/* * Based on the SHA-1 C implementation by Steve Reid * 100% Public Domain * * Test Vectors (from FIPS PUB 180-1) * "abc" * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 * A million repetitions of "a" * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F */ #include "stdinc.h" #ifdef _WIN32 #include // for htonl() #else #include // for htonl() #endif #include "sha1.h" #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) // blk0() and blk() perform the initial expand. blk0() deals with host endianess #define blk0(i) (block[i] = htonl(block[i])) #define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15]^block[(i+2)&15]^block[i&15],1)) // (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); // hash a single 512-bit block. this is the core of the algorithm static uint32_t sha1_transform(SHA1 *sha1, const uint8_t buffer[SHA1_BLOCK_LENGTH]) { uint32_t a, b, c, d, e; uint32_t block[SHA1_BLOCK_LENGTH / 4]; memcpy(&block, buffer, SHA1_BLOCK_LENGTH); // copy sha1->state[] to working variables a = sha1->state[0]; b = sha1->state[1]; c = sha1->state[2]; d = sha1->state[3]; e = sha1->state[4]; // 4 rounds of 20 operations each (loop unrolled) R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); // add the working variables back into sha1->state[] sha1->state[0] += a; sha1->state[1] += b; sha1->state[2] += c; sha1->state[3] += d; sha1->state[4] += e; // wipe variables a = b = c = d = e = 0; return a; // return a to avoid dead-store warning from clang static analyzer } void sha1_init(SHA1 *sha1) { sha1->state[0] = 0x67452301; sha1->state[1] = 0xEFCDAB89; sha1->state[2] = 0x98BADCFE; sha1->state[3] = 0x10325476; sha1->state[4] = 0xC3D2E1F0; sha1->count = 0; } void sha1_update(SHA1 *sha1, const uint8_t *data, size_t length) { size_t i, j; j = (size_t)((sha1->count >> 3) & 63); sha1->count += (length << 3); if ((j + length) > 63) { i = 64 - j; memcpy(&sha1->buffer[j], data, i); sha1_transform(sha1, sha1->buffer); for (; i + 63 < length; i += 64) { sha1_transform(sha1, &data[i]); } j = 0; } else { i = 0; } memcpy(&sha1->buffer[j], &data[i], length - i); } void sha1_final(SHA1 *sha1, uint8_t digest[SHA1_DIGEST_LENGTH]) { uint32_t i; uint8_t count[8]; for (i = 0; i < 8; i++) { // this is endian independent count[i] = (uint8_t)((sha1->count >> ((7 - (i & 7)) * 8)) & 255); } sha1_update(sha1, (uint8_t *)"\200", 1); while ((sha1->count & 504) != 448) { sha1_update(sha1, (uint8_t *)"\0", 1); } sha1_update(sha1, count, 8); for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { digest[i] = (uint8_t)((sha1->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255); } memset(sha1, 0, sizeof(*sha1)); }