mirror of
https://github.com/Stability-AI/stablediffusion.git
synced 2024-12-22 23:55:00 +00:00
Remove unnecessary bracket
This commit is contained in:
parent
67fdc82547
commit
ef4be89d17
1 changed files with 1 additions and 1 deletions
|
@ -264,7 +264,7 @@ Thanks for open-sourcing!
|
||||||
- [CompVis](https://github.com/CompVis/stable-diffusion) initial stable diffusion release
|
- [CompVis](https://github.com/CompVis/stable-diffusion) initial stable diffusion release
|
||||||
- [Patrick](https://github.com/pesser)'s [implementation](https://github.com/runwayml/stable-diffusion/blob/main/scripts/inpaint_st.py) of the streamlit demo for inpainting.
|
- [Patrick](https://github.com/pesser)'s [implementation](https://github.com/runwayml/stable-diffusion/blob/main/scripts/inpaint_st.py) of the streamlit demo for inpainting.
|
||||||
- `img2img` is an application of [SDEdit](https://arxiv.org/abs/2108.01073) by [Chenlin Meng](https://cs.stanford.edu/~chenlin/) from the [Stanford AI Lab](https://cs.stanford.edu/~ermon/website/).
|
- `img2img` is an application of [SDEdit](https://arxiv.org/abs/2108.01073) by [Chenlin Meng](https://cs.stanford.edu/~chenlin/) from the [Stanford AI Lab](https://cs.stanford.edu/~ermon/website/).
|
||||||
- [Kat's implementation]((https://github.com/CompVis/latent-diffusion/pull/51)) of the [PLMS](https://arxiv.org/abs/2202.09778) sampler, and [more](https://github.com/crowsonkb/k-diffusion).
|
- [Kat's implementation](https://github.com/CompVis/latent-diffusion/pull/51) of the [PLMS](https://arxiv.org/abs/2202.09778) sampler, and [more](https://github.com/crowsonkb/k-diffusion).
|
||||||
- [DPMSolver](https://arxiv.org/abs/2206.00927) [integration](https://github.com/CompVis/stable-diffusion/pull/440) by [Cheng Lu](https://github.com/LuChengTHU).
|
- [DPMSolver](https://arxiv.org/abs/2206.00927) [integration](https://github.com/CompVis/stable-diffusion/pull/440) by [Cheng Lu](https://github.com/LuChengTHU).
|
||||||
- Facebook's [xformers](https://github.com/facebookresearch/xformers) for efficient attention computation.
|
- Facebook's [xformers](https://github.com/facebookresearch/xformers) for efficient attention computation.
|
||||||
- [MiDaS](https://github.com/isl-org/MiDaS) for monocular depth estimation.
|
- [MiDaS](https://github.com/isl-org/MiDaS) for monocular depth estimation.
|
||||||
|
|
Loading…
Reference in a new issue