Add env var for resume previous behavior

This commit is contained in:
Dango233 2022-12-07 21:38:32 +08:00
parent 6e92cda76d
commit e1797ae248

View file

@ -16,6 +16,9 @@ try:
except: except:
XFORMERS_IS_AVAILBLE = False XFORMERS_IS_AVAILBLE = False
# CrossAttn precision handling
import os
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
def exists(val): def exists(val):
return val is not None return val is not None
@ -168,8 +171,11 @@ class CrossAttention(nn.Module):
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
# force cast to fp32 to avoid overflowing # force cast to fp32 to avoid overflowing
with torch.autocast(enabled=False, device_type = 'cuda'): if _ATTN_PRECISION =="fp32":
q, k = q.float(), k.float() with torch.autocast(enabled=False, device_type = 'cuda'):
q, k = q.float(), k.float()
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
else:
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
del q, k del q, k