StableDiffusion/scripts/streamlit/superresolution.py
2022-11-24 01:22:28 +01:00

170 lines
6.7 KiB
Python

import sys
import torch
import numpy as np
import streamlit as st
from PIL import Image
from omegaconf import OmegaConf
from einops import repeat, rearrange
from pytorch_lightning import seed_everything
from imwatermark import WatermarkEncoder
from scripts.txt2img import put_watermark
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.ddpm import LatentUpscaleDiffusion, LatentUpscaleFinetuneDiffusion
from ldm.util import exists, instantiate_from_config
torch.set_grad_enabled(False)
@st.cache(allow_output_mutation=True)
def initialize_model(config, ckpt):
config = OmegaConf.load(config)
model = instantiate_from_config(config.model)
model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
sampler = DDIMSampler(model)
return sampler
def make_batch_sd(
image,
txt,
device,
num_samples=1,
):
image = np.array(image.convert("RGB"))
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
batch = {
"lr": rearrange(image, 'h w c -> 1 c h w'),
"txt": num_samples * [txt],
}
batch["lr"] = repeat(batch["lr"].to(device=device), "1 ... -> n ...", n=num_samples)
return batch
def make_noise_augmentation(model, batch, noise_level=None):
x_low = batch[model.low_scale_key]
x_low = x_low.to(memory_format=torch.contiguous_format).float()
x_aug, noise_level = model.low_scale_model(x_low, noise_level)
return x_aug, noise_level
def paint(sampler, image, prompt, seed, scale, h, w, steps, num_samples=1, callback=None, eta=0., noise_level=None):
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = sampler.model
seed_everything(seed)
prng = np.random.RandomState(seed)
start_code = prng.randn(num_samples, model.channels, h , w)
start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
wm = "SDV2"
wm_encoder = WatermarkEncoder()
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
with torch.no_grad(),\
torch.autocast("cuda"):
batch = make_batch_sd(image, txt=prompt, device=device, num_samples=num_samples)
c = model.cond_stage_model.encode(batch["txt"])
c_cat = list()
if isinstance(model, LatentUpscaleFinetuneDiffusion):
for ck in model.concat_keys:
cc = batch[ck]
if exists(model.reshuffle_patch_size):
assert isinstance(model.reshuffle_patch_size, int)
cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
p1=model.reshuffle_patch_size, p2=model.reshuffle_patch_size)
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
# cond
cond = {"c_concat": [c_cat], "c_crossattn": [c]}
# uncond cond
uc_cross = model.get_unconditional_conditioning(num_samples, "")
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
elif isinstance(model, LatentUpscaleDiffusion):
x_augment, noise_level = make_noise_augmentation(model, batch, noise_level)
cond = {"c_concat": [x_augment], "c_crossattn": [c], "c_adm": noise_level}
# uncond cond
uc_cross = model.get_unconditional_conditioning(num_samples, "")
uc_full = {"c_concat": [x_augment], "c_crossattn": [uc_cross], "c_adm": noise_level}
else:
raise NotImplementedError()
shape = [model.channels, h, w]
samples, intermediates = sampler.sample(
steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc_full,
x_T=start_code,
callback=callback
)
with torch.no_grad():
x_samples_ddim = model.decode_first_stage(samples)
result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
st.text(f"upscaled image shape: {result.shape}")
return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]
def run():
st.title("Stable Diffusion Upscaling")
# run via streamlit run scripts/demo/depth2img.py <path-tp-config> <path-to-ckpt>
sampler = initialize_model(sys.argv[1], sys.argv[2])
image = st.file_uploader("Image", ["jpg", "png"])
if image:
image = Image.open(image)
w, h = image.size
st.text(f"loaded input image of size ({w}, {h})")
width, height = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
image = image.resize((width, height))
st.text(f"resized input image to size ({width}, {height} (w, h))")
st.image(image)
st.write(f"\n Tip: Add a description of the object that should be upscaled, e.g.: 'a professional photograph of a cat'")
prompt = st.text_input("Prompt", "a high quality professional photograph")
seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0)
num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1)
scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1)
steps = st.slider("DDIM Steps", min_value=2, max_value=250, value=50, step=1)
eta = st.sidebar.number_input("eta (DDIM)", value=0., min_value=0., max_value=1.)
noise_level = None
if isinstance(sampler.model, LatentUpscaleDiffusion):
# TODO: make this work for all models
noise_level = st.sidebar.number_input("Noise Augmentation", min_value=0, max_value=350, value=20)
noise_level = torch.Tensor(num_samples * [noise_level]).to(sampler.model.device).long()
t_progress = st.progress(0)
def t_callback(t):
t_progress.progress(min((t + 1) / steps, 1.))
sampler.make_schedule(steps, ddim_eta=eta, verbose=True)
if st.button("Sample"):
result = paint(
sampler=sampler,
image=image,
prompt=prompt,
seed=seed,
scale=scale,
h=height, w=width, steps=steps,
num_samples=num_samples,
callback=t_callback,
noise_level=noise_level,
eta=eta
)
st.write("Result")
for image in result:
st.image(image, output_format='PNG')
if __name__ == "__main__":
run()