = q->c + q->i * Tcmdsize;
d = q->d + q->i * Tdscsize;
/* build command */
c[0] = code;
c[1] = 0; /* flags */
c[2] = q->i;
c[3] = qid;
if(size > 0)
memmove(c+4, data, size);
size += 4;
/* build descriptor */
*d++ = 0;
*d++ = 0;
*d++ = 0;
*d++ = 1 + (block != nil); /* nsegs */
put32(d, PCIWADDR(c)); d += 4;
put16(d, size << 4); d += 2;
if(block != nil){
size = BLEN(block);
put32(d, PCIWADDR(block->rp)); d += 4;
put16(d, size << 4);
}
coherence();
q->i = (q->i+1) % Ntx;
csr32w(ctlr, HbusTargWptr, (qid<<8) | q->i);
iunlock(ctlr);
return nil;
}
static int
txqempty(void *arg)
{
TXQ *q = arg;
return q->n == 0;
}
static char*
flushq(Ctlr *ctlr, uint qid)
{
TXQ *q;
int i;
q = &ctlr->tx[qid];
qlock(q);
for(i = 0; i < 200 && !ctlr->broken; i++){
if(txqempty(q)){
qunlock(q);
return nil;
}
if(!waserror()){
tsleep(q, txqempty, q, 10);
poperror();
}
}
qunlock(q);
if(ctlr->broken)
return "flushq: broken";
return "flushq: timeout";
}
static char*
cmd(Ctlr *ctlr, uint code, uchar *data, int size)
{
char *err;
if(0) print("cmd %ud\n", code);
if((err = qcmd(ctlr, 4, code, data, size, nil)) != nil)
return err;
return flushq(ctlr, 4);
}
static void
setled(Ctlr *ctlr, int which, int on, int off)
{
uchar c[8];
csr32w(ctlr, Led, csr32r(ctlr, Led) & ~LedBsmCtrl);
memset(c, 0, sizeof(c));
put32(c, 10000);
c[4] = which;
c[5] = on;
c[6] = off;
cmd(ctlr, 72, c, sizeof(c));
}
static void
addnode(Ctlr *ctlr, uchar id, uchar *addr)
{
uchar c[Tcmdsize], *p;
memset(p = c, 0, sizeof(c));
*p++ = 0; /* control (1 = update) */
p += 3; /* reserved */
memmove(p, addr, 6);
p += 6;
p += 2; /* reserved */
*p++ = id; /* node id */
p++; /* flags */
p += 2; /* reserved */
p += 2; /* kflags */
p++; /* tcs2 */
p++; /* reserved */
p += 5*2; /* ttak */
p++; /* kid */
p++; /* reserved */
p += 16; /* key */
if(ctlr->type != Type4965){
p += 8; /* tcs */
p += 8; /* rxmic */
p += 8; /* txmic */
}
p += 4; /* htflags */
p += 4; /* mask */
p += 2; /* disable tid */
p += 2; /* reserved */
p++; /* add ba tid */
p++; /* del ba tid */
p += 2; /* add ba ssn */
p += 4; /* reserved */
cmd(ctlr, 24, c, p - c);
}
static void
rxon(Ether *edev, Wnode *bss)
{
uchar c[Tcmdsize], *p;
int filter, flags;
Ctlr *ctlr;
char *err;
ctlr = edev->ctlr;
filter = FilterNoDecrypt | FilterMulticast | FilterBeacon;
if(ctlr->prom){
filter |= FilterPromisc;
if(bss != nil)
ctlr->channel = bss->channel;
bss = nil;
}
flags = RFlagTSF | RFlagCTSToSelf | RFlag24Ghz | RFlagAuto;
if(bss != nil){
if(bss->cap & (1<<5))
flags |= RFlagShPreamble;
if(bss->cap & (1<<10))
flags |= RFlagShSlot;
ctlr->channel = bss->channel;
memmove(ctlr->bssid, bss->bssid, Eaddrlen);
ctlr->aid = bss->aid;
if(ctlr->aid != 0){
filter |= FilterBSS;
filter &= ~FilterBeacon;
ctlr->bssnodeid = -1;
} else
ctlr->bcastnodeid = -1;
} else {
memmove(ctlr->bssid, edev->bcast, Eaddrlen);
ctlr->aid = 0;
ctlr->bcastnodeid = -1;
ctlr->bssnodeid = -1;
}
if(ctlr->aid != 0)
setled(ctlr, 2, 0, 1); /* on when associated */
else if(memcmp(ctlr->bssid, edev->bcast, Eaddrlen) != 0)
setled(ctlr, 2, 10, 10); /* slow blink when connecting */
else
setled(ctlr, 2, 5, 5); /* fast blink when scanning */
if(ctlr->wifi->debug)
print("#l%d: rxon: bssid %E, aid %x, channel %d, filter %x, flags %x\n",
edev->ctlrno, ctlr->bssid, ctlr->aid, ctlr->channel, filter, flags);
memset(p = c, 0, sizeof(c));
memmove(p, edev->ea, 6); p += 8; /* myaddr */
memmove(p, ctlr->bssid, 6); p += 8; /* bssid */
memmove(p, edev->ea, 6); p += 8; /* wlap */
*p++ = 3; /* mode (STA) */
*p++ = 0; /* air (?) */
/* rxchain */
put16(p, ((ctlr->rfcfg.rxantmask & 7)<<1) | (2<<10) | (2<<12));
p += 2;
*p++ = 0xff; /* ofdm mask (not yet negotiated) */
*p++ = 0x0f; /* cck mask (not yet negotiated) */
put16(p, ctlr->aid & 0x3fff);
p += 2; /* aid */
put32(p, flags);
p += 4;
put32(p, filter);
p += 4;
*p++ = ctlr->channel;
p++; /* reserved */
*p++ = 0xff; /* ht single mask */
*p++ = 0xff; /* ht dual mask */
if(ctlr->type != Type4965){
*p++ = 0xff; /* ht triple mask */
p++; /* reserved */
put16(p, 0); p += 2; /* acquisition */
p += 2; /* reserved */
}
if((err = cmd(ctlr, 16, c, p - c)) != nil){
print("rxon: %s\n", err);
return;
}
if(ctlr->bcastnodeid == -1){
ctlr->bcastnodeid = (ctlr->type != Type4965) ? 15 : 31;
addnode(ctlr, ctlr->bcastnodeid, edev->bcast);
}
if(ctlr->bssnodeid == -1 && bss != nil && ctlr->aid != 0){
ctlr->bssnodeid = 0;
addnode(ctlr, ctlr->bssnodeid, bss->bssid);
}
}
static struct ratetab {
uchar rate;
uchar plcp;
uchar flags;
} ratetab[] = {
{ 2, 10, RFlagCCK },
{ 4, 20, RFlagCCK },
{ 11, 55, RFlagCCK },
{ 22, 110, RFlagCCK },
{ 12, 0xd, 0 },
{ 18, 0xf, 0 },
{ 24, 0x5, 0 },
{ 36, 0x7, 0 },
{ 48, 0x9, 0 },
{ 72, 0xb, 0 },
{ 96, 0x1, 0 },
{ 108, 0x3, 0 },
{ 120, 0x3, 0 }
};
static uchar iwlrates[] = {
0x80 | 2,
0x80 | 4,
0x80 | 11,
0x80 | 22,
0x80 | 12,
0x80 | 18,
0x80 | 24,
0x80 | 36,
0x80 | 48,
0x80 | 72,
0x80 | 96,
0x80 | 108,
0x80 | 120,
0
};
enum {
TFlagNeedProtection = 1<<0,
TFlagNeedRTS = 1<<1,
TFlagNeedCTS = 1<<2,
TFlagNeedACK = 1<<3,
TFlagLinkq = 1<<4,
TFlagImmBa = 1<<6,
TFlagFullTxOp = 1<<7,
TFlagBtDis = 1<<12,
TFlagAutoSeq = 1<<13,
TFlagMoreFrag = 1<<14,
TFlagInsertTs = 1<<16,
TFlagNeedPadding = 1<<20,
};
static void
transmit(Wifi *wifi, Wnode *wn, Block *b)
{
int flags, nodeid, rate, ant;
uchar c[Tcmdsize], *p;
Ether *edev;
Ctlr *ctlr;
Wifipkt *w;
char *err;
edev = wifi->ether;
ctlr = edev->ctlr;
qlock(ctlr);
if(ctlr->attached == 0 || ctlr->broken){
qunlock(ctlr);
freeb(b);
return;
}
if((wn->channel != ctlr->channel)
|| (!ctlr->prom && (wn->aid != ctlr->aid || memcmp(wn->bssid, ctlr->bssid, Eaddrlen) != 0)))
rxon(edev, wn);
if(b == nil){
/* association note has no data to transmit */
qunlock(ctlr);
return;
}
flags = 0;
nodeid = ctlr->bcastnodeid;
p = wn->minrate;
w = (Wifipkt*)b->rp;
if((w->a1[0] & 1) == 0){
flags |= TFlagNeedACK;
if(BLEN(b) > 512-4)
flags |= TFlagNeedRTS;
if((w->fc[0] & 0x0c) == 0x08 && ctlr->bssnodeid != -1){
nodeid = ctlr->bssnodeid;
p = wn->actrate;
}
if(flags & (TFlagNeedRTS|TFlagNeedCTS)){
if(ctlr->type != Type4965){
flags &= ~(TFlagNeedRTS|TFlagNeedCTS);
flags |= TFlagNeedProtection;
} else
flags |= TFlagFullTxOp;
}
}
qunlock(ctlr);
rate = 0;
if(p >= iwlrates && p < &iwlrates[nelem(ratetab)])
rate = p - iwlrates;
/* select first available antenna */
ant = ctlr->rfcfg.txantmask & 7;
ant |= (ant == 0);
ant = ((ant - 1) & ant) ^ ant;
memset(p = c, 0, sizeof(c));
put16(p, BLEN(b));
p += 2;
p += 2; /* lnext */
put32(p, flags);
p += 4;
put32(p, 0);
p += 4; /* scratch */
*p++ = ratetab[rate].plcp;
*p++ = ratetab[rate].flags | (ant<<6);
p += 2; /* xflags */
*p++ = nodeid;
*p++ = 0; /* security */
*p++ = 0; /* linkq */
p++; /* reserved */
p += 16; /* key */
p += 2; /* fnext */
p += 2; /* reserved */
put32(p, ~0); /* lifetime */
p += 4;
/* BUG: scratch ptr? not clear what this is for */
put32(p, PCIWADDR(ctlr->kwpage));
p += 5;
*p++ = 60; /* rts ntries */
*p++ = 15; /* data ntries */
*p++ = 0; /* tid */
put16(p, 0); /* timeout */
p += 2;
p += 2; /* txop */
if((err = qcmd(ctlr, 0, 28, c, p - c, b)) != nil){
print("transmit: %s\n", err);
freeb(b);
}
}
static long
iwlctl(Ether *edev, void *buf, long n)
{
Ctlr *ctlr;
ctlr = edev->ctlr;
if(n >= 5 && memcmp(buf, "reset", 5) == 0){
ctlr->broken = 1;
return n;
}
if(ctlr->wifi)
return wifictl(ctlr->wifi, buf, n);
return 0;
}
static long
iwlifstat(Ether *edev, void *buf, long n, ulong off)
{
Ctlr *ctlr;
ctlr = edev->ctlr;
if(ctlr->wifi)
return wifistat(ctlr->wifi, buf, n, off);
return 0;
}
static void
setoptions(Ether *edev)
{
Ctlr *ctlr;
int i;
ctlr = edev->ctlr;
for(i = 0; i < edev->nopt; i++)
wificfg(ctlr->wifi, edev->opt[i]);
}
static void
iwlpromiscuous(void *arg, int on)
{
Ether *edev;
Ctlr *ctlr;
edev = arg;
ctlr = edev->ctlr;
qlock(ctlr);
ctlr->prom = on;
rxon(edev, ctlr->wifi->bss);
qunlock(ctlr);
}
static void
iwlmulticast(void *, uchar*, int)
{
}
static void
iwlrecover(void *arg)
{
Ether *edev;
Ctlr *ctlr;
edev = arg;
ctlr = edev->ctlr;
while(waserror())
;
for(;;){
tsleep(&up->sleep, return0, 0, 4000);
qlock(ctlr);
for(;;){
if(ctlr->broken == 0)
break;
if(ctlr->power)
poweroff(ctlr);
if((csr32r(ctlr, Gpc) & RfKill) == 0)
break;
if(reset(ctlr) != nil)
break;
if(boot(ctlr) != nil)
break;
ctlr->bcastnodeid = -1;
ctlr->bssnodeid = -1;
ctlr->aid = 0;
rxon(edev, ctlr->wifi->bss);
break;
}
qunlock(ctlr);
}
}
static void
iwlattach(Ether *edev)
{
FWImage *fw;
Ctlr *ctlr;
char *err;
ctlr = edev->ctlr;
eqlock(ctlr);
if(waserror()){
print("#l%d: %s\n", edev->ctlrno, up->errstr);
if(ctlr->power)
poweroff(ctlr);
qunlock(ctlr);
nexterror();
}
if(ctlr->attached == 0){
if((csr32r(ctlr, Gpc) & RfKill) == 0)
error("wifi disabled by switch");
if(ctlr->wifi == nil){
ctlr->wifi = wifiattach(edev, transmit);
/* tested with 2230, it has transmit issues using higher bit rates */
if(ctlr->type != Type2030)
ctlr->wifi->rates = iwlrates;
}
if(ctlr->fw == nil){
char *fn = fwname[ctlr->type];
if(ctlr->type == Type6005){
switch(ctlr->pdev->did){
case 0x0082: /* Centrino Advanced-N 6205 */
case 0x0085: /* Centrino Advanced-N 6205 */
break;
default: /* Centrino Advanced-N 6030, 6235 */
fn = "iwn-6030";
}
}
fw = readfirmware(fn);
print("#l%d: firmware: %s, rev %ux, build %ud, size %ux+%ux+%ux+%ux+%ux\n",
edev->ctlrno, fn,
fw->rev, fw->build,
fw->main.text.size, fw->main.data.size,
fw->init.text.size, fw->init.data.size,
fw->boot.text.size);
ctlr->fw = fw;
}
if((err = reset(ctlr)) != nil)
error(err);
if((err = boot(ctlr)) != nil)
error(err);
ctlr->bcastnodeid = -1;
ctlr->bssnodeid = -1;
ctlr->channel = 1;
ctlr->aid = 0;
setoptions(edev);
ctlr->attached = 1;
kproc("iwlrecover", iwlrecover, edev);
}
qunlock(ctlr);
poperror();
}
static void
receive(Ctlr *ctlr)
{
Block *b, *bb;
uchar *d;
RXQ *rx;
TXQ *tx;
uint hw;
rx = &ctlr->rx;
if(ctlr->broken || rx->s == nil || rx->b == nil)
return;
bb = nil;
for(hw = get16(rx->s) % Nrx; rx->i != hw; rx->i = (rx->i + 1) % Nrx){
uchar type, flags, idx, qid;
u32int len;
b = rx->b[rx->i];
if(b == nil)
continue;
d = b->rp;
len = get32(d); d += 4;
type = *d++;
flags = *d++;
USED(flags);
idx = *d++;
qid = *d++;
if(bb != nil){
freeb(bb);
bb = nil;
}
if((qid & 0x80) == 0 && qid < nelem(ctlr->tx)){
tx = &ctlr->tx[qid];
if(tx->n > 0){
bb = tx->b[idx];
tx->b[idx] = nil;
tx->n--;
wakeup(tx);
}
}
len &= 0x3fff;
if(len < 4 || type == 0)
continue;
len -= 4;
switch(type){
case 1: /* microcontroller ready */
setfwinfo(ctlr, d, len);
break;
case 24: /* add node done */
break;
case 28: /* tx done */
if(ctlr->type == Type4965){
if(len <= 20 || d[20] == 1 || d[20] == 2)
break;
} else {
if(len <= 32 || d[32] == 1 || d[32] == 2)
break;
}
wifitxfail(ctlr->wifi, bb);
break;
case 102: /* calibration result (Type5000 only) */
if(len < 4)
break;
idx = d[0];
if(idx >= nelem(ctlr->calib.cmd))
break;
if(rbplant(ctlr, rx->i) < 0)
break;
if(ctlr->calib.cmd[idx] != nil)
freeb(ctlr->calib.cmd[idx]);
b->rp = d;
b->wp = d + len;
ctlr->calib.cmd[idx] = b;
continue;
case 103: /* calibration done (Type5000 only) */
ctlr->calib.done = 1;
break;
case 130: /* start scan */
break;
case 132: /* stop scan */
break;
case 156: /* rx statistics */
break;
case 157: /* beacon statistics */
break;
case 161: /* state changed */
break;
case 162: /* beacon missed */
break;
case 192: /* rx phy */
break;
case 195: /* rx done */
if(d + 2 > b->lim)
break;
d += d[1];
d += 56;
case 193: /* mpdu rx done */
if(d + 4 > b->lim)
break;
len = get16(d); d += 4;
if(d + len + 4 > b->lim)
break;
if((get32(d + len) & 3) != 3)
break;
if(ctlr->wifi == nil)
break;
if(rbplant(ctlr, rx->i) < 0)
break;
b->rp = d;
b->wp = d + len;
wifiiq(ctlr->wifi, b);
continue;
case 197: /* rx compressed ba */
break;
}
}
csr32w(ctlr, FhRxWptr, ((hw+Nrx-1) % Nrx) & ~7);
if(bb != nil)
freeb(bb);
}
static void
iwlinterrupt(Ureg*, void *arg)
{
u32int isr, fhisr;
Ether *edev;
Ctlr *ctlr;
edev = arg;
ctlr = edev->ctlr;
ilock(ctlr);
csr32w(ctlr, Imr, 0);
isr = csr32r(ctlr, Isr);
fhisr = csr32r(ctlr, FhIsr);
if(isr == 0xffffffff || (isr & 0xfffffff0) == 0xa5a5a5a0){
iunlock(ctlr);
return;
}
if(isr == 0 && fhisr == 0)
goto done;
csr32w(ctlr, Isr, isr);
csr32w(ctlr, FhIsr, fhisr);
if((isr & (Iswrx | Ifhrx | Irxperiodic)) || (fhisr & Ifhrx))
receive(ctlr);
if(isr & Ierr){
ctlr->broken = 1;
print("#l%d: fatal firmware error\n", edev->ctlrno);
dumpctlr(ctlr);
}
ctlr->wait.m |= isr;
if(ctlr->wait.m & ctlr->wait.w)
wakeup(&ctlr->wait);
done:
csr32w(ctlr, Imr, ctlr->ie);
iunlock(ctlr);
}
static void
iwlshutdown(Ether *edev)
{
Ctlr *ctlr;
ctlr = edev->ctlr;
if(ctlr->power)
poweroff(ctlr);
ctlr->broken = 0;
}
static Ctlr *iwlhead, *iwltail;
static void
iwlpci(void)
{
Pcidev *pdev;
pdev = nil;
while(pdev = pcimatch(pdev, 0, 0)) {
Ctlr *ctlr;
void *mem;
if(pdev->ccrb != 2 || pdev->ccru != 0x80)
continue;
if(pdev->vid != 0x8086)
continue;
switch(pdev->did){
default:
continue;
case 0x0084: /* WiFi Link 1000 */
case 0x4229: /* WiFi Link 4965 */
case 0x4230: /* WiFi Link 4965 */
case 0x4232: /* Wifi Link 5100 */
case 0x4236: /* WiFi Link 5300 AGN */
case 0x4237: /* Wifi Link 5100 AGN */
case 0x4239: /* Centrino Advanced-N 6200 */
case 0x423d: /* Wifi Link 5150 */
case 0x423b: /* PRO/Wireless 5350 AGN */
case 0x0082: /* Centrino Advanced-N 6205 */
case 0x0085: /* Centrino Advanced-N 6205 */
case 0x422b: /* Centrino Ultimate-N 6300 variant 1 */
case 0x4238: /* Centrino Ultimate-N 6300 variant 2 */
case 0x08ae: /* Centrino Wireless-N 100 */
case 0x0083: /* Centrino Wireless-N 1000 */
case 0x0887: /* Centrino Wireless-N 2230 */
case 0x0888: /* Centrino Wireless-N 2230 */
case 0x0090: /* Centrino Advanced-N 6030 */
case 0x0091: /* Centrino Advanced-N 6030 */
case 0x088e: /* Centrino Advanced-N 6235 */
case 0x088f: /* Centrino Advanced-N 6235 */
break;
}
/* Clear device-specific "PCI retry timeout" register (41h). */
if(pcicfgr8(pdev, 0x41) != 0)
pcicfgw8(pdev, 0x41, 0);
/* Clear interrupt disable bit. Hardware bug workaround. */
if(pdev->pcr & 0x400){
pdev->pcr &= ~0x400;
pcicfgw16(pdev, PciPCR, pdev->pcr);
}
pcisetbme(pdev);
pcisetpms(pdev, 0);
ctlr = malloc(sizeof(Ctlr));
if(ctlr == nil) {
print("iwl: unable to alloc Ctlr\n");
continue;
}
ctlr->port = pdev->mem[0].bar & ~0x0F;
mem = vmap(pdev->mem[0].bar & ~0x0F, pdev->mem[0].size);
if(mem == nil) {
print("iwl: can't map %8.8luX\n", pdev->mem[0].bar);
free(ctlr);
continue;
}
ctlr->nic = mem;
ctlr->pdev = pdev;
ctlr->type = (csr32r(ctlr, Rev) >> 4) & 0x1F;
if(fwname[ctlr->type] == nil){
print("iwl: unsupported controller type %d\n", ctlr->type);
vunmap(mem, pdev->mem[0].size);
free(ctlr);
continue;
}
if(iwlhead != nil)
iwltail->link = ctlr;
else
iwlhead = ctlr;
iwltail = ctlr;
}
}
static int
iwlpnp(Ether* edev)
{
Ctlr *ctlr;
if(iwlhead == nil)
iwlpci();
again:
for(ctlr = iwlhead; ctlr != nil; ctlr = ctlr->link){
if(ctlr->active)
continue;
if(edev->port == 0 || edev->port == ctlr->port){
ctlr->active = 1;
break;
}
}
if(ctlr == nil)
return -1;
edev->ctlr = ctlr;
edev->port = ctlr->port;
edev->irq = ctlr->pdev->intl;
edev->tbdf = ctlr->pdev->tbdf;
edev->arg = edev;
edev->interrupt = iwlinterrupt;
edev->attach = iwlattach;
edev->ifstat = iwlifstat;
edev->ctl = iwlctl;
edev->shutdown = iwlshutdown;
edev->promiscuous = iwlpromiscuous;
edev->multicast = iwlmulticast;
edev->mbps = 54;
if(iwlinit(edev) < 0){
edev->ctlr = nil;
goto again;
}
return 0;
}
void
etheriwllink(void)
{
addethercard("iwl", iwlpnp);
}