mirror of
https://github.com/Stability-AI/stablediffusion.git
synced 2025-01-05 06:08:20 +00:00
171 lines
6.7 KiB
Python
171 lines
6.7 KiB
Python
|
import sys
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
import streamlit as st
|
||
|
from PIL import Image
|
||
|
from omegaconf import OmegaConf
|
||
|
from einops import repeat, rearrange
|
||
|
from pytorch_lightning import seed_everything
|
||
|
from imwatermark import WatermarkEncoder
|
||
|
|
||
|
from scripts.txt2img import put_watermark
|
||
|
from ldm.models.diffusion.ddim import DDIMSampler
|
||
|
from ldm.models.diffusion.ddpm import LatentUpscaleDiffusion, LatentUpscaleFinetuneDiffusion
|
||
|
from ldm.util import exists, instantiate_from_config
|
||
|
|
||
|
|
||
|
torch.set_grad_enabled(False)
|
||
|
|
||
|
|
||
|
@st.cache(allow_output_mutation=True)
|
||
|
def initialize_model(config, ckpt):
|
||
|
config = OmegaConf.load(config)
|
||
|
model = instantiate_from_config(config.model)
|
||
|
model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)
|
||
|
|
||
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||
|
model = model.to(device)
|
||
|
sampler = DDIMSampler(model)
|
||
|
return sampler
|
||
|
|
||
|
|
||
|
def make_batch_sd(
|
||
|
image,
|
||
|
txt,
|
||
|
device,
|
||
|
num_samples=1,
|
||
|
):
|
||
|
image = np.array(image.convert("RGB"))
|
||
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
||
|
batch = {
|
||
|
"lr": rearrange(image, 'h w c -> 1 c h w'),
|
||
|
"txt": num_samples * [txt],
|
||
|
}
|
||
|
batch["lr"] = repeat(batch["lr"].to(device=device), "1 ... -> n ...", n=num_samples)
|
||
|
return batch
|
||
|
|
||
|
|
||
|
def make_noise_augmentation(model, batch, noise_level=None):
|
||
|
x_low = batch[model.low_scale_key]
|
||
|
x_low = x_low.to(memory_format=torch.contiguous_format).float()
|
||
|
x_aug, noise_level = model.low_scale_model(x_low, noise_level)
|
||
|
return x_aug, noise_level
|
||
|
|
||
|
|
||
|
def paint(sampler, image, prompt, seed, scale, h, w, steps, num_samples=1, callback=None, eta=0., noise_level=None):
|
||
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||
|
model = sampler.model
|
||
|
seed_everything(seed)
|
||
|
prng = np.random.RandomState(seed)
|
||
|
start_code = prng.randn(num_samples, model.channels, h , w)
|
||
|
start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)
|
||
|
|
||
|
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
|
||
|
wm = "SDV2"
|
||
|
wm_encoder = WatermarkEncoder()
|
||
|
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
|
||
|
with torch.no_grad(),\
|
||
|
torch.autocast("cuda"):
|
||
|
batch = make_batch_sd(image, txt=prompt, device=device, num_samples=num_samples)
|
||
|
c = model.cond_stage_model.encode(batch["txt"])
|
||
|
c_cat = list()
|
||
|
if isinstance(model, LatentUpscaleFinetuneDiffusion):
|
||
|
for ck in model.concat_keys:
|
||
|
cc = batch[ck]
|
||
|
if exists(model.reshuffle_patch_size):
|
||
|
assert isinstance(model.reshuffle_patch_size, int)
|
||
|
cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
|
||
|
p1=model.reshuffle_patch_size, p2=model.reshuffle_patch_size)
|
||
|
c_cat.append(cc)
|
||
|
c_cat = torch.cat(c_cat, dim=1)
|
||
|
# cond
|
||
|
cond = {"c_concat": [c_cat], "c_crossattn": [c]}
|
||
|
# uncond cond
|
||
|
uc_cross = model.get_unconditional_conditioning(num_samples, "")
|
||
|
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
|
||
|
elif isinstance(model, LatentUpscaleDiffusion):
|
||
|
x_augment, noise_level = make_noise_augmentation(model, batch, noise_level)
|
||
|
cond = {"c_concat": [x_augment], "c_crossattn": [c], "c_adm": noise_level}
|
||
|
# uncond cond
|
||
|
uc_cross = model.get_unconditional_conditioning(num_samples, "")
|
||
|
uc_full = {"c_concat": [x_augment], "c_crossattn": [uc_cross], "c_adm": noise_level}
|
||
|
else:
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
shape = [model.channels, h, w]
|
||
|
samples, intermediates = sampler.sample(
|
||
|
steps,
|
||
|
num_samples,
|
||
|
shape,
|
||
|
cond,
|
||
|
verbose=False,
|
||
|
eta=eta,
|
||
|
unconditional_guidance_scale=scale,
|
||
|
unconditional_conditioning=uc_full,
|
||
|
x_T=start_code,
|
||
|
callback=callback
|
||
|
)
|
||
|
with torch.no_grad():
|
||
|
x_samples_ddim = model.decode_first_stage(samples)
|
||
|
result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||
|
result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
|
||
|
st.text(f"upscaled image shape: {result.shape}")
|
||
|
return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]
|
||
|
|
||
|
|
||
|
def run():
|
||
|
st.title("Stable Diffusion Upscaling")
|
||
|
# run via streamlit run scripts/demo/depth2img.py <path-tp-config> <path-to-ckpt>
|
||
|
sampler = initialize_model(sys.argv[1], sys.argv[2])
|
||
|
|
||
|
image = st.file_uploader("Image", ["jpg", "png"])
|
||
|
if image:
|
||
|
image = Image.open(image)
|
||
|
w, h = image.size
|
||
|
st.text(f"loaded input image of size ({w}, {h})")
|
||
|
width, height = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
|
||
|
image = image.resize((width, height))
|
||
|
st.text(f"resized input image to size ({width}, {height} (w, h))")
|
||
|
st.image(image)
|
||
|
|
||
|
st.write(f"\n Tip: Add a description of the object that should be upscaled, e.g.: 'a professional photograph of a cat'")
|
||
|
prompt = st.text_input("Prompt", "a high quality professional photograph")
|
||
|
|
||
|
seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0)
|
||
|
num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1)
|
||
|
scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1)
|
||
|
steps = st.slider("DDIM Steps", min_value=2, max_value=250, value=50, step=1)
|
||
|
eta = st.sidebar.number_input("eta (DDIM)", value=0., min_value=0., max_value=1.)
|
||
|
|
||
|
noise_level = None
|
||
|
if isinstance(sampler.model, LatentUpscaleDiffusion):
|
||
|
# TODO: make this work for all models
|
||
|
noise_level = st.sidebar.number_input("Noise Augmentation", min_value=0, max_value=350, value=20)
|
||
|
noise_level = torch.Tensor(num_samples * [noise_level]).to(sampler.model.device).long()
|
||
|
|
||
|
t_progress = st.progress(0)
|
||
|
def t_callback(t):
|
||
|
t_progress.progress(min((t + 1) / steps, 1.))
|
||
|
|
||
|
sampler.make_schedule(steps, ddim_eta=eta, verbose=True)
|
||
|
if st.button("Sample"):
|
||
|
result = paint(
|
||
|
sampler=sampler,
|
||
|
image=image,
|
||
|
prompt=prompt,
|
||
|
seed=seed,
|
||
|
scale=scale,
|
||
|
h=height, w=width, steps=steps,
|
||
|
num_samples=num_samples,
|
||
|
callback=t_callback,
|
||
|
noise_level=noise_level,
|
||
|
eta=eta
|
||
|
)
|
||
|
st.write("Result")
|
||
|
for image in result:
|
||
|
st.image(image, output_format='PNG')
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
run()
|