StableDiffusion/scripts/gradio/superresolution.py
2022-11-24 01:22:28 +01:00

197 lines
7.3 KiB
Python

import sys
import torch
import numpy as np
import gradio as gr
from PIL import Image
from omegaconf import OmegaConf
from einops import repeat, rearrange
from pytorch_lightning import seed_everything
from imwatermark import WatermarkEncoder
from scripts.txt2img import put_watermark
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.ddpm import LatentUpscaleDiffusion, LatentUpscaleFinetuneDiffusion
from ldm.util import exists, instantiate_from_config
torch.set_grad_enabled(False)
def initialize_model(config, ckpt):
config = OmegaConf.load(config)
model = instantiate_from_config(config.model)
model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)
device = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
sampler = DDIMSampler(model)
return sampler
def make_batch_sd(
image,
txt,
device,
num_samples=1,
):
image = np.array(image.convert("RGB"))
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
batch = {
"lr": rearrange(image, 'h w c -> 1 c h w'),
"txt": num_samples * [txt],
}
batch["lr"] = repeat(batch["lr"].to(device=device),
"1 ... -> n ...", n=num_samples)
return batch
def make_noise_augmentation(model, batch, noise_level=None):
x_low = batch[model.low_scale_key]
x_low = x_low.to(memory_format=torch.contiguous_format).float()
x_aug, noise_level = model.low_scale_model(x_low, noise_level)
return x_aug, noise_level
def paint(sampler, image, prompt, seed, scale, h, w, steps, num_samples=1, callback=None, eta=0., noise_level=None):
device = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
model = sampler.model
seed_everything(seed)
prng = np.random.RandomState(seed)
start_code = prng.randn(num_samples, model.channels, h, w)
start_code = torch.from_numpy(start_code).to(
device=device, dtype=torch.float32)
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
wm = "SDV2"
wm_encoder = WatermarkEncoder()
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
with torch.no_grad(),\
torch.autocast("cuda"):
batch = make_batch_sd(
image, txt=prompt, device=device, num_samples=num_samples)
c = model.cond_stage_model.encode(batch["txt"])
c_cat = list()
if isinstance(model, LatentUpscaleFinetuneDiffusion):
for ck in model.concat_keys:
cc = batch[ck]
if exists(model.reshuffle_patch_size):
assert isinstance(model.reshuffle_patch_size, int)
cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
p1=model.reshuffle_patch_size, p2=model.reshuffle_patch_size)
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
# cond
cond = {"c_concat": [c_cat], "c_crossattn": [c]}
# uncond cond
uc_cross = model.get_unconditional_conditioning(num_samples, "")
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
elif isinstance(model, LatentUpscaleDiffusion):
x_augment, noise_level = make_noise_augmentation(
model, batch, noise_level)
cond = {"c_concat": [x_augment],
"c_crossattn": [c], "c_adm": noise_level}
# uncond cond
uc_cross = model.get_unconditional_conditioning(num_samples, "")
uc_full = {"c_concat": [x_augment], "c_crossattn": [
uc_cross], "c_adm": noise_level}
else:
raise NotImplementedError()
shape = [model.channels, h, w]
samples, intermediates = sampler.sample(
steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc_full,
x_T=start_code,
callback=callback
)
with torch.no_grad():
x_samples_ddim = model.decode_first_stage(samples)
result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]
def pad_image(input_image):
pad_w, pad_h = np.max(((2, 2), np.ceil(
np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size
im_padded = Image.fromarray(
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
return im_padded
def predict(input_image, prompt, steps, num_samples, scale, seed, eta, noise_level):
init_image = input_image.convert("RGB")
image = pad_image(init_image) # resize to integer multiple of 32
width, height = image.size
noise_level = torch.Tensor(
num_samples * [noise_level]).to(sampler.model.device).long()
sampler.make_schedule(steps, ddim_eta=eta, verbose=True)
result = paint(
sampler=sampler,
image=image,
prompt=prompt,
seed=seed,
scale=scale,
h=height, w=width, steps=steps,
num_samples=num_samples,
callback=None,
noise_level=noise_level
)
return result
sampler = initialize_model(sys.argv[1], sys.argv[2])
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown("## Stable Diffusion Upscaling")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="pil")
gr.Markdown(
"Tip: Add a description of the object that should be upscaled, e.g.: 'a professional photograph of a cat")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(
label="Number of Samples", minimum=1, maximum=4, value=1, step=1)
steps = gr.Slider(label="DDIM Steps", minimum=2,
maximum=200, value=75, step=1)
scale = gr.Slider(
label="Scale", minimum=0.1, maximum=30.0, value=10, step=0.1
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
randomize=True,
)
eta = gr.Number(label="eta (DDIM)",
value=0.0, min=0.0, max=1.0)
noise_level = None
if isinstance(sampler.model, LatentUpscaleDiffusion):
# TODO: make this work for all models
noise_level = gr.Number(
label="Noise Augmentation", min=0, max=350, value=20, step=1)
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(
grid=[2], height="auto")
run_button.click(fn=predict, inputs=[
input_image, prompt, steps, num_samples, scale, seed, eta, noise_level], outputs=[gallery])
block.launch()