133 lines
3 KiB
Text
133 lines
3 KiB
Text
|
.TH PC 1
|
||
|
.SH NAME
|
||
|
pc \- programmer's calculator
|
||
|
.SH SYNOPSYS
|
||
|
.B pc
|
||
|
[
|
||
|
.B -n
|
||
|
]
|
||
|
.SH DESCRIPTION
|
||
|
.I Pc
|
||
|
is an arbitrary precision calculator with a special emphasis on supporting two's complement bit operations and working with different number bases.
|
||
|
.PP
|
||
|
.I Pc
|
||
|
reads input statements which are either expressions or control statements.
|
||
|
Multiple statements in one line can be separated by semicolons.
|
||
|
.I Pc
|
||
|
prints the value of all expressions that are not terminated by a semicolon.
|
||
|
.PP
|
||
|
Expressions can use the C-like operators
|
||
|
.TP
|
||
|
.B + - * ** \fR(exponentiation\fR)
|
||
|
.TP
|
||
|
.B / % \fR(Euclidean division, by default\fR)
|
||
|
.TP
|
||
|
.B "& | ^ ~ ! << >>"
|
||
|
.TP
|
||
|
.B "&& || \fR(returning the second argument, if appropriate)"
|
||
|
.TP
|
||
|
.B < >= < <= == !=
|
||
|
.PP
|
||
|
Variables can be defined using
|
||
|
.BR = .
|
||
|
The builtin variable
|
||
|
.B @
|
||
|
always refers to the last printed result.
|
||
|
.PP
|
||
|
Numbers can use the prefixes
|
||
|
.B 0b
|
||
|
(binary),
|
||
|
.B 0
|
||
|
(octal),
|
||
|
.B 0d
|
||
|
(decimal) and
|
||
|
.B 0x
|
||
|
(hexadecimal).
|
||
|
.B _
|
||
|
in numbers can be added for readability and is ignored.
|
||
|
.SS Builtin functions
|
||
|
.TF xtend(n,m)
|
||
|
.TP
|
||
|
.I bin(n)
|
||
|
Display \fIn\fR in binary.
|
||
|
.TP
|
||
|
.I oct(n)
|
||
|
Display \fIn\fR in octal.
|
||
|
.TP
|
||
|
.I dec(n)
|
||
|
Display \fIn\fR in decimal.
|
||
|
.TP
|
||
|
.I hex(n)
|
||
|
Display \fIn\fR in hexadecimal.
|
||
|
.TP
|
||
|
.I abs(n)
|
||
|
Absolute value of \fIn\fR.
|
||
|
.TP
|
||
|
.I round(n,m)
|
||
|
\fIn\fR rounded to the nearest multiple of \fIm\fR.
|
||
|
Numbers exactly halfway between are rounded to the next even multiple.
|
||
|
.TP
|
||
|
.I floor(n,m)
|
||
|
\fIn\fR rounded down to the next multiple of \fIm\fR.
|
||
|
.TP
|
||
|
.I ceil(n,m)
|
||
|
\fIn\fR rounded up to the next multiple of \fIm\fR.
|
||
|
.TP
|
||
|
.I trunc(n,m)
|
||
|
\fIn\fR truncated to \fIm\fR bits.
|
||
|
.TP
|
||
|
.I xtend(n,m)
|
||
|
\fIn\fR truncated to \fIm\fR bits, with the highest bit interpreted as a sign bit.
|
||
|
.TP
|
||
|
.I ubits(n)
|
||
|
The minimum number of bits required to represent \fIn\fR as an unsigned number.
|
||
|
.TP
|
||
|
.I sbits(n)
|
||
|
The minimum number of bits required to represent \fIn\fR as an signed number.
|
||
|
.SS Control statements
|
||
|
.PP
|
||
|
Control statements are always evaluated with default input base 10.
|
||
|
.TP
|
||
|
\fL_\fR \fIn\fR
|
||
|
If \fIn\fR ≠ 0, insert
|
||
|
.B _
|
||
|
in all printed numbers, every
|
||
|
.I n
|
||
|
digits.
|
||
|
.TP
|
||
|
\fL<\fR \fIn\fR
|
||
|
Set the default input base to \fIn\fR (default 10).
|
||
|
The input base can always be overriden by the base prefixes defined above.
|
||
|
.TP
|
||
|
\fL>\fR \fIn\fR
|
||
|
Set the output base to \fIn\fR.
|
||
|
If \fIn\fR = 0 (default), print each number in the base it was input in.
|
||
|
.TP
|
||
|
\fL/\fR 0
|
||
|
Use Euclidean division (default).
|
||
|
\fIa\fR / \fIb\fR is rounded towards ±∞ (opposite sign as \fIb\fR).
|
||
|
\fIa\fR % \fIb\fR is always non-negative.
|
||
|
.TP
|
||
|
\fL/\fR 1
|
||
|
Use truncating division (same as C).
|
||
|
\fIa\fR / \fIb\fR is rounded towards zero.
|
||
|
\fIa\fR % \fIb\fR can be negative.
|
||
|
.SH SOURCE
|
||
|
.B /sys/src/cmd/pc.y
|
||
|
.SH "SEE ALSO"
|
||
|
.IR bc (1),
|
||
|
.IR hoc (1)
|
||
|
.SH BUGS
|
||
|
With the input base set to 16, terms such as
|
||
|
.B ABC
|
||
|
are ambiguous.
|
||
|
They are interpreted as numbers only if there is no function or variable of the same name.
|
||
|
To force interpretation as a number, use the \fL0x\fR prefix.
|
||
|
.PP
|
||
|
Arbitrary bases should be supported, but are not supported by the
|
||
|
.IR mp (2)
|
||
|
string functions.
|
||
|
.SH HISTORY
|
||
|
.I Pc
|
||
|
first appeared in 9front (August, 2016).
|