when the control mountpoint side gets removed, close
mount channel immediately. this is usefull for implementing
automatic cleanup with ORCLOSE create mode.
allow reading the control file of a process and return
its pid number. if the process has exited, return an error.
this can be usefull as a way to test if a process is
still alive. and also makes it behave similar to
network protocol directories.
another side effect is that processes who erroneously
open the ctl file ORDWR would be allowed todo so as
along as they have write permission and the process is
not a kernel process.
progarg[0] can be assigned to elem directly as it is a
copy in kernel memory, so the char proelem[64] buffer
is not neccesary.
do the close-on-exit outside of the segment lock. there
is no reason to keep the segment table locked.
the user buffer could be changed while we parse it resulting
in a different number of watchpoints than initially calculated.
so add a check to the parse loop so we wont overflow the
watchpoint array.
in case the calling process changes its arguments under us, it could
happen that the final argument string lengths become bigger than
initially calculated. this is fine as we still make sure we wont
overflow the stack segment, but we could overrun into the tos
structure at the end of the stack. so change the limit to the
base of the tos, not the end of the stack segment.
writes to /proc/n/notepg and /proc/n/note should be able to write
at ERRMAX-1 bytes, not ERRMAX-2.
simplify write to /proc/n/args by just copying to local buf first
and then doing a kstrdup(). the value of Proc.nargs does not matter
when Proc.setargs is 1.
devproc assumes that when we hold the Proc.debug qlock,
the process will be prevented from exiting. but there is
another race where the process has already exited and
the Proc* slot gets reused. to solve this, on process
creation we also have to acquire the debug qlock while
initializing the fields of the process. this also means
newproc() should only initialize fields *not* protected
by the debug qlock.
always acquire the Proc.debug qlock when changing strings
in the proc structure to avoid doublefree on concurrent
update. for changing the user string, we add a procsetuser()
function that does this for auth.c and devcap.
remove pgrpnote() from pgrp.c and replace by static
postnotepg() in devproc.
avoid the assumption that the Proc* entries returned by
proctab() are continuous.
fixed devproc permission issues:
- make sure only eve can access /proc/trace
- none should only be allowed to read its own /proc/n/text
- move Proc.kp checks into procopen()
pid reuse was not handled correctly, as we where only
checking if a pid had a living process, but there still
could be processes expecting a particular parentpid or
noteid.
this is now addressed with reference counted Pid
structures which are organized in a hash table.
read access to the hash table does not require locks
which will be usefull for dtracy later.
replace machine specific userinit() by a portable
implemntation that uses kproc() to create the first
process. the initcode text is mapped using kmap(),
so there is no need for machine specific tmpmap()
functions.
initcode stack preparation should be done in init0()
where the stack is mapped and can be accessed directly.
replacing the machine specific userinit() allows some
big simplifications as sysrfork() and kproc() are now
the only callers of newproc() and we can avoid initializing
fields that we know are being initialized by these
callers.
rename autogenerated init.h and reboot.h headers.
the initcode[] and rebootcode[] blobs are now in *.i
files and hex generation was moved to portmkfile. the
machine specific mkfile only needs to specify how to
build rebootcode.out and initcode.out.
comparing m with MACHP() is wrong as m is a constant on 386.
add procflushothers(), which flushes all processes except up
using common procflushmmu() routine.
procflushmmu() returns once all *OTHER* processors that had
matching processes running on them flushed ther tlb/mmu state.
the caller of procflush...() takes care of flushing "up" by
calling flushmmu() later.
if the current process matched, then that means m->flushmmu
would be set, and hzclock() would call flushmmu() again.
to avoid this, we now check up->newtlb in addition to m->flushmmu
in hzclock() before calling flushmmu().
we also maintain information on which process on what processor
to wait for locally, which helps making progress when multiple
procflushmmu()'s are running concurrently.
in addition, this makes the wait condition for procflushmmu()
more sophisticated, by validating if the processor still runs
the selected process and only if it matchatches, considers
the MACHP(nm)->flushmmu flag.
for better system diagnostics, we *ALWAYS* want to record the parent
pid of a user process, regardless of if the child will post a wait
record on exit or not.
for that, we reverse the roles of Proc.parent and Proc.parentpid so
Proc.parentpid will always be set on rfork() and the Proc.parent
pointer will point to the parent's Proc structure or is set to nil
when no wait record should be posted on exit (RFNOWAIT flag).
this means that we can get the pid of the original parent process
from /proc, regardless of the the child having rforked with the
RFNOWAIT flag. this improves the output of pstree(1) somewhat if
the parent is still alive. note that theres no guarantee that the
parent pid is still valid.
the conditions are unchanged:
a user process that will post wait record has:
up->kp == 0 && up->parent != nil && up->parent->pid == up->parentpid
the boot process is:
up->kp == 0 && up->parent == nil && up->parentpid == 0
and kproc's have:
up->kp != 0 && up->parent == nil && up->parentpid == 0
after issuing CR_RESETEP command, we have to invalidate
the endpoints output context buffer so that the halted/error
status reflects the new state. not doing so resulted in
the halted state to be stuck and we continued issuing
endpoint reset commands when we where already recovered.
handle the devusb Ep.clrhalt flag from devusb that userspace
uses to force a endpoint reset on the next transaction.
the locking in proctext() is wrong. we have to acquire Proc.seglock
when reading segments from Proc.seg[] as segments do not
have a private freelist and can therefore be reused for other
data structures.
once we have Proc.seglock acquired, check that the process pid
is still valid so we wont accidentally read some other processes
segments. (for both proctext() and procctlmemio()). this also
should give better error message to distinguish the case when
the process did segdetach() the segment in question before we
could acquire Proc.seglock.
declare private functions as static.
pexit() and pprint() can get called outside of a syscall
(from procctl()) with a process that is in active note
handling and require floating point in the kernel on amd64
for aesni (devtls).
make exec() clear the per process error string
to avoid spurious errors and confusion.
the errstr() syscall used to always swap the
maximum buffer size with memmove(), which is
problematic as this gives access to the garbage
beyond the NUL byte. worse, newproc(), werrstr()
and rerrstr() only clear the first byte of the
input buffer. so random stack rubble could be
leaked across processes.
we change the errstr() syscall to not copy
beyond the NUL byte.
the manpage also documents that errstr() should
truncate on a utf8 boundary so we use utfecpy()
to ensure proper NUL termination.
the user should not be able to change the cache
attributes for a segment in segattach() as this
can cause the same memory to be mapped with
conflicting attributes in the cache.
SG_TEXT should always be mapped with SG_RONLY
attribute. so fix data2txt() to follow the rules.
fault() now has an additional pc argument that is
used to detect fault on a non-executable segment.
that is, we check on read fault if the segment
has the SG_NOEXEC attribute and the program counter
is within faulting page.
a portable SG_NOEXEC segment attribute was added to allow
non-executable (physical) segments. which will set the
PTENOEXEC bits for putmmu().
in the future, this can be used to make non-executable
stack / bss segments.
the SG_DEVICE attribute was added to distinguish between
mmio regions and uncached memory. only matterns on arm64.
on arm, theres the issue that PTEUNCACHED would have
no bits set when using the hardware bit definitions.
this is the reason bcm, kw, teg2 and omap kernels use
arteficial PTE constants. on zynq, the XN bit was used
as a hack to give PTEUNCACHED a non-zero value and when
the bit is clear then cache attributes where added to
the pte.
to fix this, PTECACHED constant was added.
the portable mmu code in fault.c will now explicitely set
PTECACHED bits for cached memory and PTEUNCACHED for
uncached memory. that way the hardware bit definitions
can be used everywhere.
we have to ensure that all stores saving the process state
have completed before setting up->mach = nil in the scheduler.
otherwise, another cpu could observe up->mach == nil while
the stores such as the processes p->sched label have not finnished.