min/modules/nlp.py
2021-06-02 10:27:38 -04:00

117 lines
3.2 KiB
Python

from bot import *
import dataset
import random
import time
async def rec(self, m):
prew = shared.db['prew']
noch = shared.db['noun']
beg = shared.db['beg']
end = shared.db['end']
pre = ''
words = m.split(' ')
if words[0] == 'admin':
return
for w in words:
if pre == '':
beg.insert(dict(word=w))
else:
prew.insert_ignore(dict(pre=pre, pro=w),['id'])
pre = w
noch.insert(dict(word=w))
end.insert(dict(word=pre))
async def getNoun(self, words, c):
if c in shared.cstate:
oldnoun = shared.cstate[c]
else:
oldnoun = None
shared.db['remsg'].insert_ignore(dict(noun=oldnoun,msg=' '.join(words)),['id'])
nouns = [i['word'] for i in shared.db['noun'].find()]
out = {}
for i in words:
out[i] = nouns.count(i)
noun = min(out, key=out.get)
conversation = shared.db['conver']
if oldnoun != None:
print("adding", [oldnoun,noun])
conversation.insert_ignore(dict(pre=oldnoun,pro=noun),['id'])
nextnoun = [i['pro'] for i in conversation.find(pre=noun)]
print("nextnoun:",nextnoun)
if len(nextnoun) > 0:
noun = random.choice(nextnoun)
shared.cstate[c] = noun
return noun
async def genOut(self, noun):
oldresponses = [i['msg'] for i in shared.db['remsg'].find(noun=noun)]
if len(oldresponses) > 0:
return random.choice(oldresponses).split(' ')
prew = shared.db['prew']
beg = [ i['word'] for i in shared.db['beg'].find() ]
end = [ i['word'] for i in shared.db['end'].find() ]
nouns = [i['word'] for i in shared.db['noun'].find()]
iter=0
out = [noun]
while (out[0] not in beg or nouns.count(out[0])-1 > iter * shared.enmul) and iter < 7:
try:
out = [ random.choice(list(prew.find(pro=out[0])))['pre'] ] + out
except IndexError:
iter += 69
iter += 1
iter = 0
while (out[-1] not in end or nouns.count(out[-1])-1 > iter * shared.enmul) and iter < 7:
try:
out.append(random.choice(list(prew.find(pre=out[-1])))['pro'])
except IndexError:
iter += 69
iter += 1
return out
async def filter(self, c, n, m):
if c in shared.qtime and shared.qtime[c] > time.time():
return
if m[:len(shared.prefix)] == shared.prefix:
m = m[len(shared.prefix):]
await go(self, c, n, m)
elif m[:len(self.nickname)+1] == self.nickname+' ':
m = m[len(self.nickname)+1:]
await go(self, c, n, m)
elif '#' not in c and n != self.nickname:
await go(self, c, n, m)
else:
if len(m.split(' ')) > 1:
if shared.learntime + shared.learndelay < time.time():
await rec(self, m)
shared.learntime = time.time()
async def go(self, c, n, m):
await rec(self, m)
words = m.split(' ')
if words[0] == 'admin':
return
await self.message(c, ' '.join(await genOut(self, await getNoun(self, words, c))))
async def init(self):
shared.qtime = {}
shared.learntime = 0
# delay between grabbing random messages and passively
# learning.
shared.learndelay = 1
# sentance ending weight, lower means longer sentances,
# higher means shorter sentances. this will need to slowly
# get larger as the database grows
shared.enmul = 6
shared.rawm['nlp'] = filter
shared.cstate = {}