mirror of
https://github.com/Stability-AI/stablediffusion.git
synced 2024-12-22 15:44:58 +00:00
Reformatting
This commit is contained in:
parent
a825f77092
commit
462a9d3298
15 changed files with 47 additions and 72 deletions
|
@ -360,7 +360,7 @@ class DDIMSampler(object):
|
||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
|
|
||||||
# direction pointing to x_t
|
# direction pointing to x_t
|
||||||
dir_xt = (1.0 - a_prev - sigma_t ** 2).sqrt() * e_t
|
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
||||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||||
if noise_dropout > 0.0:
|
if noise_dropout > 0.0:
|
||||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||||
|
@ -472,7 +472,6 @@ class DDIMSampler(object):
|
||||||
use_original_steps=False,
|
use_original_steps=False,
|
||||||
callback=None,
|
callback=None,
|
||||||
):
|
):
|
||||||
|
|
||||||
timesteps = (
|
timesteps = (
|
||||||
np.arange(self.ddpm_num_timesteps)
|
np.arange(self.ddpm_num_timesteps)
|
||||||
if use_original_steps
|
if use_original_steps
|
||||||
|
|
|
@ -242,7 +242,7 @@ class DDPM(pl.LightningModule):
|
||||||
)
|
)
|
||||||
|
|
||||||
if self.parameterization == "eps":
|
if self.parameterization == "eps":
|
||||||
lvlb_weights = self.betas ** 2 / (
|
lvlb_weights = self.betas**2 / (
|
||||||
2
|
2
|
||||||
* self.posterior_variance
|
* self.posterior_variance
|
||||||
* to_torch(alphas)
|
* to_torch(alphas)
|
||||||
|
@ -256,7 +256,7 @@ class DDPM(pl.LightningModule):
|
||||||
)
|
)
|
||||||
elif self.parameterization == "v":
|
elif self.parameterization == "v":
|
||||||
lvlb_weights = torch.ones_like(
|
lvlb_weights = torch.ones_like(
|
||||||
self.betas ** 2
|
self.betas**2
|
||||||
/ (
|
/ (
|
||||||
2
|
2
|
||||||
* self.posterior_variance
|
* self.posterior_variance
|
||||||
|
@ -1358,7 +1358,6 @@ class LatentDiffusion(DDPM):
|
||||||
start_T=None,
|
start_T=None,
|
||||||
log_every_t=None,
|
log_every_t=None,
|
||||||
):
|
):
|
||||||
|
|
||||||
if not log_every_t:
|
if not log_every_t:
|
||||||
log_every_t = self.log_every_t
|
log_every_t = self.log_every_t
|
||||||
device = self.betas.device
|
device = self.betas.device
|
||||||
|
|
|
@ -339,7 +339,7 @@ class PLMSSampler(object):
|
||||||
if dynamic_threshold is not None:
|
if dynamic_threshold is not None:
|
||||||
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
||||||
# direction pointing to x_t
|
# direction pointing to x_t
|
||||||
dir_xt = (1.0 - a_prev - sigma_t ** 2).sqrt() * e_t
|
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
||||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||||
if noise_dropout > 0.0:
|
if noise_dropout > 0.0:
|
||||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||||
|
|
|
@ -144,7 +144,7 @@ class CrossAttention(nn.Module):
|
||||||
inner_dim = dim_head * heads
|
inner_dim = dim_head * heads
|
||||||
context_dim = default(context_dim, query_dim)
|
context_dim = default(context_dim, query_dim)
|
||||||
|
|
||||||
self.scale = dim_head ** -0.5
|
self.scale = dim_head**-0.5
|
||||||
self.heads = heads
|
self.heads = heads
|
||||||
|
|
||||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
||||||
|
|
|
@ -43,7 +43,7 @@ class AttentionPool2d(nn.Module):
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.positional_embedding = nn.Parameter(
|
self.positional_embedding = nn.Parameter(
|
||||||
th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5
|
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5
|
||||||
)
|
)
|
||||||
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
||||||
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
||||||
|
@ -354,7 +354,7 @@ def count_flops_attn(model, _x, y):
|
||||||
# We perform two matmuls with the same number of ops.
|
# We perform two matmuls with the same number of ops.
|
||||||
# The first computes the weight matrix, the second computes
|
# The first computes the weight matrix, the second computes
|
||||||
# the combination of the value vectors.
|
# the combination of the value vectors.
|
||||||
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
matmul_ops = 2 * b * (num_spatial**2) * c
|
||||||
model.total_ops += th.DoubleTensor([matmul_ops])
|
model.total_ops += th.DoubleTensor([matmul_ops])
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -25,7 +25,7 @@ def make_beta_schedule(
|
||||||
if schedule == "linear":
|
if schedule == "linear":
|
||||||
betas = (
|
betas = (
|
||||||
torch.linspace(
|
torch.linspace(
|
||||||
linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64
|
linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64
|
||||||
)
|
)
|
||||||
** 2
|
** 2
|
||||||
)
|
)
|
||||||
|
|
|
@ -403,7 +403,7 @@ def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
||||||
U = orth(np.random.rand(3, 3))
|
U = orth(np.random.rand(3, 3))
|
||||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||||
img = img + np.random.multivariate_normal(
|
img = img + np.random.multivariate_normal(
|
||||||
[0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]
|
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
|
||||||
).astype(np.float32)
|
).astype(np.float32)
|
||||||
img = np.clip(img, 0.0, 1.0)
|
img = np.clip(img, 0.0, 1.0)
|
||||||
return img
|
return img
|
||||||
|
@ -427,7 +427,7 @@ def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
||||||
U = orth(np.random.rand(3, 3))
|
U = orth(np.random.rand(3, 3))
|
||||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||||
img += img * np.random.multivariate_normal(
|
img += img * np.random.multivariate_normal(
|
||||||
[0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]
|
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
|
||||||
).astype(np.float32)
|
).astype(np.float32)
|
||||||
img = np.clip(img, 0.0, 1.0)
|
img = np.clip(img, 0.0, 1.0)
|
||||||
return img
|
return img
|
||||||
|
@ -519,7 +519,6 @@ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
||||||
)
|
)
|
||||||
|
|
||||||
for i in shuffle_order:
|
for i in shuffle_order:
|
||||||
|
|
||||||
if i == 0:
|
if i == 0:
|
||||||
img = add_blur(img, sf=sf)
|
img = add_blur(img, sf=sf)
|
||||||
|
|
||||||
|
@ -623,7 +622,6 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
||||||
)
|
)
|
||||||
|
|
||||||
for i in shuffle_order:
|
for i in shuffle_order:
|
||||||
|
|
||||||
if i == 0:
|
if i == 0:
|
||||||
image = add_blur(image, sf=sf)
|
image = add_blur(image, sf=sf)
|
||||||
|
|
||||||
|
|
|
@ -404,7 +404,7 @@ def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
||||||
U = orth(np.random.rand(3, 3))
|
U = orth(np.random.rand(3, 3))
|
||||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||||
img = img + np.random.multivariate_normal(
|
img = img + np.random.multivariate_normal(
|
||||||
[0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]
|
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
|
||||||
).astype(np.float32)
|
).astype(np.float32)
|
||||||
img = np.clip(img, 0.0, 1.0)
|
img = np.clip(img, 0.0, 1.0)
|
||||||
return img
|
return img
|
||||||
|
@ -428,7 +428,7 @@ def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
||||||
U = orth(np.random.rand(3, 3))
|
U = orth(np.random.rand(3, 3))
|
||||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||||
img += img * np.random.multivariate_normal(
|
img += img * np.random.multivariate_normal(
|
||||||
[0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]
|
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
|
||||||
).astype(np.float32)
|
).astype(np.float32)
|
||||||
img = np.clip(img, 0.0, 1.0)
|
img = np.clip(img, 0.0, 1.0)
|
||||||
return img
|
return img
|
||||||
|
@ -520,7 +520,6 @@ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
||||||
)
|
)
|
||||||
|
|
||||||
for i in shuffle_order:
|
for i in shuffle_order:
|
||||||
|
|
||||||
if i == 0:
|
if i == 0:
|
||||||
img = add_blur(img, sf=sf)
|
img = add_blur(img, sf=sf)
|
||||||
|
|
||||||
|
@ -624,7 +623,6 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None, up=False):
|
||||||
)
|
)
|
||||||
|
|
||||||
for i in shuffle_order:
|
for i in shuffle_order:
|
||||||
|
|
||||||
if i == 0:
|
if i == 0:
|
||||||
image = add_blur(image, sf=sf)
|
image = add_blur(image, sf=sf)
|
||||||
|
|
||||||
|
|
|
@ -271,22 +271,18 @@ def read_img(path):
|
||||||
|
|
||||||
|
|
||||||
def uint2single(img):
|
def uint2single(img):
|
||||||
|
|
||||||
return np.float32(img / 255.0)
|
return np.float32(img / 255.0)
|
||||||
|
|
||||||
|
|
||||||
def single2uint(img):
|
def single2uint(img):
|
||||||
|
|
||||||
return np.uint8((img.clip(0, 1) * 255.0).round())
|
return np.uint8((img.clip(0, 1) * 255.0).round())
|
||||||
|
|
||||||
|
|
||||||
def uint162single(img):
|
def uint162single(img):
|
||||||
|
|
||||||
return np.float32(img / 65535.0)
|
return np.float32(img / 65535.0)
|
||||||
|
|
||||||
|
|
||||||
def single2uint16(img):
|
def single2uint16(img):
|
||||||
|
|
||||||
return np.uint16((img.clip(0, 1) * 65535.0).round())
|
return np.uint16((img.clip(0, 1) * 65535.0).round())
|
||||||
|
|
||||||
|
|
||||||
|
@ -586,18 +582,14 @@ def rgb2ycbcr(img, only_y=True):
|
||||||
if only_y:
|
if only_y:
|
||||||
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
|
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
|
||||||
else:
|
else:
|
||||||
rlt = (
|
rlt = np.matmul(
|
||||||
np.matmul(
|
img,
|
||||||
img,
|
[
|
||||||
[
|
[65.481, -37.797, 112.0],
|
||||||
[65.481, -37.797, 112.0],
|
[128.553, -74.203, -93.786],
|
||||||
[128.553, -74.203, -93.786],
|
[24.966, 112.0, -18.214],
|
||||||
[24.966, 112.0, -18.214],
|
],
|
||||||
],
|
) / 255.0 + [16, 128, 128]
|
||||||
)
|
|
||||||
/ 255.0
|
|
||||||
+ [16, 128, 128]
|
|
||||||
)
|
|
||||||
if in_img_type == np.uint8:
|
if in_img_type == np.uint8:
|
||||||
rlt = rlt.round()
|
rlt = rlt.round()
|
||||||
else:
|
else:
|
||||||
|
@ -616,18 +608,14 @@ def ycbcr2rgb(img):
|
||||||
if in_img_type != np.uint8:
|
if in_img_type != np.uint8:
|
||||||
img *= 255.0
|
img *= 255.0
|
||||||
# convert
|
# convert
|
||||||
rlt = (
|
rlt = np.matmul(
|
||||||
np.matmul(
|
img,
|
||||||
img,
|
[
|
||||||
[
|
[0.00456621, 0.00456621, 0.00456621],
|
||||||
[0.00456621, 0.00456621, 0.00456621],
|
[0, -0.00153632, 0.00791071],
|
||||||
[0, -0.00153632, 0.00791071],
|
[0.00625893, -0.00318811, 0],
|
||||||
[0.00625893, -0.00318811, 0],
|
],
|
||||||
],
|
) * 255.0 + [-222.921, 135.576, -276.836]
|
||||||
)
|
|
||||||
* 255.0
|
|
||||||
+ [-222.921, 135.576, -276.836]
|
|
||||||
)
|
|
||||||
if in_img_type == np.uint8:
|
if in_img_type == np.uint8:
|
||||||
rlt = rlt.round()
|
rlt = rlt.round()
|
||||||
else:
|
else:
|
||||||
|
@ -650,18 +638,14 @@ def bgr2ycbcr(img, only_y=True):
|
||||||
if only_y:
|
if only_y:
|
||||||
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
|
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
|
||||||
else:
|
else:
|
||||||
rlt = (
|
rlt = np.matmul(
|
||||||
np.matmul(
|
img,
|
||||||
img,
|
[
|
||||||
[
|
[24.966, 112.0, -18.214],
|
||||||
[24.966, 112.0, -18.214],
|
[128.553, -74.203, -93.786],
|
||||||
[128.553, -74.203, -93.786],
|
[65.481, -37.797, 112.0],
|
||||||
[65.481, -37.797, 112.0],
|
],
|
||||||
],
|
) / 255.0 + [16, 128, 128]
|
||||||
)
|
|
||||||
/ 255.0
|
|
||||||
+ [16, 128, 128]
|
|
||||||
)
|
|
||||||
if in_img_type == np.uint8:
|
if in_img_type == np.uint8:
|
||||||
rlt = rlt.round()
|
rlt = rlt.round()
|
||||||
else:
|
else:
|
||||||
|
@ -752,11 +736,11 @@ def ssim(img1, img2):
|
||||||
|
|
||||||
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
|
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
|
||||||
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
||||||
mu1_sq = mu1 ** 2
|
mu1_sq = mu1**2
|
||||||
mu2_sq = mu2 ** 2
|
mu2_sq = mu2**2
|
||||||
mu1_mu2 = mu1 * mu2
|
mu1_mu2 = mu1 * mu2
|
||||||
sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
|
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
||||||
sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
|
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
||||||
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
||||||
|
|
||||||
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
|
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
|
||||||
|
@ -775,8 +759,8 @@ def ssim(img1, img2):
|
||||||
# matlab 'imresize' function, now only support 'bicubic'
|
# matlab 'imresize' function, now only support 'bicubic'
|
||||||
def cubic(x):
|
def cubic(x):
|
||||||
absx = torch.abs(x)
|
absx = torch.abs(x)
|
||||||
absx2 = absx ** 2
|
absx2 = absx**2
|
||||||
absx3 = absx ** 3
|
absx3 = absx**3
|
||||||
return (1.5 * absx3 - 2.5 * absx2 + 1) * ((absx <= 1).type_as(absx)) + (
|
return (1.5 * absx3 - 2.5 * absx2 + 1) * ((absx <= 1).type_as(absx)) + (
|
||||||
-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2
|
-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2
|
||||||
) * (((absx > 1) * (absx <= 2)).type_as(absx))
|
) * (((absx > 1) * (absx <= 2)).type_as(absx))
|
||||||
|
|
|
@ -106,7 +106,7 @@ class CustomizedCLIP(CLIP):
|
||||||
)
|
)
|
||||||
vision_patch_size = None
|
vision_patch_size = None
|
||||||
assert (
|
assert (
|
||||||
output_width ** 2 + 1
|
output_width**2 + 1
|
||||||
== state_dict["visual.attnpool.positional_embedding"].shape[0]
|
== state_dict["visual.attnpool.positional_embedding"].shape[0]
|
||||||
)
|
)
|
||||||
image_resolution = output_width * 32
|
image_resolution = output_width * 32
|
||||||
|
|
|
@ -26,8 +26,8 @@ def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_time
|
||||||
if beta_schedule == "quad":
|
if beta_schedule == "quad":
|
||||||
betas = (
|
betas = (
|
||||||
np.linspace(
|
np.linspace(
|
||||||
beta_start ** 0.5,
|
beta_start**0.5,
|
||||||
beta_end ** 0.5,
|
beta_end**0.5,
|
||||||
num_diffusion_timesteps,
|
num_diffusion_timesteps,
|
||||||
dtype=np.float64,
|
dtype=np.float64,
|
||||||
)
|
)
|
||||||
|
@ -681,7 +681,7 @@ class GaussianDiffusion(th.nn.Module):
|
||||||
noise = th.randn_like(x)
|
noise = th.randn_like(x)
|
||||||
mean_pred = (
|
mean_pred = (
|
||||||
out["pred_xstart"] * th.sqrt(alpha_bar_prev)
|
out["pred_xstart"] * th.sqrt(alpha_bar_prev)
|
||||||
+ th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
|
+ th.sqrt(1 - alpha_bar_prev - sigma**2) * eps
|
||||||
)
|
)
|
||||||
nonzero_mask = (
|
nonzero_mask = (
|
||||||
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
||||||
|
|
|
@ -36,7 +36,6 @@ class T2ISampler(BaseSampler):
|
||||||
clip_stat_path: str,
|
clip_stat_path: str,
|
||||||
sampling_type: str = "default",
|
sampling_type: str = "default",
|
||||||
):
|
):
|
||||||
|
|
||||||
model = cls(
|
model = cls(
|
||||||
root_dir=root_dir,
|
root_dir=root_dir,
|
||||||
sampling_type=sampling_type,
|
sampling_type=sampling_type,
|
||||||
|
|
|
@ -33,7 +33,6 @@ class DPT(BaseModel):
|
||||||
channels_last=False,
|
channels_last=False,
|
||||||
use_bn=False,
|
use_bn=False,
|
||||||
):
|
):
|
||||||
|
|
||||||
super(DPT, self).__init__()
|
super(DPT, self).__init__()
|
||||||
|
|
||||||
self.channels_last = channels_last
|
self.channels_last = channels_last
|
||||||
|
|
|
@ -17,7 +17,6 @@ def read_pfm(path):
|
||||||
tuple: (data, scale)
|
tuple: (data, scale)
|
||||||
"""
|
"""
|
||||||
with open(path, "rb") as file:
|
with open(path, "rb") as file:
|
||||||
|
|
||||||
color = None
|
color = None
|
||||||
width = None
|
width = None
|
||||||
height = None
|
height = None
|
||||||
|
|
|
@ -16,7 +16,7 @@ gradio==3.13.2
|
||||||
kornia==0.6
|
kornia==0.6
|
||||||
invisible-watermark>=0.1.5
|
invisible-watermark>=0.1.5
|
||||||
streamlit-drawable-canvas==0.8.0
|
streamlit-drawable-canvas==0.8.0
|
||||||
black==21.9b0
|
black==23.3.0
|
||||||
isort==5.9.3
|
isort==5.9.3
|
||||||
flake8==4.0.1
|
flake8==4.0.1
|
||||||
click==8.0.3
|
click==8.0.3
|
||||||
|
|
Loading…
Reference in a new issue