Remove unnecessary bracket

This commit is contained in:
Yumenoumi 2023-03-21 15:27:28 +08:00 committed by GitHub
parent 67fdc82547
commit ef4be89d17
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -264,7 +264,7 @@ Thanks for open-sourcing!
- [CompVis](https://github.com/CompVis/stable-diffusion) initial stable diffusion release - [CompVis](https://github.com/CompVis/stable-diffusion) initial stable diffusion release
- [Patrick](https://github.com/pesser)'s [implementation](https://github.com/runwayml/stable-diffusion/blob/main/scripts/inpaint_st.py) of the streamlit demo for inpainting. - [Patrick](https://github.com/pesser)'s [implementation](https://github.com/runwayml/stable-diffusion/blob/main/scripts/inpaint_st.py) of the streamlit demo for inpainting.
- `img2img` is an application of [SDEdit](https://arxiv.org/abs/2108.01073) by [Chenlin Meng](https://cs.stanford.edu/~chenlin/) from the [Stanford AI Lab](https://cs.stanford.edu/~ermon/website/). - `img2img` is an application of [SDEdit](https://arxiv.org/abs/2108.01073) by [Chenlin Meng](https://cs.stanford.edu/~chenlin/) from the [Stanford AI Lab](https://cs.stanford.edu/~ermon/website/).
- [Kat's implementation]((https://github.com/CompVis/latent-diffusion/pull/51)) of the [PLMS](https://arxiv.org/abs/2202.09778) sampler, and [more](https://github.com/crowsonkb/k-diffusion). - [Kat's implementation](https://github.com/CompVis/latent-diffusion/pull/51) of the [PLMS](https://arxiv.org/abs/2202.09778) sampler, and [more](https://github.com/crowsonkb/k-diffusion).
- [DPMSolver](https://arxiv.org/abs/2206.00927) [integration](https://github.com/CompVis/stable-diffusion/pull/440) by [Cheng Lu](https://github.com/LuChengTHU). - [DPMSolver](https://arxiv.org/abs/2206.00927) [integration](https://github.com/CompVis/stable-diffusion/pull/440) by [Cheng Lu](https://github.com/LuChengTHU).
- Facebook's [xformers](https://github.com/facebookresearch/xformers) for efficient attention computation. - Facebook's [xformers](https://github.com/facebookresearch/xformers) for efficient attention computation.
- [MiDaS](https://github.com/isl-org/MiDaS) for monocular depth estimation. - [MiDaS](https://github.com/isl-org/MiDaS) for monocular depth estimation.