mirror of
https://github.com/Stability-AI/stablediffusion.git
synced 2024-12-22 15:44:58 +00:00
Reformatting
This commit is contained in:
parent
a825f77092
commit
462a9d3298
15 changed files with 47 additions and 72 deletions
|
@ -360,7 +360,7 @@ class DDIMSampler(object):
|
|||
raise NotImplementedError()
|
||||
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1.0 - a_prev - sigma_t ** 2).sqrt() * e_t
|
||||
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.0:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
|
@ -472,7 +472,6 @@ class DDIMSampler(object):
|
|||
use_original_steps=False,
|
||||
callback=None,
|
||||
):
|
||||
|
||||
timesteps = (
|
||||
np.arange(self.ddpm_num_timesteps)
|
||||
if use_original_steps
|
||||
|
|
|
@ -242,7 +242,7 @@ class DDPM(pl.LightningModule):
|
|||
)
|
||||
|
||||
if self.parameterization == "eps":
|
||||
lvlb_weights = self.betas ** 2 / (
|
||||
lvlb_weights = self.betas**2 / (
|
||||
2
|
||||
* self.posterior_variance
|
||||
* to_torch(alphas)
|
||||
|
@ -256,7 +256,7 @@ class DDPM(pl.LightningModule):
|
|||
)
|
||||
elif self.parameterization == "v":
|
||||
lvlb_weights = torch.ones_like(
|
||||
self.betas ** 2
|
||||
self.betas**2
|
||||
/ (
|
||||
2
|
||||
* self.posterior_variance
|
||||
|
@ -1358,7 +1358,6 @@ class LatentDiffusion(DDPM):
|
|||
start_T=None,
|
||||
log_every_t=None,
|
||||
):
|
||||
|
||||
if not log_every_t:
|
||||
log_every_t = self.log_every_t
|
||||
device = self.betas.device
|
||||
|
|
|
@ -339,7 +339,7 @@ class PLMSSampler(object):
|
|||
if dynamic_threshold is not None:
|
||||
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1.0 - a_prev - sigma_t ** 2).sqrt() * e_t
|
||||
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.0:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
|
|
|
@ -144,7 +144,7 @@ class CrossAttention(nn.Module):
|
|||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
|
||||
self.scale = dim_head ** -0.5
|
||||
self.scale = dim_head**-0.5
|
||||
self.heads = heads
|
||||
|
||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
||||
|
|
|
@ -43,7 +43,7 @@ class AttentionPool2d(nn.Module):
|
|||
):
|
||||
super().__init__()
|
||||
self.positional_embedding = nn.Parameter(
|
||||
th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5
|
||||
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5
|
||||
)
|
||||
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
||||
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
||||
|
@ -354,7 +354,7 @@ def count_flops_attn(model, _x, y):
|
|||
# We perform two matmuls with the same number of ops.
|
||||
# The first computes the weight matrix, the second computes
|
||||
# the combination of the value vectors.
|
||||
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
||||
matmul_ops = 2 * b * (num_spatial**2) * c
|
||||
model.total_ops += th.DoubleTensor([matmul_ops])
|
||||
|
||||
|
||||
|
|
|
@ -25,7 +25,7 @@ def make_beta_schedule(
|
|||
if schedule == "linear":
|
||||
betas = (
|
||||
torch.linspace(
|
||||
linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64
|
||||
linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64
|
||||
)
|
||||
** 2
|
||||
)
|
||||
|
|
|
@ -403,7 +403,7 @@ def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
|||
U = orth(np.random.rand(3, 3))
|
||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||
img = img + np.random.multivariate_normal(
|
||||
[0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]
|
||||
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
|
||||
).astype(np.float32)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
|
@ -427,7 +427,7 @@ def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
|||
U = orth(np.random.rand(3, 3))
|
||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||
img += img * np.random.multivariate_normal(
|
||||
[0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]
|
||||
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
|
||||
).astype(np.float32)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
|
@ -519,7 +519,6 @@ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
|||
)
|
||||
|
||||
for i in shuffle_order:
|
||||
|
||||
if i == 0:
|
||||
img = add_blur(img, sf=sf)
|
||||
|
||||
|
@ -623,7 +622,6 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
|||
)
|
||||
|
||||
for i in shuffle_order:
|
||||
|
||||
if i == 0:
|
||||
image = add_blur(image, sf=sf)
|
||||
|
||||
|
|
|
@ -404,7 +404,7 @@ def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
|||
U = orth(np.random.rand(3, 3))
|
||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||
img = img + np.random.multivariate_normal(
|
||||
[0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]
|
||||
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
|
||||
).astype(np.float32)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
|
@ -428,7 +428,7 @@ def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
|||
U = orth(np.random.rand(3, 3))
|
||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||
img += img * np.random.multivariate_normal(
|
||||
[0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]
|
||||
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
|
||||
).astype(np.float32)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
|
@ -520,7 +520,6 @@ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
|||
)
|
||||
|
||||
for i in shuffle_order:
|
||||
|
||||
if i == 0:
|
||||
img = add_blur(img, sf=sf)
|
||||
|
||||
|
@ -624,7 +623,6 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None, up=False):
|
|||
)
|
||||
|
||||
for i in shuffle_order:
|
||||
|
||||
if i == 0:
|
||||
image = add_blur(image, sf=sf)
|
||||
|
||||
|
|
|
@ -271,22 +271,18 @@ def read_img(path):
|
|||
|
||||
|
||||
def uint2single(img):
|
||||
|
||||
return np.float32(img / 255.0)
|
||||
|
||||
|
||||
def single2uint(img):
|
||||
|
||||
return np.uint8((img.clip(0, 1) * 255.0).round())
|
||||
|
||||
|
||||
def uint162single(img):
|
||||
|
||||
return np.float32(img / 65535.0)
|
||||
|
||||
|
||||
def single2uint16(img):
|
||||
|
||||
return np.uint16((img.clip(0, 1) * 65535.0).round())
|
||||
|
||||
|
||||
|
@ -586,18 +582,14 @@ def rgb2ycbcr(img, only_y=True):
|
|||
if only_y:
|
||||
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
|
||||
else:
|
||||
rlt = (
|
||||
np.matmul(
|
||||
img,
|
||||
[
|
||||
[65.481, -37.797, 112.0],
|
||||
[128.553, -74.203, -93.786],
|
||||
[24.966, 112.0, -18.214],
|
||||
],
|
||||
)
|
||||
/ 255.0
|
||||
+ [16, 128, 128]
|
||||
)
|
||||
rlt = np.matmul(
|
||||
img,
|
||||
[
|
||||
[65.481, -37.797, 112.0],
|
||||
[128.553, -74.203, -93.786],
|
||||
[24.966, 112.0, -18.214],
|
||||
],
|
||||
) / 255.0 + [16, 128, 128]
|
||||
if in_img_type == np.uint8:
|
||||
rlt = rlt.round()
|
||||
else:
|
||||
|
@ -616,18 +608,14 @@ def ycbcr2rgb(img):
|
|||
if in_img_type != np.uint8:
|
||||
img *= 255.0
|
||||
# convert
|
||||
rlt = (
|
||||
np.matmul(
|
||||
img,
|
||||
[
|
||||
[0.00456621, 0.00456621, 0.00456621],
|
||||
[0, -0.00153632, 0.00791071],
|
||||
[0.00625893, -0.00318811, 0],
|
||||
],
|
||||
)
|
||||
* 255.0
|
||||
+ [-222.921, 135.576, -276.836]
|
||||
)
|
||||
rlt = np.matmul(
|
||||
img,
|
||||
[
|
||||
[0.00456621, 0.00456621, 0.00456621],
|
||||
[0, -0.00153632, 0.00791071],
|
||||
[0.00625893, -0.00318811, 0],
|
||||
],
|
||||
) * 255.0 + [-222.921, 135.576, -276.836]
|
||||
if in_img_type == np.uint8:
|
||||
rlt = rlt.round()
|
||||
else:
|
||||
|
@ -650,18 +638,14 @@ def bgr2ycbcr(img, only_y=True):
|
|||
if only_y:
|
||||
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
|
||||
else:
|
||||
rlt = (
|
||||
np.matmul(
|
||||
img,
|
||||
[
|
||||
[24.966, 112.0, -18.214],
|
||||
[128.553, -74.203, -93.786],
|
||||
[65.481, -37.797, 112.0],
|
||||
],
|
||||
)
|
||||
/ 255.0
|
||||
+ [16, 128, 128]
|
||||
)
|
||||
rlt = np.matmul(
|
||||
img,
|
||||
[
|
||||
[24.966, 112.0, -18.214],
|
||||
[128.553, -74.203, -93.786],
|
||||
[65.481, -37.797, 112.0],
|
||||
],
|
||||
) / 255.0 + [16, 128, 128]
|
||||
if in_img_type == np.uint8:
|
||||
rlt = rlt.round()
|
||||
else:
|
||||
|
@ -752,11 +736,11 @@ def ssim(img1, img2):
|
|||
|
||||
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
|
||||
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
||||
mu1_sq = mu1 ** 2
|
||||
mu2_sq = mu2 ** 2
|
||||
mu1_sq = mu1**2
|
||||
mu2_sq = mu2**2
|
||||
mu1_mu2 = mu1 * mu2
|
||||
sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
|
||||
sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
|
||||
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
||||
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
||||
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
||||
|
||||
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
|
||||
|
@ -775,8 +759,8 @@ def ssim(img1, img2):
|
|||
# matlab 'imresize' function, now only support 'bicubic'
|
||||
def cubic(x):
|
||||
absx = torch.abs(x)
|
||||
absx2 = absx ** 2
|
||||
absx3 = absx ** 3
|
||||
absx2 = absx**2
|
||||
absx3 = absx**3
|
||||
return (1.5 * absx3 - 2.5 * absx2 + 1) * ((absx <= 1).type_as(absx)) + (
|
||||
-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2
|
||||
) * (((absx > 1) * (absx <= 2)).type_as(absx))
|
||||
|
|
|
@ -106,7 +106,7 @@ class CustomizedCLIP(CLIP):
|
|||
)
|
||||
vision_patch_size = None
|
||||
assert (
|
||||
output_width ** 2 + 1
|
||||
output_width**2 + 1
|
||||
== state_dict["visual.attnpool.positional_embedding"].shape[0]
|
||||
)
|
||||
image_resolution = output_width * 32
|
||||
|
|
|
@ -26,8 +26,8 @@ def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_time
|
|||
if beta_schedule == "quad":
|
||||
betas = (
|
||||
np.linspace(
|
||||
beta_start ** 0.5,
|
||||
beta_end ** 0.5,
|
||||
beta_start**0.5,
|
||||
beta_end**0.5,
|
||||
num_diffusion_timesteps,
|
||||
dtype=np.float64,
|
||||
)
|
||||
|
@ -681,7 +681,7 @@ class GaussianDiffusion(th.nn.Module):
|
|||
noise = th.randn_like(x)
|
||||
mean_pred = (
|
||||
out["pred_xstart"] * th.sqrt(alpha_bar_prev)
|
||||
+ th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
|
||||
+ th.sqrt(1 - alpha_bar_prev - sigma**2) * eps
|
||||
)
|
||||
nonzero_mask = (
|
||||
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
||||
|
|
|
@ -36,7 +36,6 @@ class T2ISampler(BaseSampler):
|
|||
clip_stat_path: str,
|
||||
sampling_type: str = "default",
|
||||
):
|
||||
|
||||
model = cls(
|
||||
root_dir=root_dir,
|
||||
sampling_type=sampling_type,
|
||||
|
|
|
@ -33,7 +33,6 @@ class DPT(BaseModel):
|
|||
channels_last=False,
|
||||
use_bn=False,
|
||||
):
|
||||
|
||||
super(DPT, self).__init__()
|
||||
|
||||
self.channels_last = channels_last
|
||||
|
|
|
@ -17,7 +17,6 @@ def read_pfm(path):
|
|||
tuple: (data, scale)
|
||||
"""
|
||||
with open(path, "rb") as file:
|
||||
|
||||
color = None
|
||||
width = None
|
||||
height = None
|
||||
|
|
|
@ -16,7 +16,7 @@ gradio==3.13.2
|
|||
kornia==0.6
|
||||
invisible-watermark>=0.1.5
|
||||
streamlit-drawable-canvas==0.8.0
|
||||
black==21.9b0
|
||||
black==23.3.0
|
||||
isort==5.9.3
|
||||
flake8==4.0.1
|
||||
click==8.0.3
|
||||
|
|
Loading…
Reference in a new issue