plan9fox/sys/lib/python/threading.py

817 lines
26 KiB
Python
Raw Normal View History

2011-05-03 11:25:13 +00:00
"""Thread module emulating a subset of Java's threading model."""
import sys as _sys
try:
import thread
except ImportError:
del _sys.modules[__name__]
raise
from time import time as _time, sleep as _sleep
from traceback import format_exc as _format_exc
from collections import deque
# Rename some stuff so "from threading import *" is safe
__all__ = ['activeCount', 'Condition', 'currentThread', 'enumerate', 'Event',
'Lock', 'RLock', 'Semaphore', 'BoundedSemaphore', 'Thread',
'Timer', 'setprofile', 'settrace', 'local', 'stack_size']
_start_new_thread = thread.start_new_thread
_allocate_lock = thread.allocate_lock
_get_ident = thread.get_ident
ThreadError = thread.error
del thread
# Debug support (adapted from ihooks.py).
# All the major classes here derive from _Verbose. We force that to
# be a new-style class so that all the major classes here are new-style.
# This helps debugging (type(instance) is more revealing for instances
# of new-style classes).
_VERBOSE = False
if __debug__:
class _Verbose(object):
def __init__(self, verbose=None):
if verbose is None:
verbose = _VERBOSE
self.__verbose = verbose
def _note(self, format, *args):
if self.__verbose:
format = format % args
format = "%s: %s\n" % (
currentThread().getName(), format)
_sys.stderr.write(format)
else:
# Disable this when using "python -O"
class _Verbose(object):
def __init__(self, verbose=None):
pass
def _note(self, *args):
pass
# Support for profile and trace hooks
_profile_hook = None
_trace_hook = None
def setprofile(func):
global _profile_hook
_profile_hook = func
def settrace(func):
global _trace_hook
_trace_hook = func
# Synchronization classes
Lock = _allocate_lock
def RLock(*args, **kwargs):
return _RLock(*args, **kwargs)
class _RLock(_Verbose):
def __init__(self, verbose=None):
_Verbose.__init__(self, verbose)
self.__block = _allocate_lock()
self.__owner = None
self.__count = 0
def __repr__(self):
return "<%s(%s, %d)>" % (
self.__class__.__name__,
self.__owner and self.__owner.getName(),
self.__count)
def acquire(self, blocking=1):
me = currentThread()
if self.__owner is me:
self.__count = self.__count + 1
if __debug__:
self._note("%s.acquire(%s): recursive success", self, blocking)
return 1
rc = self.__block.acquire(blocking)
if rc:
self.__owner = me
self.__count = 1
if __debug__:
self._note("%s.acquire(%s): initial success", self, blocking)
else:
if __debug__:
self._note("%s.acquire(%s): failure", self, blocking)
return rc
__enter__ = acquire
def release(self):
me = currentThread()
assert self.__owner is me, "release() of un-acquire()d lock"
self.__count = count = self.__count - 1
if not count:
self.__owner = None
self.__block.release()
if __debug__:
self._note("%s.release(): final release", self)
else:
if __debug__:
self._note("%s.release(): non-final release", self)
def __exit__(self, t, v, tb):
self.release()
# Internal methods used by condition variables
def _acquire_restore(self, (count, owner)):
self.__block.acquire()
self.__count = count
self.__owner = owner
if __debug__:
self._note("%s._acquire_restore()", self)
def _release_save(self):
if __debug__:
self._note("%s._release_save()", self)
count = self.__count
self.__count = 0
owner = self.__owner
self.__owner = None
self.__block.release()
return (count, owner)
def _is_owned(self):
return self.__owner is currentThread()
def Condition(*args, **kwargs):
return _Condition(*args, **kwargs)
class _Condition(_Verbose):
def __init__(self, lock=None, verbose=None):
_Verbose.__init__(self, verbose)
if lock is None:
lock = RLock()
self.__lock = lock
# Export the lock's acquire() and release() methods
self.acquire = lock.acquire
self.release = lock.release
# If the lock defines _release_save() and/or _acquire_restore(),
# these override the default implementations (which just call
# release() and acquire() on the lock). Ditto for _is_owned().
try:
self._release_save = lock._release_save
except AttributeError:
pass
try:
self._acquire_restore = lock._acquire_restore
except AttributeError:
pass
try:
self._is_owned = lock._is_owned
except AttributeError:
pass
self.__waiters = []
def __enter__(self):
return self.__lock.__enter__()
def __exit__(self, *args):
return self.__lock.__exit__(*args)
def __repr__(self):
return "<Condition(%s, %d)>" % (self.__lock, len(self.__waiters))
def _release_save(self):
self.__lock.release() # No state to save
def _acquire_restore(self, x):
self.__lock.acquire() # Ignore saved state
def _is_owned(self):
# Return True if lock is owned by currentThread.
# This method is called only if __lock doesn't have _is_owned().
if self.__lock.acquire(0):
self.__lock.release()
return False
else:
return True
def wait(self, timeout=None):
assert self._is_owned(), "wait() of un-acquire()d lock"
waiter = _allocate_lock()
waiter.acquire()
self.__waiters.append(waiter)
saved_state = self._release_save()
try: # restore state no matter what (e.g., KeyboardInterrupt)
if timeout is None:
waiter.acquire()
if __debug__:
self._note("%s.wait(): got it", self)
else:
# Balancing act: We can't afford a pure busy loop, so we
# have to sleep; but if we sleep the whole timeout time,
# we'll be unresponsive. The scheme here sleeps very
# little at first, longer as time goes on, but never longer
# than 20 times per second (or the timeout time remaining).
endtime = _time() + timeout
delay = 0.0005 # 500 us -> initial delay of 1 ms
while True:
gotit = waiter.acquire(0)
if gotit:
break
remaining = endtime - _time()
if remaining <= 0:
break
delay = min(delay * 2, remaining, .05)
_sleep(delay)
if not gotit:
if __debug__:
self._note("%s.wait(%s): timed out", self, timeout)
try:
self.__waiters.remove(waiter)
except ValueError:
pass
else:
if __debug__:
self._note("%s.wait(%s): got it", self, timeout)
finally:
self._acquire_restore(saved_state)
def notify(self, n=1):
assert self._is_owned(), "notify() of un-acquire()d lock"
__waiters = self.__waiters
waiters = __waiters[:n]
if not waiters:
if __debug__:
self._note("%s.notify(): no waiters", self)
return
self._note("%s.notify(): notifying %d waiter%s", self, n,
n!=1 and "s" or "")
for waiter in waiters:
waiter.release()
try:
__waiters.remove(waiter)
except ValueError:
pass
def notifyAll(self):
self.notify(len(self.__waiters))
def Semaphore(*args, **kwargs):
return _Semaphore(*args, **kwargs)
class _Semaphore(_Verbose):
# After Tim Peters' semaphore class, but not quite the same (no maximum)
def __init__(self, value=1, verbose=None):
assert value >= 0, "Semaphore initial value must be >= 0"
_Verbose.__init__(self, verbose)
self.__cond = Condition(Lock())
self.__value = value
def acquire(self, blocking=1):
rc = False
self.__cond.acquire()
while self.__value == 0:
if not blocking:
break
if __debug__:
self._note("%s.acquire(%s): blocked waiting, value=%s",
self, blocking, self.__value)
self.__cond.wait()
else:
self.__value = self.__value - 1
if __debug__:
self._note("%s.acquire: success, value=%s",
self, self.__value)
rc = True
self.__cond.release()
return rc
__enter__ = acquire
def release(self):
self.__cond.acquire()
self.__value = self.__value + 1
if __debug__:
self._note("%s.release: success, value=%s",
self, self.__value)
self.__cond.notify()
self.__cond.release()
def __exit__(self, t, v, tb):
self.release()
def BoundedSemaphore(*args, **kwargs):
return _BoundedSemaphore(*args, **kwargs)
class _BoundedSemaphore(_Semaphore):
"""Semaphore that checks that # releases is <= # acquires"""
def __init__(self, value=1, verbose=None):
_Semaphore.__init__(self, value, verbose)
self._initial_value = value
def release(self):
if self._Semaphore__value >= self._initial_value:
raise ValueError, "Semaphore released too many times"
return _Semaphore.release(self)
def Event(*args, **kwargs):
return _Event(*args, **kwargs)
class _Event(_Verbose):
# After Tim Peters' event class (without is_posted())
def __init__(self, verbose=None):
_Verbose.__init__(self, verbose)
self.__cond = Condition(Lock())
self.__flag = False
def isSet(self):
return self.__flag
def set(self):
self.__cond.acquire()
try:
self.__flag = True
self.__cond.notifyAll()
finally:
self.__cond.release()
def clear(self):
self.__cond.acquire()
try:
self.__flag = False
finally:
self.__cond.release()
def wait(self, timeout=None):
self.__cond.acquire()
try:
if not self.__flag:
self.__cond.wait(timeout)
finally:
self.__cond.release()
# Helper to generate new thread names
_counter = 0
def _newname(template="Thread-%d"):
global _counter
_counter = _counter + 1
return template % _counter
# Active thread administration
_active_limbo_lock = _allocate_lock()
_active = {} # maps thread id to Thread object
_limbo = {}
# Main class for threads
class Thread(_Verbose):
__initialized = False
# Need to store a reference to sys.exc_info for printing
# out exceptions when a thread tries to use a global var. during interp.
# shutdown and thus raises an exception about trying to perform some
# operation on/with a NoneType
__exc_info = _sys.exc_info
def __init__(self, group=None, target=None, name=None,
args=(), kwargs=None, verbose=None):
assert group is None, "group argument must be None for now"
_Verbose.__init__(self, verbose)
if kwargs is None:
kwargs = {}
self.__target = target
self.__name = str(name or _newname())
self.__args = args
self.__kwargs = kwargs
self.__daemonic = self._set_daemon()
self.__started = False
self.__stopped = False
self.__block = Condition(Lock())
self.__initialized = True
# sys.stderr is not stored in the class like
# sys.exc_info since it can be changed between instances
self.__stderr = _sys.stderr
def _set_daemon(self):
# Overridden in _MainThread and _DummyThread
return currentThread().isDaemon()
def __repr__(self):
assert self.__initialized, "Thread.__init__() was not called"
status = "initial"
if self.__started:
status = "started"
if self.__stopped:
status = "stopped"
if self.__daemonic:
status = status + " daemon"
return "<%s(%s, %s)>" % (self.__class__.__name__, self.__name, status)
def start(self):
assert self.__initialized, "Thread.__init__() not called"
assert not self.__started, "thread already started"
if __debug__:
self._note("%s.start(): starting thread", self)
_active_limbo_lock.acquire()
_limbo[self] = self
_active_limbo_lock.release()
_start_new_thread(self.__bootstrap, ())
self.__started = True
_sleep(0.000001) # 1 usec, to let the thread run (Solaris hack)
def run(self):
if self.__target:
self.__target(*self.__args, **self.__kwargs)
def __bootstrap(self):
try:
self.__started = True
_active_limbo_lock.acquire()
_active[_get_ident()] = self
del _limbo[self]
_active_limbo_lock.release()
if __debug__:
self._note("%s.__bootstrap(): thread started", self)
if _trace_hook:
self._note("%s.__bootstrap(): registering trace hook", self)
_sys.settrace(_trace_hook)
if _profile_hook:
self._note("%s.__bootstrap(): registering profile hook", self)
_sys.setprofile(_profile_hook)
try:
self.run()
except SystemExit:
if __debug__:
self._note("%s.__bootstrap(): raised SystemExit", self)
except:
if __debug__:
self._note("%s.__bootstrap(): unhandled exception", self)
# If sys.stderr is no more (most likely from interpreter
# shutdown) use self.__stderr. Otherwise still use sys (as in
# _sys) in case sys.stderr was redefined since the creation of
# self.
if _sys:
_sys.stderr.write("Exception in thread %s:\n%s\n" %
(self.getName(), _format_exc()))
else:
# Do the best job possible w/o a huge amt. of code to
# approximate a traceback (code ideas from
# Lib/traceback.py)
exc_type, exc_value, exc_tb = self.__exc_info()
try:
print>>self.__stderr, (
"Exception in thread " + self.getName() +
" (most likely raised during interpreter shutdown):")
print>>self.__stderr, (
"Traceback (most recent call last):")
while exc_tb:
print>>self.__stderr, (
' File "%s", line %s, in %s' %
(exc_tb.tb_frame.f_code.co_filename,
exc_tb.tb_lineno,
exc_tb.tb_frame.f_code.co_name))
exc_tb = exc_tb.tb_next
print>>self.__stderr, ("%s: %s" % (exc_type, exc_value))
# Make sure that exc_tb gets deleted since it is a memory
# hog; deleting everything else is just for thoroughness
finally:
del exc_type, exc_value, exc_tb
else:
if __debug__:
self._note("%s.__bootstrap(): normal return", self)
finally:
self.__stop()
try:
self.__delete()
except:
pass
def __stop(self):
self.__block.acquire()
self.__stopped = True
self.__block.notifyAll()
self.__block.release()
def __delete(self):
"Remove current thread from the dict of currently running threads."
# Notes about running with dummy_thread:
#
# Must take care to not raise an exception if dummy_thread is being
# used (and thus this module is being used as an instance of
# dummy_threading). dummy_thread.get_ident() always returns -1 since
# there is only one thread if dummy_thread is being used. Thus
# len(_active) is always <= 1 here, and any Thread instance created
# overwrites the (if any) thread currently registered in _active.
#
# An instance of _MainThread is always created by 'threading'. This
# gets overwritten the instant an instance of Thread is created; both
# threads return -1 from dummy_thread.get_ident() and thus have the
# same key in the dict. So when the _MainThread instance created by
# 'threading' tries to clean itself up when atexit calls this method
# it gets a KeyError if another Thread instance was created.
#
# This all means that KeyError from trying to delete something from
# _active if dummy_threading is being used is a red herring. But
# since it isn't if dummy_threading is *not* being used then don't
# hide the exception.
_active_limbo_lock.acquire()
try:
try:
del _active[_get_ident()]
except KeyError:
if 'dummy_threading' not in _sys.modules:
raise
finally:
_active_limbo_lock.release()
def join(self, timeout=None):
assert self.__initialized, "Thread.__init__() not called"
assert self.__started, "cannot join thread before it is started"
assert self is not currentThread(), "cannot join current thread"
if __debug__:
if not self.__stopped:
self._note("%s.join(): waiting until thread stops", self)
self.__block.acquire()
try:
if timeout is None:
while not self.__stopped:
self.__block.wait()
if __debug__:
self._note("%s.join(): thread stopped", self)
else:
deadline = _time() + timeout
while not self.__stopped:
delay = deadline - _time()
if delay <= 0:
if __debug__:
self._note("%s.join(): timed out", self)
break
self.__block.wait(delay)
else:
if __debug__:
self._note("%s.join(): thread stopped", self)
finally:
self.__block.release()
def getName(self):
assert self.__initialized, "Thread.__init__() not called"
return self.__name
def setName(self, name):
assert self.__initialized, "Thread.__init__() not called"
self.__name = str(name)
def isAlive(self):
assert self.__initialized, "Thread.__init__() not called"
return self.__started and not self.__stopped
def isDaemon(self):
assert self.__initialized, "Thread.__init__() not called"
return self.__daemonic
def setDaemon(self, daemonic):
assert self.__initialized, "Thread.__init__() not called"
assert not self.__started, "cannot set daemon status of active thread"
self.__daemonic = daemonic
# The timer class was contributed by Itamar Shtull-Trauring
def Timer(*args, **kwargs):
return _Timer(*args, **kwargs)
class _Timer(Thread):
"""Call a function after a specified number of seconds:
t = Timer(30.0, f, args=[], kwargs={})
t.start()
t.cancel() # stop the timer's action if it's still waiting
"""
def __init__(self, interval, function, args=[], kwargs={}):
Thread.__init__(self)
self.interval = interval
self.function = function
self.args = args
self.kwargs = kwargs
self.finished = Event()
def cancel(self):
"""Stop the timer if it hasn't finished yet"""
self.finished.set()
def run(self):
self.finished.wait(self.interval)
if not self.finished.isSet():
self.function(*self.args, **self.kwargs)
self.finished.set()
# Special thread class to represent the main thread
# This is garbage collected through an exit handler
class _MainThread(Thread):
def __init__(self):
Thread.__init__(self, name="MainThread")
self._Thread__started = True
_active_limbo_lock.acquire()
_active[_get_ident()] = self
_active_limbo_lock.release()
def _set_daemon(self):
return False
def _exitfunc(self):
self._Thread__stop()
t = _pickSomeNonDaemonThread()
if t:
if __debug__:
self._note("%s: waiting for other threads", self)
while t:
t.join()
t = _pickSomeNonDaemonThread()
if __debug__:
self._note("%s: exiting", self)
self._Thread__delete()
def _pickSomeNonDaemonThread():
for t in enumerate():
if not t.isDaemon() and t.isAlive():
return t
return None
# Dummy thread class to represent threads not started here.
# These aren't garbage collected when they die, nor can they be waited for.
# If they invoke anything in threading.py that calls currentThread(), they
# leave an entry in the _active dict forever after.
# Their purpose is to return *something* from currentThread().
# They are marked as daemon threads so we won't wait for them
# when we exit (conform previous semantics).
class _DummyThread(Thread):
def __init__(self):
Thread.__init__(self, name=_newname("Dummy-%d"))
# Thread.__block consumes an OS-level locking primitive, which
# can never be used by a _DummyThread. Since a _DummyThread
# instance is immortal, that's bad, so release this resource.
del self._Thread__block
self._Thread__started = True
_active_limbo_lock.acquire()
_active[_get_ident()] = self
_active_limbo_lock.release()
def _set_daemon(self):
return True
def join(self, timeout=None):
assert False, "cannot join a dummy thread"
# Global API functions
def currentThread():
try:
return _active[_get_ident()]
except KeyError:
##print "currentThread(): no current thread for", _get_ident()
return _DummyThread()
def activeCount():
_active_limbo_lock.acquire()
count = len(_active) + len(_limbo)
_active_limbo_lock.release()
return count
def enumerate():
_active_limbo_lock.acquire()
active = _active.values() + _limbo.values()
_active_limbo_lock.release()
return active
from thread import stack_size
# Create the main thread object,
# and make it available for the interpreter
# (Py_Main) as threading._shutdown.
_shutdown = _MainThread()._exitfunc
# get thread-local implementation, either from the thread
# module, or from the python fallback
try:
from thread import _local as local
except ImportError:
from _threading_local import local
# Self-test code
def _test():
class BoundedQueue(_Verbose):
def __init__(self, limit):
_Verbose.__init__(self)
self.mon = RLock()
self.rc = Condition(self.mon)
self.wc = Condition(self.mon)
self.limit = limit
self.queue = deque()
def put(self, item):
self.mon.acquire()
while len(self.queue) >= self.limit:
self._note("put(%s): queue full", item)
self.wc.wait()
self.queue.append(item)
self._note("put(%s): appended, length now %d",
item, len(self.queue))
self.rc.notify()
self.mon.release()
def get(self):
self.mon.acquire()
while not self.queue:
self._note("get(): queue empty")
self.rc.wait()
item = self.queue.popleft()
self._note("get(): got %s, %d left", item, len(self.queue))
self.wc.notify()
self.mon.release()
return item
class ProducerThread(Thread):
def __init__(self, queue, quota):
Thread.__init__(self, name="Producer")
self.queue = queue
self.quota = quota
def run(self):
from random import random
counter = 0
while counter < self.quota:
counter = counter + 1
self.queue.put("%s.%d" % (self.getName(), counter))
_sleep(random() * 0.00001)
class ConsumerThread(Thread):
def __init__(self, queue, count):
Thread.__init__(self, name="Consumer")
self.queue = queue
self.count = count
def run(self):
while self.count > 0:
item = self.queue.get()
print item
self.count = self.count - 1
NP = 3
QL = 4
NI = 5
Q = BoundedQueue(QL)
P = []
for i in range(NP):
t = ProducerThread(Q, NI)
t.setName("Producer-%d" % (i+1))
P.append(t)
C = ConsumerThread(Q, NI*NP)
for t in P:
t.start()
_sleep(0.000001)
C.start()
for t in P:
t.join()
C.join()
if __name__ == '__main__':
_test()