we might as well handle the per process cycle
counter in the portable part instead of duplicating the code
in every arch and have inconsistent implementations.
we now have a portable kenter() and kexit() function,
that is ment to be used in trap/syscall from user,
which updates the counters.
some kernels missed initializing Mach.cyclefreq.
The new pci code is moved to port/pci.[hc] and shared by
all ports.
Each port has its own PCI controller implementation,
providing the pcicfgrw*() functions for low level pci
config space access. The locking for pcicfgrw*() is now
done by the caller (only port/pci.c).
Device drivers now need to include "../port/pci.h" in
addition to "io.h".
The new code now checks bridge windows and membars,
while enumerating the bus, giving the pc driver a chance
to re-assign them. This is needed because some UEFI
implementations fail to assign the bars for some devices,
so we need to do it outselfs. (See pcireservemem()).
While working on this, it was discovered that the pci
code assimed the smallest I/O bar size is 16 (pcibarsize()),
which is wrong. I/O bars can be as small as 4 bytes.
Bit 1 in an I/O bar is also reserved and should be masked off,
making the port mask: port = bar & ~3;
replace machine specific userinit() by a portable
implemntation that uses kproc() to create the first
process. the initcode text is mapped using kmap(),
so there is no need for machine specific tmpmap()
functions.
initcode stack preparation should be done in init0()
where the stack is mapped and can be accessed directly.
replacing the machine specific userinit() allows some
big simplifications as sysrfork() and kproc() are now
the only callers of newproc() and we can avoid initializing
fields that we know are being initialized by these
callers.
rename autogenerated init.h and reboot.h headers.
the initcode[] and rebootcode[] blobs are now in *.i
files and hex generation was moved to portmkfile. the
machine specific mkfile only needs to specify how to
build rebootcode.out and initcode.out.
between being commited to a machno and having acquired the lock, the
scheduler could come in an schedule us on a different processor. the
solution is to have dtmachlock() take a special -1 argument to mean
"current mach" and return the actual mach number after the lock has
been acquired and interrupts being disabled.
segclock() has to be called from hzclock(), otherwise
only processes running on cpu0 would catche the interrupt
and the time delta would be wrong.
lock the segment when allocating Seg->profile as
profile ctl might be issued from multiple processes.
Proc->debug qlock is not sufficient.
Seg->profile can never be freed or reallocated once
set as the timer interrupt accesses it without any
locking.
the only architecture dependence of devether was enabling interrupts,
which is now done at the end of the driver's reset() function now.
the wifi stack and dummy ethersink also go to port/.
do the IRQ2->IRQ9 hack for pc kernels in intrenabale(), so not
every caller of intrenable() has to be aware of it.
Wnode gets two new counters: txcount and txerror
and actrate pointer that will be between minrate
and maxrate.
driver should use actrate instead of maxrate for
transmission when it can provide error feedback.
when a driver detects a transmission failed, it calls
wifitxfail() with the original packet. wifitxfail() then
reduces wn->actrate.
every 256th packet, we optimistically increase wn->actrate
before transmitting.
there is no use for "bootdisk" variable parametrization
of /boot/boot and no point for the boot section with its
boot methods in the kernel configuration anymore. so
mkboot and boot$CONF.out are gone.
move the rules for bootfs.paq creation in 9/boot/bootmkfile.
location of bootfs.proto is now in 9/boot/bootfs.proto.
our /boot/boot target is now just "boot".
expand the list of files specified in bootfs.proto and use them
as dependencies to bootfs.paq rule. this way, bootfs.paq is
regenerated when the to be included files have been modified.
the software cursor starts flickering and reacts bumby if a process
spends most of its time with drawlock acquired because the timer interrupt
thats supposed to redraw the cursor fails to acquire the lock at the time
the timer fires.
instead of trying to draw the cursor on the screen from a timer interrupt
30 times per second, devmouse now creates a process calling cursoron() and
cursoroff() when the cursor needs to be redrawn. this allows the swcursor
to schedule a redraw while holding the drawlock in swcursoravoid() and
cursoron()/cursoroff() are now able to wait for a qlock (drawlock) because
they get called from process context.
the overall responsiveness is also improved with this change as the cursor
redraw rate isnt limited to 30 times a second anymore.