
The 64-bit Standalone Plan 9 File Server

Ken Thompson*
ken@plan9.bell-labs.com

Geoff Collyer
geoff@plan9.bell-labs.com

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is a revision of Thompson�s The Plan 9 File Server, and
describes the structure and the operation of the new 64-bit Plan 9 file
servers. Some specifics apply to the 32-bit Plan 9 file server Emelie,
which code is also the basis for the user-level file server kfs.

In 2004, Collyer created a 64-bit version of Thompson�s 32-bit file
server, updating all file offsets, sizes and block numbers to 64 bits. In
addition, triple- and quadruple-indirect blocks were implemented. File
name components were extended from 27 to 55 bytes. This code is also
the basis for the user-level file server cwfs(4).

Introduction

The Plan 9 file server Emelie is the oldest piece of system software still in use on
Plan 9. It evolved from a user-level program that served serial lines on a Sequent
multi-processor. The current implementation is neither clean nor portable, but it has
slowly come to terms with its particular set of cranky computers and devices.

The file server fs64 runs a revision of Emelie�s code with 64-bit file sizes, offsets
and block numbers and indirect blocks from single to quadruple. Actually these are
63-bit values, since the type used is vlong (signed long long integer), but 63 bits should
suffice for a little while.

Process Structure

The Plan 9 file system server is made from an ancient version of the Plan 9 kernel.
The kernel contains process control, synchronization, locks, and some memory alloca­
tion. The kernel has no user processes or virtual memory.

The structure of the file system server is a set of kernel processes synchronizing
mostly through message passing. In fs64 there are 27 processes of 11 types:

__________________
________________________________________________________________________
* now ken@google.com



­ 2 ­

number name function______________________________________________________
15 srv Main file system server processes
1 rah Block read-ahead processes
1 scp Sync process
1 wcp WORM copy process
1 con Console process
1 ilo IL protocol process
1 ilt IL timer process
2 ethi Ethernet input process
2 etho Ethernet output process
1 flo Floppy disk process
1 snt sntp clock-synchronisation process

The server processes

The main file system algorithm is a set of identical processes named srv that
honor the 9P protocol. Each file system process waits on a message queue for an
incoming request. The request contains a 9P message and the address of a reply queue.
A srv process parses the message, performs pseudo-disk I/O to the corresponding file
system block device, formulates a response, and sends the response back to the reply
queue.

The unit of storage is a logical block (not physical sector) of data on a device:

enum
{

RBUFSIZE = 8*1024
};

typedef vlong Χff;
typedef
struct
{

short pad;
short tag;
Χff path;

} Tag;

enum
{

BUFSIZE = RBUFSIZE - sizeof(Tag)
};

typedef
struct
{

uchar data[BUFSIZE];
Tag tag;

} Block;

All devices are idealized as a perfect disk of contiguously numbered blocks each of size
RBUFSIZE. Each block has a tag that identifies what type of block it is and a unique id
of the file or directory where this block resides. The remaining data in the block
depends on what type of block it is.

The srv process�s main data structure is the directory entry. This is the equiva­
lent of a UNIX i-node and defines the set of block addresses that comprise a file or
directory. Unlike the i-node, the directory entry also has the name of the file or direc­
tory in it:



­ 3 ­

enum
{

NAMELEN = 56,
NDBLΧCK = 6,
NIBLΧCK = 4,

};

typedef
struct
{

char name[NAMELEN];
short uid;
short gid;
ushort mode;
short wuid;
Qid qid;
Χff size;
Χff dblock[NDBLΧCK];
Χff iblocks[NIBLΧCK];
long atime;
long mtime;

} Dentry;

Each directory entry holds the file or directory name, protection mode, access times,
user-id, group-id, and addressing information. The entry wuid is the user-id of the
last writer of the file and size is the size of the file in bytes. The addresses of the first
6 blocks of the file are held in the dblock array. If the file is larger than that, an indi­
rect block is allocated that holds the next BUFSIZE/sizeof(Χff) block addresses
of the file. The indirect block address is held in iblocks[0]. If the file is larger yet,
then there is a double indirect block that points at indirect blocks. The double indirect
address is held in iblocks[1] and can point at another
(BUFSIZE/sizeof(Χff))

2
blocks of data. This is extended through a quadruple

indirect block at iblocks[3] but the code is now parameterised to permit easily
changing the number of direct blocks and the depth of indirect blocks, and also the
maximum size of a file name component. The maximum addressable size of a file is
therefore 7.93 petabytes at a block size of 8k, but 7.98 exabytes (just under 263 bytes)
at a block size of 32k. File size is restricted to 263 − 1 bytes in any case because the
length of a file is maintained in a (signed) vlong. These numbers are based on fs64
which has a block size of 8k and sizeof(Χff) is 8.

The declarations of the indirect and double indirect blocks are as follows.

enum
{

INDPERBUF = BUFSIZE/sizeof(Χff),
};

typedef
{

Χff dblock[INDPERBUF];
Tag ibtag;

} Iblock;

typedef
{

Χff iblock[INDPERBUF];
Tag dibtag;

} Diblock;



­ 4 ­

The root of a file system is a single directory entry at a known block address. A
directory is a file that consists of a list of directory entries. To make access easier, a
directory entry cannot cross blocks. In fs64 there are 47 directory entries per block.

The device on which the blocks reside is implicit and ultimately comes from the 9P
attach message that specifies the name of the device containing the root.

Buffer Cache

When the file server is booted, all of the unused memory is allocated to a block
buffer pool. There are two major operations on the buffer pool. Getbuf will find the
buffer associated with a particular block on a particular device. The returned buffer is
locked so that the caller has exclusive use. If the requested buffer is not in the pool,
some other buffer will be relabeled and the data will be read from the requested device.
Putbuf will unlock a buffer and if the contents are marked as modified, the buffer will
be written to the device before the buffer is relabeled. If there is some special mapping
or CPU cache flushing that must occur in order for the physical I/O device to access the
buffers, this is done between getbuf and putbuf. The contents of a buffer is never
touched except while it is locked between getbuf and putbuf calls.

The file system server processes prevent deadlock in the buffers by always locking
parent and child directory entries in that order. Since the entire directory structure is a
hierarchy, this makes the locking well-ordered, preventing deadlock. The major prob­
lem in the locking strategy is that locks are at a block level and there are many directory
entries in a single block. There are unnecessary lock conflicts in the directory blocks.
When one of these directory blocks is tied up accessing the very slow WORM, then all
I/O to dozens of unrelated directories is blocked.

Block Devices

The block device I/O system is like a protocol stack of filters. There are a set of
pseudo-devices that call recursively to other pseudo-devices and real devices. The pro­
tocol stack is compiled from a configuration string that specifies the order of pseudo-
devices and devices. Each pseudo-device and device has a set of entry points that cor­
responds to the operations that the file system requires of a device. The most notable
operations are read, write, and size.

The device stack can best be described by describing the syntax of the configura­
tion string that specifies the stack. Configuration strings are used during the setup of
the file system. For a description see fsconfig(8). In the following recursive definition,
D represents a string that specifies a block device.

D = (DD...)
This is a set of devices that are concatenated to form a single device. The size of
the catenated device is the sum of the sizes of each sub-device.

D = [DD...]
This is the interleaving of the individual devices. If there are N devices in the list,
then the pseudo-device is the N-way block interleaving of the sub-devices. The
size of the interleaved device is N times the size of the smallest sub-device.

D = {DD...}
This is a set of devices that constitute a �mirror� of the first sub-device, and form a
single device. A write to the device is performed, at the same block address, on
the sub-devices, in right-to-left order. A read from the device is performed on
each sub-device, in left-to-right order, until a read succeeds without error, or the
set is exhausted. One can think of this as a poor man�s RAID 1. The size of the
device is the size of the smallest sub-device.

D = pDN1.N2
This is a partition of a sub-device. The sub-device is partitioned into 100 equal



­ 5 ­

pieces. If the size of the sub-device is not divisible by 100, then there will be
some slop thrown away at the top. The pseudo-device starts at the N1-th piece
and continues for N2 pieces. Thus pD67.33 will be the last third of the device D.

D = fD
This is a fake write-once-read-many device simulated by a second read-write
device. This second device is partitioned into a set of block flags and a set of
blocks. The flags are used to generate errors if a block is ever written twice or
read without being written first.

D = xD
This is a byte-swapped version of the file system on D. Since the file server cur­
rently writes integers in metadata to disk in native byte order, moving a file system
to a machine of the other major byte order (e.g., MIPS to Pentium) requires the use
of x. It knows the sizes of the various integer fields in the file system metadata.
Ideally, the file server would follow the Plan 9 religion and write a consistent byte
order on disk, regardless of processor. In the mean time, it should be possible to
automatically determine the need for byte-swapping by examining data in the
super-block of each file system, though this has not been implemented yet.

D = cDD
This is the cache/WORM device made up of a cache (read-write) device and a
WORM (write-once-read-many) device. More on this later.

D = o
This is the dump file system that is the two-level hierarchy of all dumps ever taken
on a cache/WORM. The read-only root of the cache/WORM file system (on the
dump taken Feb 18, 1995) can be referenced as /1995/0218 in this pseudo
device. The second dump taken that day will be /1995/02181.

D = wN1.N2.N3
This is a SCSI disk on controller N1, target N2 and logical unit number N3.

D = hN1.N2.0
This is an (E)IDE or *ATA disk on controller N1, target N2 (target 0 is the IDE mas­
ter, 1 the slave device). These disks are currently run via programmed I/O, not
DMA, so they tend to be slower to access than SCSI disks.

D = rN1
This is the same as w, but refers to a side of a WORM disc. See the j device.

D = lN1
This is the same as r, but one block from the SCSI disk is removed for labeling.

D = j(D
1
D

2
*)D

3
D

1
is the juke box SCSI interface. The D

2
�s are the SCSI drives in the juke box and

the D
3
�s are the demountable platters in the juke box. D

1
and D

2
must be w. D

3
must be pseudo devices of w, r, or l devices.

For w, h, l, and r devices any of the configuration numbers can be replaced by an
iterator of the form <N1-N2>. N1 can be greater than N2, indicating a descending
sequence. Thus

[w0.<2-6>]

is the interleaved SCSI disks on SCSI targets 2 through 6 of SCSI controller 0. The main
file system on Emelie is defined by the configuration string

c[w1.<0-5>.0]j(w6w5w4w3w2)(l<0-236>l<238-474>)

This is a cache/WORM driver. The cache is three interleaved disks on SCSI controller 1
targets 0, 1, 2, 3, 4, and 5. The WORM half of the cache/WORM is 474 jukebox disks.
Another file server, choline, has a main file system defined by



­ 6 ­

c[w<1-3>]j(w1.<6-0>.0)(l<0-124>l<128-252>)

The order of w1.<6-0>.0 matters here, since the optical jukebox�s WORM drives�s
SCSI target ids, as delivered, run in descending order relative to the numbers of the
drives in SCSI commands (e.g., the jukebox controller is SCSI target 6, drive #1 is SCSI
target 5, and drive #6 is SCSI target 0).

The read-ahead processes

There are a set of file system processes, rah, that wait for messages consisting of
a device and block address. When a message comes in, the process reads the specified
block from the device. This is done by calling getbuf and putbuf. The purpose of
this is the hope that these blocks will be used later and that they will reside in the buffer
cache long enough not to be discarded before they are used.

The messages to the read-ahead processes are generated by the server processes.
The server processes maintain a relative block mark in every open file. Whenever an
open file reads that relative block, the next 110 block addresses of the file are sent to
the read-ahead processes and the relative block mark is advanced by 100. The initial
relative block is set to 1. If the file is opened and only a few bytes are read, then no
anticipating reads are performed since the relative block mark is set to 1 and only block
offset 0 is read. This is to prevent some fairly common action such as

file *

from swamping the file system with read-ahead requests that will never be used.

Cache/WΧRM Driver

The cache/WORM (cw) driver is by far the largest and most complicated device
driver in the file server. There are four devices involved in the cw driver. It implements
a read/write pseudo-device (the cw-device) and a read-only pseudo-device (the dump
device) by performing operations on its two constituent devices the read-write c-device
and the write-once-read-many w-device. The block numbers on the four devices are
distinct, although the cw addresses, dump addresses, and the w addresses are highly
correlated.

The cw-driver uses the w-device as the stable storage of the file system at the time
of the last dump. All newly written and a large number of recently used exact copies of
blocks of the w-device are kept on the c-device. The c-device is much smaller than the
w-device and so the subset of w-blocks that are kept on the c-device are mapped
through a hash table kept on a partition of the c-device.

The map portion of the c-device consists of blocks of buckets of entries. The dec­
larations follow.

enum
{

BKPERBLK = 10,
CEPERBK = (BUFSIZE - BKPERBLK*sizeof(Χff)) /

(sizeof(Centry)*BKPERBLK),
};

typedef
struct
{

ushort age;
short state;
Χff waddr;

} Centry;



­ 7 ­

typedef
struct
{

long agegen;
Centry entry[CEPERBK];

} Bucket;

Bucket bucket[BKPERBLK];

There is exactly one entry structure for each block in the data partition of the c-device.
A bucket contains all of the w-addresses that have the same hash code. There are as
many buckets as will fit in a block and enough blocks to have the required number of
entries. The entries in the bucket are maintained in FIFO order with an age variable and
an incrementing age generator. When the age generator is about to overflow, all of the
ages in the bucket are rescaled from zero.

The following steps go into converting a w-address into a c-address. The bucket
is found by

bucket_number = w-address % total_buckets;
getbuf(c-device, bucket_offset + bucket_number/BKPERBLK);

After the desired bucket is found, the desired entry is found by a linear search within
the bucket for the entry with the desired waddr.

The state variable in the entry is one of the following.

enum
{

Cnone = 0,
Cdirty,
Cdump,
Cread,
Cwrite,
Cdump1,

};

Every w-address has a state. Blocks that are not in the c-device have the implied state
Cnone. The Cread state is for blocks that have the same data as the corresponding
block in the w-device. Since the c-device is much faster than the w-device, Cread
blocks are kept as long as possible and used in preference to reading the w-device.
Cread blocks may be discarded from the c-device when the space is needed for newer
data. The Cwrite state is when the c-device contains newer data than the correspond­
ing block on the w-device. This happens when a Cnone, Cread, or Cwrite block is
written. The Cdirty state is when the c-device contains new data and the correspond­
ing block on the w-device has never been written. This happens when a new block has
been allocated from the free space on the w-device.

The Cwrite and Cdirty blocks are created and never removed. Unless some­
thing is done to convert these blocks, the c-device will gradually fill up and stop func­
tioning. Once a day, or by command, a dump of the cw-device is taken. The purpose of
a dump is to queue the writes that have been shunted to the c-device to be written to
the w-device. Since the w-device is a WORM, blocks cannot be rewritten. Blocks that
have already been written to the WORM must be relocated to the unused portion of the
w-device. These are precisely the blocks with Cwrite state.

The dump algorithm is as follows:

a) The tree on the cw-device is walked as long as the blocks visited have been modi­
fied since the last dump. These are the blocks with state Cwrite and Cdirty.
It is possible to restrict the search to within these blocks since the directory con­
taining a modified file must have been accessed to modify the file and accessing a



­ 8 ­

directory will set its modified time thus causing the block containing it to be writ­
ten. The directory containing that directory must be modified for the same reason.
The tree walk is thus drastically restrained and the tree walk does not take much
time.

b) All Cwrite blocks found in the tree search are relocated to new blank blocks on
the w-device and converted to Cdump state. All Cdirty blocks are converted to
Cdump state without relocation. At this point, all modified blocks in the cw-device
have w-addresses that point to unwritten WORM blocks. These blocks are marked
for later writing to the w-device with the state Cdump.

c) All open files that were pointing to modified blocks are reopened to point at the
corresponding reallocated blocks. This causes the directories leading to the open
files to be modified. Thus the invariant discussed in a) is maintained.

d) The background dumping process will slowly go through the map of the c-device
and write out all blocks with Cdump state.

The dump takes a few minutes to walk the tree and mark the blocks. It can take
hours to write the marked blocks to the WORM. If a marked block is rewritten before
the old copy has been written to the WORM, it must be forced to the WORM before it is
rewritten. There is no problem if another dump is taken before the first one is finished.
The newly marked blocks are just added to the marked blocks left from the first dump.

If there is an error writing a marked block to the WORM then the dump state is con­
verted to Cdump1 and manual intervention is needed. (See the cwcmd mvstate com­
mand in fs(8)). These blocks can be disposed of by converting their state back to
Cdump so that they will be written again. They can also be converted to Cwrite state
so that they will be allocated new addresses at the next dump. In most other respects, a
Cdump1 block behaves like a Cwrite block.

Sync Copy and WΧRM Copy Processes

The scp process wakes up every ten seconds and issues writes to blocks in the
buffer cache that have been modified. This is done automatically on important console
commands such as halt and dump.

The wcp process also wakes up every ten seconds and tries to copy a dump block
from the cache to the WORM. As long as there are dump blocks to copy and there is no
competition for the WORM device, the copy will continue at full speed. Whenever there
is competition for the WORM or there are no more blocks to copy, then the process will
sleep ten seconds before looking again.

The HP WORM jukebox consists of 238 disks divided into 476 sides or platters.
Platter 0 is the A side of disk 0. Platter 1 is the A side of the disk 1. Platter 238 is the B
side of disk 0. On Emelie, the main file system is configured on both sides of the first
237 disks, platters 0�236 and 238�474.

9P Protocol Drivers

The file server described so far waits for 9P protocol messages to appear in its
input queue. It processes each message and sends the reply back to the originator.
There are groups of processes that perform protocol I/O on some network or device and
the resulting messages are sent to the file system queue.

There are two sets of processes ethi and etho that perform Ethernet input and
output on two different networks. These processes send Ethernet messages to/from
two more processes ilo and ilt that do the IL reliable datagram protocol on top of IP
packets.

The last process in Emelie, con, reads the console and calls internal subroutines to
executes commands typed. Since there is only one process, only one command can be



­ 9 ­

executing at a time. See fs(8) for a description of the commands available at the con­
sole.

Acknowledgements

Ken Thompson created the Plan 9 file server and maintained it for many years. The
cached WORM driver is based upon Sean Quinlan�s PhD. thesis and prototype. Jim McKie
maintained the IBM-PC-dependent code, a thankless job. Bruce Ellis modified the 8c
compiler in 2004 to generate much faster code for common vlong operations, which
made the 64-bit file server feasible. Nigel Roles contributed support for the APC UPS
and the NCR/Symbios/LSI-Logic SCSI host adaptors.

References

[1] Sean Quinlan, ��A Cached WORM File System,�� Software�Practice and Experience,
Vol 21., No 12., December 1991, pp. 1289�1299.



­ 10 ­

Appendix: Maximum File Sizes in the 64-bit File Server

The maximum size of a single file in a Plan 9 file server�s file system with 64-bit
block numbers is determined by the file system block size (there are single, double, tri­
ple and quadruple indirect blocks). The maximum size is thus d(6 + x + x2 + x3 + x4 )

bytes, where d = blocksize − (2 + 2 + 8) and x =


 8

d__



, 8 being the size in bytes of a long

long block number.

Note that 263 = 9,223,372,036,854,775,808 = 8 EB (binary exabytes).

Maximum File Sizes
blocksize max. file size in bytes___________________________________________________________

1k 239.455G 257,112,525,120
2k 7.73795T 8,507,967,771,456
3k 59.4174T 65,330,091,351,360
4k 251.779T 276,833,619,879,744
5k 770.93T 847,646,649,807,168
6k 1.87752P 2,113,900,586,253,120
7k 4.0645P 4,576,215,491,839,296
8k 7.93382P 8,932,685,435,522,880___________________________________________________________
9k 14.3102P 16,111,863,841,429,824

10k 24.2524P 27,305,748,837,688,128
11k 39.0823P 44,002,768,605,261,120
12k 60.4146P 68,020,766,726,780,736
13k 90.1856P 101,539,987,535,380,800
14k 130.683P 147,136,061,463,530,304
15k 184.575P 207,812,990,391,866,688
16k 254.939P 287,036,132,998,029,120___________________________________________________________
17k 345.293P 388,765,190,105,491,776
18k 459.621P 517,487,190,032,397,120
19k 602.407P 678,249,473,940,389,184
20k 778.66P 876,692,681,183,446,848
21k 993.946P 1,119,083,734,656,717,120
22k 1.22502E 1,412,348,826,145,348,416
23k 1.53012E 1,764,106,401,673,323,840
24k 1.89319E 2,182,700,146,852,294,464
25k 2.32213E 2,677,231,972,230,412,608
26k 2.82551E 3,257,594,998,641,165,120
27k 3.41264E 3,934,506,542,552,206,656
28k 4.09355E 4,719,541,101,414,192,960
29k 4.87905E 5,625,163,339,009,614,144
30k 5.78076E 6,664,761,070,801,627,968
31k 6.81111E 7,852,678,249,282,893,120
32k 7.98341E 9,204,247,949,324,402,496___________________________________________________________
33k 9.31184E 10,735,825,353,524,316,480

...
48k 60.666E 69,943,138,363,646,533,440

...
56k 131.149E 151,204,569,706,075,533,120

...
64k 255.734E 294,841,790,119,418,167,104


