The altsetting was handled only for a single endpoint
(per interface number), but has to be handled for each
endpoint (per interface *AND* altsetting number).
A multi function device (like a disk) can have
multiple interfaces, all with the same interface number
but varying altsetting numbers and each of these
interfaces would list distict endpoint configurations.
Multiple interfaces can even share some endpoints (they
use the same endpoint addresses), but
we still have to duplicate them for each
interface+altsetting number (as they'r part of
actually distict interfaces with distict endpoint
configurations).
It is also important to *NOT* make endpoints bi-directional
(dir == Eboth) when only one direction is used in a
interface/altsetting and the other direction in another.
This was the case for nusb/disk with some seagate drive
where endpoints where shared between the UAS and
usb storage class interface (but with distict altsettings).
The duplicate endpoints (as in using the same endpoint address)
are chained together by a next pointer and the head
is stored in Usbdev.ep[addr], where addr is the endpoint
address. These Ep structures will have distinct endpoint
numbers Ep.id (when they have conflicting types), but all
will share the endpoint address (lower 4 bits of the
endpoint number).
The consequence is that all of the endpoints configuration
(attributes, interval) is now stored in the Ep struct and
no more Altc struct is present.
A pointer to the Ep struct has to be passed to openep()
for it to configure the endpoint.
For the Iface struct, we will now create multiple of them:
one for each interface *AND* altsetting nunber,
chained together on a next pointer and the head being
stored in conf->iface[ifaceid].
--
cinap
We used to use performance cycle counter for cycles(),
but it is kind of useless in userspace as each core
has its own counter and hence not comparable between
cores. Also, the cycle counter stops counting when
the cores are idle.
Most callers expect cycles() to return a high resolution
timestamp instead, so do the best we can do here
and enable the userspace generic timer virtual counter.
sbrk(0) returns the current end address of the BSS segment,
not the base. This might have been confused with the behaviour
of segbrk(), which when given a zero address returns the base.
We need a way to parse a rsa certificate request and return the public
key and subject names. The new function X509reqtoRSApub() works the
same way as X509toRSApub() but on a certificate request.
We also need to support certificates that are valid for multiple domain
names (as tlshand does not support certificate selection). For this
reason, a comma separated list is returned as the certificate subject,
making it symmetric to X509rsareq() handling.
A little helper is provided with this change (auth/x5092pub) that takes
a certificate (or a certificate request when -r flag is provided) and
outputs the RSA public key in plan 9 format appended with the subject
attribute.
There are a number of alphabets in common use for base32
and base64 encoding, such as url-safe encodings.
This adds support for passing a function to encode into
arbitary alphabets.
Now that we have these new functions,
we can also make them return an error
instead of calling sysfatal() like
postmountsrv().
Remove the confusing Srv.srvfd, as it
is only temporarily used and return
it from postsrv() instead.
To use srvrease()/srvaquire() we need to have a way to spawn
new processes to handle the service loop. This functionality
was provided by the internal _forker() function which was
eigther rfork or libthread based implementation depending on
if postmountsrv() or threadpostmountsrv() where called.
For servers who want to use srv() directly, _forker would not
be initialized so srvrelease() could not be used.
To untangle this, we get rid of the global _forker handler
and put the handler in the Srv structure. Which will get
initialized (when nil) to eigther srvforker() or threadsrvforker()
depending on if the thread or non-thread entry points where used.
For symmetry, we provde new threadsrv() and threadpostsrv()
functions which handle the default initialization of Srv.forker.
This also allows a user to provide his own forker function,
maybe to conserve stack space.
To avoid dead code, we put each of these function in their
own object file. Note, this also allows a user to define its
own srvforker() symbol.
* Add the %ll length modifier,
* Convert nil to "<nil>" under %s (not in APE),
* Cast void* to uintptr under %p,
* Use "0x" hex prefix under %p,
* Fix manual page mentions of %P to %p,
* Fix empty result for fp conversions,
* Fix zero padding of left-aligned fp conversions,
* Remove deprecated #pragma ref uses.
Most of these were introduced in APE prior to 9front.
I've omitted the %z conversion specifier since Plan 9 code
rarely uses the usize type. This may need to be added later
for the benefit of native ports of alien code.
The idea is to avoid the magic files that contain
per process information in devcons when possible.
It will make it easier to deprecate them in the future.
Provide a central function to change the user id
of the calling process.
This is mostly used by programs to become the none
user, followed by a call to newns().
The OCEXEC flag used to be maintained per channel,
making it shared between all the file desciptors.
This has a unexpected side effects with regard to
channel passing drivers such as devdup (/fd),
devsrv (/srv) and devshr (/shr).
For example, opening a /srv file with OCEXEC
makes it impossible to be remounted by exportfs
as it internally does a exec() to mount and
re-export it. There is no way to reset the flag.
This change makes the OCEXEC flag per file descriptor,
so a open with the OCEXEC flag only affects the fd
group of the calling process, and not the channel
itself.
On rfork(RFFDG), the per file descriptor flags get
copied.
On dup(), the per file descriptor flags are reset.
The second modification is that /fd, /srv and /shr
should reject the ORCLOSE flag, as the files that
are returned have already been opend.
Initially the code tried to guess the date format. This
turned out to be a bit too magical, so the feature was
removed, but the manpage still documented the nonfeature.
Ignoring '?' when formatting date strings allows
the format strings to be reused for parsing. This
is convenient, since we don't need to duplicate
the format strings.