plan9fox/sys/src/9/pc/l.s

1345 lines
30 KiB
ArmAsm

#include "mem.h"
#undef DELAY
#define PADDR(a) ((a) & ~KZERO)
#define KADDR(a) (KZERO|(a))
/*
* Some machine instructions not handled by 8[al].
*/
#define OP16 BYTE $0x66
#define DELAY BYTE $0xEB; BYTE $0x00 /* JMP .+2 */
#define CPUID BYTE $0x0F; BYTE $0xA2 /* CPUID, argument in AX */
#define WRMSR BYTE $0x0F; BYTE $0x30 /* WRMSR, argument in AX/DX (lo/hi) */
#define RDTSC BYTE $0x0F; BYTE $0x31 /* RDTSC, result in AX/DX (lo/hi) */
#define RDMSR BYTE $0x0F; BYTE $0x32 /* RDMSR, result in AX/DX (lo/hi) */
#define HLT BYTE $0xF4
#define INVLPG BYTE $0x0F; BYTE $0x01; BYTE $0x39 /* INVLPG (%ecx) */
#define WBINVD BYTE $0x0F; BYTE $0x09
#define VectorSYSCALL 0x40
/*
* Macros for calculating offsets within the page directory base
* and page tables. Note that these are assembler-specific hence
* the '<<2'.
*/
#define PDO(a) (((((a))>>22) & 0x03FF)<<2)
#define PTO(a) (((((a))>>12) & 0x03FF)<<2)
/*
* For backwards compatiblity with 9load - should go away when 9load is changed
* 9load currently sets up the mmu, however the first 16MB of memory is identity
* mapped, so behave as if the mmu was not setup
*/
TEXT _startKADDR(SB), $0
MOVL $_startPADDR(SB), AX
ANDL $~KZERO, AX
JMP* AX
/*
* Must be 4-byte aligned.
*/
TEXT _multibootheader(SB), $0
LONG $0x1BADB002 /* magic */
LONG $0x00010007 /* flags */
LONG $-(0x1BADB002 + 0x00010007) /* checksum */
LONG $_multibootheader-KZERO(SB) /* header_addr */
LONG $_startKADDR-KZERO(SB) /* load_addr */
LONG $edata-KZERO(SB) /* load_end_addr */
LONG $end-KZERO(SB) /* bss_end_addr */
LONG $_multibootentry-KZERO(SB) /* entry_addr */
LONG $0 /* mode_type */
LONG $0 /* width */
LONG $0 /* height */
LONG $32 /* depth */
/*
* the kernel expects the data segment to be page-aligned
* multiboot bootloaders put the data segment right behind text
*/
TEXT _multibootentry(SB), $0
MOVL $etext-KZERO(SB), SI
MOVL SI, DI
ADDL $0xfff, DI
ANDL $~0xfff, DI
MOVL $edata-KZERO(SB), CX
SUBL DI, CX
ADDL CX, SI
ADDL CX, DI
INCL CX /* one more for post decrement */
STD
REP; MOVSB
MOVL BX, multibootptr-KZERO(SB)
MOVL $_startPADDR(SB), AX
ANDL $~KZERO, AX
JMP* AX
/* multiboot structure pointer (physical address) */
TEXT multibootptr(SB), $0
LONG $0
/*
* In protected mode with paging turned off and segment registers setup
* to linear map all memory. Entered via a jump to PADDR(entry),
* the physical address of the virtual kernel entry point of KADDR(entry).
* Make the basic page tables for processor 0. Six pages are needed for
* the basic set:
* a page directory;
* page tables for mapping the first 8MB of physical memory to KZERO;
* a page for the GDT;
* virtual and physical pages for mapping the Mach structure.
* The remaining PTEs will be allocated later when memory is sized.
* An identity mmu map is also needed for the switch to virtual mode.
* This identity mapping is removed once the MMU is going and the JMP has
* been made to virtual memory.
*/
TEXT _startPADDR(SB), $0
CLI /* make sure interrupts are off */
/* set up the gdt so we have sane plan 9 style gdts. */
MOVL $tgdtptr(SB), AX
ANDL $~KZERO, AX
MOVL (AX), GDTR
MOVW $1, AX
MOVW AX, MSW
/* clear prefetch queue (weird code to avoid optimizations) */
DELAY
/* set segs to something sane (avoid traps later) */
MOVW $(1<<3), AX
MOVW AX, DS
MOVW AX, SS
MOVW AX, ES
MOVW AX, FS
MOVW AX, GS
/* JMP $(2<<3):$mode32bit(SB) /**/
BYTE $0xEA
LONG $mode32bit-KZERO(SB)
WORD $(2<<3)
/*
* gdt to get us to 32-bit/segmented/unpaged mode
*/
TEXT tgdt(SB), $0
/* null descriptor */
LONG $0
LONG $0
/* data segment descriptor for 4 gigabytes (PL 0) */
LONG $(0xFFFF)
LONG $(SEGG|SEGB|(0xF<<16)|SEGP|SEGPL(0)|SEGDATA|SEGW)
/* exec segment descriptor for 4 gigabytes (PL 0) */
LONG $(0xFFFF)
LONG $(SEGG|SEGD|(0xF<<16)|SEGP|SEGPL(0)|SEGEXEC|SEGR)
/*
* pointer to initial gdt
* Note the -KZERO which puts the physical address in the gdtptr.
* that's needed as we start executing in physical addresses.
*/
TEXT tgdtptr(SB), $0
WORD $(3*8)
LONG $tgdt-KZERO(SB)
TEXT m0rgdtptr(SB), $0
WORD $(NGDT*8-1)
LONG $(CPU0GDT-KZERO)
TEXT m0gdtptr(SB), $0
WORD $(NGDT*8-1)
LONG $CPU0GDT
TEXT m0idtptr(SB), $0
WORD $(256*8-1)
LONG $IDTADDR
TEXT mode32bit(SB), $0
/* At this point, the GDT setup is done. */
MOVL $((CPU0END-CPU0PDB)>>2), CX
MOVL $PADDR(CPU0PDB), DI
XORL AX, AX
CLD
REP; STOSL
MOVL $PADDR(CPU0PTE), DX
MOVL $(PTEWRITE|PTEVALID), BX /* page permissions */
ORL BX, DX
MOVL $PADDR(CPU0PDB), AX
ADDL $PDO(KZERO), AX /* page directory offset for KZERO */
MOVL DX, 0(AX) /* PTE's for KZERO */
ADDL $BY2PG, DX
MOVL DX, 4(AX) /* PTE's for KZERO+4MB */
ADDL $BY2PG, DX
MOVL DX, 8(AX) /* PTE's for KZERO+8MB */
ADDL $BY2PG, DX
MOVL DX, 12(AX) /* PTE's for KZERO+12MB */
MOVL $PADDR(CPU0PTE), AX /* first page of page table */
MOVL $end-KZERO(SB), CX
ADDL $(16*1024), CX /* qemu puts multiboot data after the kernel */
ADDL $(BY2XPG-1), CX
ANDL $~(BY2XPG-1), CX /* round to 4MB */
MOVL CX, MemMin-KZERO(SB) /* see memory.c */
SHRL $PGSHIFT, CX
MOVL BX, DX
_setpte:
MOVL DX, (AX)
ADDL $BY2PG, DX
ADDL $4, AX
LOOP _setpte
MOVL $PADDR(CPU0PTE), AX
ADDL $PTO(MACHADDR), AX /* page table entry offset for MACHADDR */
ORL $PADDR(CPU0MACH), BX
MOVL BX, (AX) /* PTE for Mach */
/*
* Now ready to use the new map. Make sure the processor options are what is wanted.
* It is necessary on some processors to immediately follow mode switching with a JMP instruction
* to clear the prefetch queues.
*/
MOVL $PADDR(CPU0PDB), CX /* load address of page directory */
MOVL (PDO(KZERO))(CX), DX /* double-map KZERO at 0 */
MOVL DX, (PDO(0))(CX)
MOVL CX, CR3
DELAY /* JMP .+2 */
MOVL CR0, DX
ORL $0x80010000, DX /* PG|WP */
ANDL $~0x6000000A, DX /* ~(CD|NW|TS|MP) */
MOVL $_startpg(SB), AX /* this is a virtual address */
MOVL DX, CR0 /* turn on paging */
JMP* AX /* jump to the virtual nirvana */
/*
* Basic machine environment set, can clear BSS and create a stack.
* The stack starts at the top of the page containing the Mach structure.
* The x86 architecture forces the use of the same virtual address for
* each processor's Mach structure, so the global Mach pointer 'm' can
* be initialised here.
*/
TEXT _startpg(SB), $0
MOVL $0, (PDO(0))(CX) /* undo double-map of KZERO at 0 */
MOVL CX, CR3 /* load and flush the mmu */
_clearbss:
MOVL $edata(SB), DI
XORL AX, AX
MOVL $end(SB), CX
SUBL DI, CX /* end-edata bytes */
SHRL $2, CX /* end-edata doublewords */
CLD
REP; STOSL /* clear BSS */
MOVL $MACHADDR, SP
MOVL SP, m(SB) /* initialise global Mach pointer */
MOVL $0, 0(SP) /* initialise m->machno */
ADDL $(MACHSIZE-4), SP /* initialise stack */
/*
* Need to do one final thing to ensure a clean machine environment,
* clear the EFLAGS register, which can only be done once there is a stack.
*/
MOVL $0, AX
PUSHL AX
POPFL
CALL main(SB)
/*
* Park a processor. Should never fall through a return from main to here,
* should only be called by application processors when shutting down.
*/
TEXT idle(SB), $0
_idle:
STI
HLT
JMP _idle
TEXT load_fs(SB), $0
MOVW fs+0(FP), AX
MOVW AX, FS
RET
TEXT load_gs(SB), $0
MOVW gs+0(FP), AX
MOVW AX, GS
RET
/*
* BIOS32.
*/
TEXT bios32call(SB), $0
MOVL ci+0(FP), BP
MOVL 0(BP), AX
MOVL 4(BP), BX
MOVL 8(BP), CX
MOVL 12(BP), DX
MOVL 16(BP), SI
MOVL 20(BP), DI
PUSHL BP
MOVL 12(SP), BP /* ptr */
BYTE $0xFF; BYTE $0x5D; BYTE $0x00 /* CALL FAR 0(BP) */
POPL BP
MOVL DI, 20(BP)
MOVL SI, 16(BP)
MOVL DX, 12(BP)
MOVL CX, 8(BP)
MOVL BX, 4(BP)
MOVL AX, 0(BP)
XORL AX, AX
JCC _bios32xxret
INCL AX
_bios32xxret:
RET
/*
* Port I/O.
* in[bsl] input a byte|short|long
* ins[bsl] input a string of bytes|shorts|longs
* out[bsl] output a byte|short|long
* outs[bsl] output a string of bytes|shorts|longs
*/
TEXT inb(SB), $0
MOVL port+0(FP), DX
XORL AX, AX
INB
RET
TEXT insb(SB), $0
MOVL port+0(FP), DX
MOVL address+4(FP), DI
MOVL count+8(FP), CX
CLD
REP; INSB
RET
TEXT ins(SB), $0
MOVL port+0(FP), DX
XORL AX, AX
OP16; INL
RET
TEXT inss(SB), $0
MOVL port+0(FP), DX
MOVL address+4(FP), DI
MOVL count+8(FP), CX
CLD
REP; OP16; INSL
RET
TEXT inl(SB), $0
MOVL port+0(FP), DX
INL
RET
TEXT insl(SB), $0
MOVL port+0(FP), DX
MOVL address+4(FP), DI
MOVL count+8(FP), CX
CLD
REP; INSL
RET
TEXT outb(SB), $0
MOVL port+0(FP), DX
MOVL byte+4(FP), AX
OUTB
RET
TEXT outsb(SB), $0
MOVL port+0(FP), DX
MOVL address+4(FP), SI
MOVL count+8(FP), CX
CLD
REP; OUTSB
RET
TEXT outs(SB), $0
MOVL port+0(FP), DX
MOVL short+4(FP), AX
OP16; OUTL
RET
TEXT outss(SB), $0
MOVL port+0(FP), DX
MOVL address+4(FP), SI
MOVL count+8(FP), CX
CLD
REP; OP16; OUTSL
RET
TEXT outl(SB), $0
MOVL port+0(FP), DX
MOVL long+4(FP), AX
OUTL
RET
TEXT outsl(SB), $0
MOVL port+0(FP), DX
MOVL address+4(FP), SI
MOVL count+8(FP), CX
CLD
REP; OUTSL
RET
/*
* Read/write various system registers.
* CR4 and the 'model specific registers' should only be read/written
* after it has been determined the processor supports them
*/
TEXT lgdt(SB), $0 /* GDTR - global descriptor table */
MOVL gdtptr+0(FP), AX
MOVL (AX), GDTR
RET
TEXT lldt(SB), $0 /* LDTR - local descriptor table */
MOVL sel+0(FP), AX
BYTE $0x0F; BYTE $0x00; BYTE $0xD0 /* LLDT AX */
RET
TEXT lidt(SB), $0 /* IDTR - interrupt descriptor table */
MOVL idtptr+0(FP), AX
MOVL (AX), IDTR
RET
TEXT ltr(SB), $0 /* TR - task register */
MOVL tptr+0(FP), AX
MOVW AX, TASK
RET
TEXT getcr0(SB), $0 /* CR0 - processor control */
MOVL CR0, AX
RET
TEXT getcr2(SB), $0 /* CR2 - page fault linear address */
MOVL CR2, AX
RET
TEXT putcr2(SB), $0
MOVL cr2+0(FP), AX
MOVL AX, CR2
RET
TEXT getcr3(SB), $0 /* CR3 - page directory base */
MOVL CR3, AX
RET
TEXT putcr0(SB), $0
MOVL cr0+0(FP), AX
MOVL AX, CR0
RET
TEXT putcr3(SB), $0
MOVL cr3+0(FP), AX
MOVL AX, CR3
RET
TEXT getcr4(SB), $0 /* CR4 - extensions */
MOVL CR4, AX
RET
TEXT putcr4(SB), $0
MOVL cr4+0(FP), AX
MOVL AX, CR4
RET
TEXT invlpg(SB), $0
/* 486+ only */
MOVL va+0(FP), CX
INVLPG
RET
TEXT wbinvd(SB), $0
WBINVD
RET
TEXT _cycles(SB), $0 /* time stamp counter */
RDTSC
MOVL vlong+0(FP), CX /* &vlong */
MOVL AX, 0(CX) /* lo */
MOVL DX, 4(CX) /* hi */
RET
/*
* stub for:
* time stamp counter; low-order 32 bits of 64-bit cycle counter
* Runs at fasthz/4 cycles per second (m->clkin>>3)
*/
TEXT lcycles(SB),1,$0
RDTSC
RET
TEXT rdmsr(SB), $0 /* model-specific register */
MOVL $0, BP
MOVL index+0(FP), CX
TEXT _rdmsrinst(SB), $0
RDMSR
MOVL vlong+4(FP), CX /* &vlong */
MOVL AX, 0(CX) /* lo */
MOVL DX, 4(CX) /* hi */
MOVL BP, AX /* BP set to -1 if traped */
RET
TEXT wrmsr(SB), $0
MOVL $0, BP
MOVL index+0(FP), CX
MOVL lo+4(FP), AX
MOVL hi+8(FP), DX
TEXT _wrmsrinst(SB), $0
WRMSR
MOVL BP, AX /* BP set to -1 if traped */
RET
/* fault-proof memcpy */
TEXT peek(SB), $0
MOVL src+0(FP), SI
MOVL dst+4(FP), DI
MOVL cnt+8(FP), CX
CLD
TEXT _peekinst(SB), $0
REP; MOVSB
MOVL CX, AX
RET
/*
* Try to determine the CPU type which requires fiddling with EFLAGS.
* If the Id bit can be toggled then the CPUID instruction can be used
* to determine CPU identity and features. First have to check if it's
* a 386 (Ac bit can't be set). If it's not a 386 and the Id bit can't be
* toggled then it's an older 486 of some kind.
*
* cpuid(fun, regs[4]);
*/
TEXT cpuid(SB), $0
MOVL $0x240000, AX
PUSHL AX
POPFL /* set Id|Ac */
PUSHFL
POPL BX /* retrieve value */
MOVL $0, AX
PUSHL AX
POPFL /* clear Id|Ac, EFLAGS initialised */
PUSHFL
POPL AX /* retrieve value */
XORL BX, AX
TESTL $0x040000, AX /* Ac */
JZ _cpu386 /* can't set this bit on 386 */
TESTL $0x200000, AX /* Id */
JZ _cpu486 /* can't toggle this bit on some 486 */
MOVL fn+0(FP), AX
CPUID
JMP _cpuid
_cpu486:
MOVL $0x400, AX
JMP _maybezapax
_cpu386:
MOVL $0x300, AX
_maybezapax:
CMPL fn+0(FP), $1
JE _zaprest
XORL AX, AX
_zaprest:
XORL BX, BX
XORL CX, CX
XORL DX, DX
_cpuid:
MOVL regs+4(FP), BP
MOVL AX, 0(BP)
MOVL BX, 4(BP)
MOVL CX, 8(BP)
MOVL DX, 12(BP)
RET
/*
* Basic timing loop to determine CPU frequency.
*/
TEXT aamloop(SB), $0
MOVL count+0(FP), CX
_aamloop:
AAM
LOOP _aamloop
RET
/*
* Floating point.
* Note: the encodings for the FCLEX, FINIT, FSAVE, FSTCW, FSENV and FSTSW
* instructions do NOT have the WAIT prefix byte (i.e. they act like their
* FNxxx variations) so WAIT instructions must be explicitly placed in the
* code as necessary.
*/
#define FPOFF ;\
MOVL CR0, AX ;\
ORL $0x28, AX /* NE=1, TS=1 */ ;\
MOVL AX, CR0
#define FPON ;\
MOVL CR0, AX ;\
ANDL $~0xC, AX /* EM=0, TS=0 */ ;\
MOVL AX, CR0
TEXT fpoff(SB), $0 /* disable */
FPOFF
RET
TEXT fpinit(SB), $0 /* enable and init */
FPON
FINIT
WAIT
/* setfcr(FPPDBL|FPRNR|FPINVAL|FPZDIV|FPOVFL) */
/* note that low 6 bits are masks, not enables, on this chip */
PUSHW $0x0232
FLDCW 0(SP)
POPW AX
WAIT
RET
TEXT fpx87save0(SB), $0 /* save state and disable */
MOVL p+0(FP), AX
FSAVE 0(AX) /* no WAIT */
FPOFF
RET
TEXT fpx87restore0(SB), $0 /* enable and restore state */
FPON
MOVL p+0(FP), AX
FRSTOR 0(AX)
WAIT
RET
TEXT fpclear(SB), $0 /* clear pending exceptions */
FPON
FCLEX /* no WAIT */
FPOFF
RET
TEXT fpssesave(SB), $0 /* save state and disable */
MOVL p+0(FP), AX
FXSAVE 0(AX) /* no WAIT */
FPOFF
RET
TEXT fpsserestore(SB), $0 /* enable and restore state */
FPON
MOVL p+0(FP), AX
FXRSTOR 0(AX)
WAIT
RET
TEXT ldmxcsr(SB), $0 /* Load MXCSR */
LDMXCSR mxcsr+0(FP)
RET
/*
*/
TEXT splhi(SB), $0
shi:
PUSHFL
POPL AX
TESTL $0x200, AX
JZ alreadyhi
MOVL $(MACHADDR+0x04), CX /* save PC in m->splpc */
MOVL (SP), BX
MOVL BX, (CX)
alreadyhi:
CLI
RET
TEXT spllo(SB), $0
slo:
PUSHFL
POPL AX
TESTL $0x200, AX
JNZ alreadylo
MOVL $(MACHADDR+0x04), CX /* clear m->splpc */
MOVL $0, (CX)
alreadylo:
STI
RET
TEXT splx(SB), $0
MOVL s+0(FP), AX
TESTL $0x200, AX
JNZ slo
JMP shi
TEXT spldone(SB), $0
RET
TEXT islo(SB), $0
PUSHFL
POPL AX
ANDL $0x200, AX /* interrupt enable flag */
RET
/*
* Test-And-Set
*/
TEXT tas(SB), $0
TEXT _tas(SB), $0
MOVL $0xDEADDEAD, AX
MOVL lock+0(FP), BX
XCHGL AX, (BX) /* lock->key */
RET
TEXT mb386(SB), $0
POPL AX /* return PC */
PUSHFL
PUSHL CS
PUSHL AX
IRETL
TEXT mb586(SB), $0
XORL AX, AX
CPUID
RET
TEXT sfence(SB), $0
BYTE $0x0f
BYTE $0xae
BYTE $0xf8
RET
TEXT lfence(SB), $0
BYTE $0x0f
BYTE $0xae
BYTE $0xe8
RET
TEXT mfence(SB), $0
BYTE $0x0f
BYTE $0xae
BYTE $0xf0
RET
TEXT xchgw(SB), $0
MOVL v+4(FP), AX
MOVL p+0(FP), BX
XCHGW AX, (BX)
RET
TEXT cmpswap486(SB), $0
MOVL addr+0(FP), BX
MOVL old+4(FP), AX
MOVL new+8(FP), CX
LOCK
BYTE $0x0F; BYTE $0xB1; BYTE $0x0B /* CMPXCHGL CX, (BX) */
JNZ didnt
MOVL $1, AX
RET
didnt:
XORL AX,AX
RET
TEXT mul64fract(SB), $0
/*
* Multiply two 64-bit number s and keep the middle 64 bits from the 128-bit result
* See ../port/tod.c for motivation.
*/
MOVL r+0(FP), CX
XORL BX, BX /* BX = 0 */
MOVL a+8(FP), AX
MULL b+16(FP) /* a1*b1 */
MOVL AX, 4(CX) /* r2 = lo(a1*b1) */
MOVL a+8(FP), AX
MULL b+12(FP) /* a1*b0 */
MOVL AX, 0(CX) /* r1 = lo(a1*b0) */
ADDL DX, 4(CX) /* r2 += hi(a1*b0) */
MOVL a+4(FP), AX
MULL b+16(FP) /* a0*b1 */
ADDL AX, 0(CX) /* r1 += lo(a0*b1) */
ADCL DX, 4(CX) /* r2 += hi(a0*b1) + carry */
MOVL a+4(FP), AX
MULL b+12(FP) /* a0*b0 */
ADDL DX, 0(CX) /* r1 += hi(a0*b0) */
ADCL BX, 4(CX) /* r2 += carry */
RET
/*
* label consists of a stack pointer and a PC
*/
TEXT gotolabel(SB), $0
MOVL label+0(FP), AX
MOVL 0(AX), SP /* restore sp */
MOVL 4(AX), AX /* put return pc on the stack */
MOVL AX, 0(SP)
MOVL $1, AX /* return 1 */
RET
TEXT setlabel(SB), $0
MOVL label+0(FP), AX
MOVL SP, 0(AX) /* store sp */
MOVL 0(SP), BX /* store return pc */
MOVL BX, 4(AX)
MOVL $0, AX /* return 0 */
RET
/*
* Attempt at power saving. -rsc
*/
TEXT halt(SB), $0
CLI
CMPL nrdy(SB), $0
JEQ _nothingready
STI
RET
_nothingready:
STI
HLT
RET
TEXT mwait(SB), $0
MOVL addr+0(FP), AX
MOVL (AX), CX
ORL CX, CX
JNZ _mwaitdone
XORL DX, DX
BYTE $0x0f; BYTE $0x01; BYTE $0xc8 /* MONITOR */
MOVL (AX), CX
ORL CX, CX
JNZ _mwaitdone
XORL AX, AX
BYTE $0x0f; BYTE $0x01; BYTE $0xc9 /* MWAIT */
_mwaitdone:
RET
#define RDRANDAX BYTE $0x0f; BYTE $0xc7; BYTE $0xf0
TEXT rdrand32(SB), $-4
_rloop32:
RDRANDAX
JCC _rloop32
RET
TEXT rdrandbuf(SB), $0
MOVL buf+0(FP), DI
MOVL cnt+4(FP), CX
CLD
MOVL CX, DX
SHRL $2, CX
CMPL CX, $0
JE _rndleft
_rnddwords:
CALL rdrand32(SB)
STOSL
LOOP _rnddwords
_rndleft:
MOVL DX, CX
ANDL $3, CX
CMPL CX, $0
JE _rnddone
_rndbytes:
CALL rdrand32(SB)
STOSB
LOOP _rndbytes
_rnddone:
RET
/* debug register access */
TEXT putdr(SB), $0
MOVL p+0(FP), SI
MOVL 28(SI), AX
MOVL AX, DR7
_putdr01236:
MOVL 0(SI), AX
MOVL AX, DR0
MOVL 4(SI), AX
MOVL AX, DR1
MOVL 8(SI), AX
MOVL AX, DR2
MOVL 12(SI), AX
MOVL AX, DR3
MOVL 24(SI), AX
MOVL AX, DR6
RET
TEXT putdr01236(SB), $0
MOVL p+0(FP), SI
JMP _putdr01236
TEXT getdr6(SB), $0
MOVL DR6, AX
RET
TEXT putdr6(SB), $0
MOVL p+0(FP), AX
MOVL AX, DR6
RET
TEXT putdr7(SB), $0
MOVL p+0(FP), AX
MOVL AX, DR7
RET
/* VMX instructions */
TEXT vmxon(SB), $0
/* VMXON 4(SP) */
BYTE $0xf3; BYTE $0x0f; BYTE $0xc7; BYTE $0x74; BYTE $0x24; BYTE $0x04
JMP _vmout
TEXT vmxoff(SB), $0
BYTE $0x0f; BYTE $0x01; BYTE $0xc4
JMP _vmout
TEXT vmclear(SB), $0
/* VMCLEAR 4(SP) */
BYTE $0x66; BYTE $0x0f; BYTE $0xc7; BYTE $0x74; BYTE $0x24; BYTE $0x04
JMP _vmout
TEXT vmlaunch(SB), $0
MOVL $0x6C14, DI
MOVL SP, DX
BYTE $0x0f; BYTE $0x79; BYTE $0xfa /* VMWRITE DX, DI */
JBE _vmout
MOVL $0x6C16, DI
MOVL $vmrestore(SB), DX
BYTE $0x0f; BYTE $0x79; BYTE $0xfa /* VMWRITE DX, DI */
JBE _vmout
MOVL resume+4(FP), AX
TESTL AX, AX
MOVL ureg+0(FP), DI
MOVL 4(DI), SI
MOVL 8(DI), BP
MOVL 16(DI), BX
MOVL 20(DI), DX
MOVL 24(DI), CX
MOVL 28(DI), AX
MOVL 0(DI), DI
JNE _vmresume
BYTE $0x0f; BYTE $0x01; BYTE $0xc2 /* VMLAUNCH */
JMP _vmout
_vmresume:
BYTE $0x0f; BYTE $0x01; BYTE $0xc3 /* VMRESUME */
JMP _vmout
TEXT vmrestore(SB), $0
PUSHL DI
MOVL ureg+0(FP), DI
POPL 0(DI)
MOVL SI, 4(DI)
MOVL BP, 8(DI)
MOVL BX, 16(DI)
MOVL DX, 20(DI)
MOVL CX, 24(DI)
MOVL AX, 28(DI)
XORL AX, AX
RET
TEXT vmptrld(SB), $0
/* VMPTRLD 4(SP) */
BYTE $0x0f; BYTE $0xc7; BYTE $0x74; BYTE $0x24; BYTE $0x04
JMP _vmout
TEXT vmwrite(SB), $0
MOVL addr+0(FP),DI
MOVL val+4(FP),DX
/* VMWRITE DX, DI */
BYTE $0x0f; BYTE $0x79; BYTE $0xfa
JMP _vmout
TEXT vmread(SB), $0
MOVL addr+0(FP),DI
MOVL valp+4(FP),SI
/* VMREAD (SI), DI */
BYTE $0x0f; BYTE $0x78; BYTE $0x3e
JMP _vmout
TEXT invept(SB), $0
MOVL type+0(FP), AX
/* INVEPT AX, 8(SP) */
BYTE $0x66; BYTE $0x0f; BYTE $0x38; BYTE $0x80; BYTE $0x44; BYTE $0x24; BYTE $0x08
JMP _vmout
TEXT invvpid(SB), $0
MOVL type+0(FP), AX
/* INVVPID AX, 8(SP) */
BYTE $0x66; BYTE $0x0f; BYTE $0x38; BYTE $0x81; BYTE $0x44; BYTE $0x24; BYTE $0x08
JMP _vmout
_vmout:
JC _vmout1
JZ _vmout2
XORL AX, AX
RET
_vmout1:
MOVL $-1, AX
RET
_vmout2:
MOVL $-2, AX
RET
/*
* Used to get to the first process:
* set up an interrupt return frame and IRET to user level.
*/
TEXT touser(SB), $0
PUSHL $(UDSEL) /* old ss */
MOVL sp+0(FP), AX /* old sp */
PUSHL AX
MOVL $0x200, AX /* interrupt enable flag */
PUSHL AX /* old flags */
PUSHL $(UESEL) /* old cs */
PUSHL $(UTZERO+32) /* old pc */
MOVL $(UDSEL), AX
MOVW AX, DS
MOVW AX, ES
MOVW AX, GS
MOVW AX, FS
IRETL
/*
* Interrupt/exception handling.
* Each entry in the vector table calls either _strayintr or _strayintrx depending
* on whether an error code has been automatically pushed onto the stack
* (_strayintrx) or not, in which case a dummy entry must be pushed before retrieving
* the trap type from the vector table entry and placing it on the stack as part
* of the Ureg structure.
* The size of each entry in the vector table (6 bytes) is known in trapinit().
*/
TEXT _strayintr(SB), $0
PUSHL AX /* save AX */
MOVL 4(SP), AX /* return PC from vectortable(SB) */
JMP intrcommon
TEXT _strayintrx(SB), $0
XCHGL AX, (SP) /* swap AX with vectortable CALL PC */
intrcommon:
PUSHL DS /* save DS */
PUSHL $(KDSEL)
POPL DS /* fix up DS */
MOVBLZX (AX), AX /* trap type -> AX */
XCHGL AX, 4(SP) /* exchange trap type with saved AX */
PUSHL ES /* save ES */
PUSHL $(KDSEL)
POPL ES /* fix up ES */
PUSHL FS /* save the rest of the Ureg struct */
PUSHL GS
PUSHAL
PUSHL SP /* Ureg* argument to trap */
CALL trap(SB)
TEXT forkret(SB), $0
POPL AX
POPAL
TEXT _forkretpopgs(SB), $0
POPL GS
TEXT _forkretpopfs(SB), $0
POPL FS
TEXT _forkretpopes(SB), $0
POPL ES
TEXT _forkretpopds(SB), $0
POPL DS
ADDL $8, SP /* pop error code and trap type */
TEXT _forkretiret(SB), $0
IRETL
/*
* This is merely _strayintr optimised to vector
* to syscall() without going through trap().
*/
TEXT _syscallintr(SB), $0
PUSHL $VectorSYSCALL /* trap type */
PUSHL DS
PUSHL ES
PUSHL FS
PUSHL GS
PUSHAL
MOVL $(KDSEL), AX
MOVW AX, DS
MOVW AX, ES
MOVL $syscall(SB), AX
PUSHL SP /* Ureg* argument to syscall */
PUSHL $forkret(SB) /* return pc */
JMP *AX
TEXT vectortable(SB), $0
CALL _strayintr(SB); BYTE $0x00 /* divide error */
CALL _strayintr(SB); BYTE $0x01 /* debug exception */
CALL _strayintr(SB); BYTE $0x02 /* NMI interrupt */
CALL _strayintr(SB); BYTE $0x03 /* breakpoint */
CALL _strayintr(SB); BYTE $0x04 /* overflow */
CALL _strayintr(SB); BYTE $0x05 /* bound */
CALL _strayintr(SB); BYTE $0x06 /* invalid opcode */
CALL _strayintr(SB); BYTE $0x07 /* no coprocessor available */
CALL _strayintrx(SB); BYTE $0x08 /* double fault */
CALL _strayintr(SB); BYTE $0x09 /* coprocessor segment overflow */
CALL _strayintrx(SB); BYTE $0x0A /* invalid TSS */
CALL _strayintrx(SB); BYTE $0x0B /* segment not available */
CALL _strayintrx(SB); BYTE $0x0C /* stack exception */
CALL _strayintrx(SB); BYTE $0x0D /* general protection error */
CALL _strayintrx(SB); BYTE $0x0E /* page fault */
CALL _strayintr(SB); BYTE $0x0F /* */
CALL _strayintr(SB); BYTE $0x10 /* coprocessor error */
CALL _strayintrx(SB); BYTE $0x11 /* alignment check */
CALL _strayintr(SB); BYTE $0x12 /* machine check */
CALL _strayintr(SB); BYTE $0x13 /* simd error */
CALL _strayintr(SB); BYTE $0x14
CALL _strayintr(SB); BYTE $0x15
CALL _strayintr(SB); BYTE $0x16
CALL _strayintr(SB); BYTE $0x17
CALL _strayintr(SB); BYTE $0x18
CALL _strayintr(SB); BYTE $0x19
CALL _strayintr(SB); BYTE $0x1A
CALL _strayintr(SB); BYTE $0x1B
CALL _strayintr(SB); BYTE $0x1C
CALL _strayintr(SB); BYTE $0x1D
CALL _strayintr(SB); BYTE $0x1E
CALL _strayintr(SB); BYTE $0x1F
CALL _strayintr(SB); BYTE $0x20 /* VectorLAPIC */
CALL _strayintr(SB); BYTE $0x21
CALL _strayintr(SB); BYTE $0x22
CALL _strayintr(SB); BYTE $0x23
CALL _strayintr(SB); BYTE $0x24
CALL _strayintr(SB); BYTE $0x25
CALL _strayintr(SB); BYTE $0x26
CALL _strayintr(SB); BYTE $0x27
CALL _strayintr(SB); BYTE $0x28
CALL _strayintr(SB); BYTE $0x29
CALL _strayintr(SB); BYTE $0x2A
CALL _strayintr(SB); BYTE $0x2B
CALL _strayintr(SB); BYTE $0x2C
CALL _strayintr(SB); BYTE $0x2D
CALL _strayintr(SB); BYTE $0x2E
CALL _strayintr(SB); BYTE $0x2F
CALL _strayintr(SB); BYTE $0x30
CALL _strayintr(SB); BYTE $0x31
CALL _strayintr(SB); BYTE $0x32
CALL _strayintr(SB); BYTE $0x33
CALL _strayintr(SB); BYTE $0x34
CALL _strayintr(SB); BYTE $0x35
CALL _strayintr(SB); BYTE $0x36
CALL _strayintr(SB); BYTE $0x37
CALL _strayintr(SB); BYTE $0x38
CALL _strayintr(SB); BYTE $0x39
CALL _strayintr(SB); BYTE $0x3A
CALL _strayintr(SB); BYTE $0x3B
CALL _strayintr(SB); BYTE $0x3C
CALL _strayintr(SB); BYTE $0x3D
CALL _strayintr(SB); BYTE $0x3E
CALL _strayintr(SB); BYTE $0x3F
CALL _syscallintr(SB); BYTE $0x40 /* VectorSYSCALL */
CALL _strayintr(SB); BYTE $0x41
CALL _strayintr(SB); BYTE $0x42
CALL _strayintr(SB); BYTE $0x43
CALL _strayintr(SB); BYTE $0x44
CALL _strayintr(SB); BYTE $0x45
CALL _strayintr(SB); BYTE $0x46
CALL _strayintr(SB); BYTE $0x47
CALL _strayintr(SB); BYTE $0x48
CALL _strayintr(SB); BYTE $0x49
CALL _strayintr(SB); BYTE $0x4A
CALL _strayintr(SB); BYTE $0x4B
CALL _strayintr(SB); BYTE $0x4C
CALL _strayintr(SB); BYTE $0x4D
CALL _strayintr(SB); BYTE $0x4E
CALL _strayintr(SB); BYTE $0x4F
CALL _strayintr(SB); BYTE $0x50
CALL _strayintr(SB); BYTE $0x51
CALL _strayintr(SB); BYTE $0x52
CALL _strayintr(SB); BYTE $0x53
CALL _strayintr(SB); BYTE $0x54
CALL _strayintr(SB); BYTE $0x55
CALL _strayintr(SB); BYTE $0x56
CALL _strayintr(SB); BYTE $0x57
CALL _strayintr(SB); BYTE $0x58
CALL _strayintr(SB); BYTE $0x59
CALL _strayintr(SB); BYTE $0x5A
CALL _strayintr(SB); BYTE $0x5B
CALL _strayintr(SB); BYTE $0x5C
CALL _strayintr(SB); BYTE $0x5D
CALL _strayintr(SB); BYTE $0x5E
CALL _strayintr(SB); BYTE $0x5F
CALL _strayintr(SB); BYTE $0x60
CALL _strayintr(SB); BYTE $0x61
CALL _strayintr(SB); BYTE $0x62
CALL _strayintr(SB); BYTE $0x63
CALL _strayintr(SB); BYTE $0x64
CALL _strayintr(SB); BYTE $0x65
CALL _strayintr(SB); BYTE $0x66
CALL _strayintr(SB); BYTE $0x67
CALL _strayintr(SB); BYTE $0x68
CALL _strayintr(SB); BYTE $0x69
CALL _strayintr(SB); BYTE $0x6A
CALL _strayintr(SB); BYTE $0x6B
CALL _strayintr(SB); BYTE $0x6C
CALL _strayintr(SB); BYTE $0x6D
CALL _strayintr(SB); BYTE $0x6E
CALL _strayintr(SB); BYTE $0x6F
CALL _strayintr(SB); BYTE $0x70
CALL _strayintr(SB); BYTE $0x71
CALL _strayintr(SB); BYTE $0x72
CALL _strayintr(SB); BYTE $0x73
CALL _strayintr(SB); BYTE $0x74
CALL _strayintr(SB); BYTE $0x75
CALL _strayintr(SB); BYTE $0x76
CALL _strayintr(SB); BYTE $0x77
CALL _strayintr(SB); BYTE $0x78
CALL _strayintr(SB); BYTE $0x79
CALL _strayintr(SB); BYTE $0x7A
CALL _strayintr(SB); BYTE $0x7B
CALL _strayintr(SB); BYTE $0x7C
CALL _strayintr(SB); BYTE $0x7D
CALL _strayintr(SB); BYTE $0x7E
CALL _strayintr(SB); BYTE $0x7F
CALL _strayintr(SB); BYTE $0x80 /* Vector[A]PIC */
CALL _strayintr(SB); BYTE $0x81
CALL _strayintr(SB); BYTE $0x82
CALL _strayintr(SB); BYTE $0x83
CALL _strayintr(SB); BYTE $0x84
CALL _strayintr(SB); BYTE $0x85
CALL _strayintr(SB); BYTE $0x86
CALL _strayintr(SB); BYTE $0x87
CALL _strayintr(SB); BYTE $0x88
CALL _strayintr(SB); BYTE $0x89
CALL _strayintr(SB); BYTE $0x8A
CALL _strayintr(SB); BYTE $0x8B
CALL _strayintr(SB); BYTE $0x8C
CALL _strayintr(SB); BYTE $0x8D
CALL _strayintr(SB); BYTE $0x8E
CALL _strayintr(SB); BYTE $0x8F
CALL _strayintr(SB); BYTE $0x90
CALL _strayintr(SB); BYTE $0x91
CALL _strayintr(SB); BYTE $0x92
CALL _strayintr(SB); BYTE $0x93
CALL _strayintr(SB); BYTE $0x94
CALL _strayintr(SB); BYTE $0x95
CALL _strayintr(SB); BYTE $0x96
CALL _strayintr(SB); BYTE $0x97
CALL _strayintr(SB); BYTE $0x98
CALL _strayintr(SB); BYTE $0x99
CALL _strayintr(SB); BYTE $0x9A
CALL _strayintr(SB); BYTE $0x9B
CALL _strayintr(SB); BYTE $0x9C
CALL _strayintr(SB); BYTE $0x9D
CALL _strayintr(SB); BYTE $0x9E
CALL _strayintr(SB); BYTE $0x9F
CALL _strayintr(SB); BYTE $0xA0
CALL _strayintr(SB); BYTE $0xA1
CALL _strayintr(SB); BYTE $0xA2
CALL _strayintr(SB); BYTE $0xA3
CALL _strayintr(SB); BYTE $0xA4
CALL _strayintr(SB); BYTE $0xA5
CALL _strayintr(SB); BYTE $0xA6
CALL _strayintr(SB); BYTE $0xA7
CALL _strayintr(SB); BYTE $0xA8
CALL _strayintr(SB); BYTE $0xA9
CALL _strayintr(SB); BYTE $0xAA
CALL _strayintr(SB); BYTE $0xAB
CALL _strayintr(SB); BYTE $0xAC
CALL _strayintr(SB); BYTE $0xAD
CALL _strayintr(SB); BYTE $0xAE
CALL _strayintr(SB); BYTE $0xAF
CALL _strayintr(SB); BYTE $0xB0
CALL _strayintr(SB); BYTE $0xB1
CALL _strayintr(SB); BYTE $0xB2
CALL _strayintr(SB); BYTE $0xB3
CALL _strayintr(SB); BYTE $0xB4
CALL _strayintr(SB); BYTE $0xB5
CALL _strayintr(SB); BYTE $0xB6
CALL _strayintr(SB); BYTE $0xB7
CALL _strayintr(SB); BYTE $0xB8
CALL _strayintr(SB); BYTE $0xB9
CALL _strayintr(SB); BYTE $0xBA
CALL _strayintr(SB); BYTE $0xBB
CALL _strayintr(SB); BYTE $0xBC
CALL _strayintr(SB); BYTE $0xBD
CALL _strayintr(SB); BYTE $0xBE
CALL _strayintr(SB); BYTE $0xBF
CALL _strayintr(SB); BYTE $0xC0
CALL _strayintr(SB); BYTE $0xC1
CALL _strayintr(SB); BYTE $0xC2
CALL _strayintr(SB); BYTE $0xC3
CALL _strayintr(SB); BYTE $0xC4
CALL _strayintr(SB); BYTE $0xC5
CALL _strayintr(SB); BYTE $0xC6
CALL _strayintr(SB); BYTE $0xC7
CALL _strayintr(SB); BYTE $0xC8
CALL _strayintr(SB); BYTE $0xC9
CALL _strayintr(SB); BYTE $0xCA
CALL _strayintr(SB); BYTE $0xCB
CALL _strayintr(SB); BYTE $0xCC
CALL _strayintr(SB); BYTE $0xCD
CALL _strayintr(SB); BYTE $0xCE
CALL _strayintr(SB); BYTE $0xCF
CALL _strayintr(SB); BYTE $0xD0
CALL _strayintr(SB); BYTE $0xD1
CALL _strayintr(SB); BYTE $0xD2
CALL _strayintr(SB); BYTE $0xD3
CALL _strayintr(SB); BYTE $0xD4
CALL _strayintr(SB); BYTE $0xD5
CALL _strayintr(SB); BYTE $0xD6
CALL _strayintr(SB); BYTE $0xD7
CALL _strayintr(SB); BYTE $0xD8
CALL _strayintr(SB); BYTE $0xD9
CALL _strayintr(SB); BYTE $0xDA
CALL _strayintr(SB); BYTE $0xDB
CALL _strayintr(SB); BYTE $0xDC
CALL _strayintr(SB); BYTE $0xDD
CALL _strayintr(SB); BYTE $0xDE
CALL _strayintr(SB); BYTE $0xDF
CALL _strayintr(SB); BYTE $0xE0
CALL _strayintr(SB); BYTE $0xE1
CALL _strayintr(SB); BYTE $0xE2
CALL _strayintr(SB); BYTE $0xE3
CALL _strayintr(SB); BYTE $0xE4
CALL _strayintr(SB); BYTE $0xE5
CALL _strayintr(SB); BYTE $0xE6
CALL _strayintr(SB); BYTE $0xE7
CALL _strayintr(SB); BYTE $0xE8
CALL _strayintr(SB); BYTE $0xE9
CALL _strayintr(SB); BYTE $0xEA
CALL _strayintr(SB); BYTE $0xEB
CALL _strayintr(SB); BYTE $0xEC
CALL _strayintr(SB); BYTE $0xED
CALL _strayintr(SB); BYTE $0xEE
CALL _strayintr(SB); BYTE $0xEF
CALL _strayintr(SB); BYTE $0xF0
CALL _strayintr(SB); BYTE $0xF1
CALL _strayintr(SB); BYTE $0xF2
CALL _strayintr(SB); BYTE $0xF3
CALL _strayintr(SB); BYTE $0xF4
CALL _strayintr(SB); BYTE $0xF5
CALL _strayintr(SB); BYTE $0xF6
CALL _strayintr(SB); BYTE $0xF7
CALL _strayintr(SB); BYTE $0xF8
CALL _strayintr(SB); BYTE $0xF9
CALL _strayintr(SB); BYTE $0xFA
CALL _strayintr(SB); BYTE $0xFB
CALL _strayintr(SB); BYTE $0xFC
CALL _strayintr(SB); BYTE $0xFD
CALL _strayintr(SB); BYTE $0xFE
CALL _strayintr(SB); BYTE $0xFF