2022-11-24 00:22:28 +00:00
|
|
|
import argparse, os
|
|
|
|
import cv2
|
|
|
|
import torch
|
|
|
|
import numpy as np
|
|
|
|
from omegaconf import OmegaConf
|
|
|
|
from PIL import Image
|
|
|
|
from tqdm import tqdm, trange
|
|
|
|
from itertools import islice
|
|
|
|
from einops import rearrange
|
|
|
|
from torchvision.utils import make_grid
|
|
|
|
from pytorch_lightning import seed_everything
|
|
|
|
from torch import autocast
|
|
|
|
from contextlib import nullcontext
|
|
|
|
from imwatermark import WatermarkEncoder
|
|
|
|
|
|
|
|
from ldm.util import instantiate_from_config
|
|
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
|
|
from ldm.models.diffusion.plms import PLMSSampler
|
|
|
|
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
|
|
|
|
|
|
|
|
torch.set_grad_enabled(False)
|
|
|
|
|
|
|
|
def chunk(it, size):
|
|
|
|
it = iter(it)
|
|
|
|
return iter(lambda: tuple(islice(it, size)), ())
|
|
|
|
|
|
|
|
|
2022-12-20 15:18:33 +00:00
|
|
|
def load_model_from_config(config, ckpt, device=torch.device("cuda"), verbose=False):
|
2022-11-24 00:22:28 +00:00
|
|
|
print(f"Loading model from {ckpt}")
|
|
|
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
|
|
|
if "global_step" in pl_sd:
|
|
|
|
print(f"Global Step: {pl_sd['global_step']}")
|
|
|
|
sd = pl_sd["state_dict"]
|
|
|
|
model = instantiate_from_config(config.model)
|
|
|
|
m, u = model.load_state_dict(sd, strict=False)
|
|
|
|
if len(m) > 0 and verbose:
|
|
|
|
print("missing keys:")
|
|
|
|
print(m)
|
|
|
|
if len(u) > 0 and verbose:
|
|
|
|
print("unexpected keys:")
|
|
|
|
print(u)
|
|
|
|
|
2022-12-20 15:18:33 +00:00
|
|
|
if device == torch.device("cuda"):
|
|
|
|
model.cuda()
|
|
|
|
elif device == torch.device("cpu"):
|
|
|
|
model.cpu()
|
|
|
|
model.cond_stage_model.device = "cpu"
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Incorrect device name. Received: {device}")
|
2022-11-24 00:22:28 +00:00
|
|
|
model.eval()
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
|
|
"--prompt",
|
|
|
|
type=str,
|
|
|
|
nargs="?",
|
|
|
|
default="a professional photograph of an astronaut riding a triceratops",
|
|
|
|
help="the prompt to render"
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--outdir",
|
|
|
|
type=str,
|
|
|
|
nargs="?",
|
|
|
|
help="dir to write results to",
|
|
|
|
default="outputs/txt2img-samples"
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--steps",
|
|
|
|
type=int,
|
|
|
|
default=50,
|
|
|
|
help="number of ddim sampling steps",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--plms",
|
|
|
|
action='store_true',
|
|
|
|
help="use plms sampling",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--dpm",
|
|
|
|
action='store_true',
|
|
|
|
help="use DPM (2) sampler",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--fixed_code",
|
|
|
|
action='store_true',
|
|
|
|
help="if enabled, uses the same starting code across all samples ",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--ddim_eta",
|
|
|
|
type=float,
|
|
|
|
default=0.0,
|
|
|
|
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--n_iter",
|
|
|
|
type=int,
|
|
|
|
default=3,
|
|
|
|
help="sample this often",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--H",
|
|
|
|
type=int,
|
|
|
|
default=512,
|
|
|
|
help="image height, in pixel space",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--W",
|
|
|
|
type=int,
|
|
|
|
default=512,
|
|
|
|
help="image width, in pixel space",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--C",
|
|
|
|
type=int,
|
|
|
|
default=4,
|
|
|
|
help="latent channels",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--f",
|
|
|
|
type=int,
|
|
|
|
default=8,
|
|
|
|
help="downsampling factor, most often 8 or 16",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--n_samples",
|
|
|
|
type=int,
|
|
|
|
default=3,
|
|
|
|
help="how many samples to produce for each given prompt. A.k.a batch size",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--n_rows",
|
|
|
|
type=int,
|
|
|
|
default=0,
|
|
|
|
help="rows in the grid (default: n_samples)",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--scale",
|
|
|
|
type=float,
|
|
|
|
default=9.0,
|
|
|
|
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--from-file",
|
|
|
|
type=str,
|
|
|
|
help="if specified, load prompts from this file, separated by newlines",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--config",
|
|
|
|
type=str,
|
|
|
|
default="configs/stable-diffusion/v2-inference.yaml",
|
|
|
|
help="path to config which constructs model",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--ckpt",
|
|
|
|
type=str,
|
|
|
|
help="path to checkpoint of model",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--seed",
|
|
|
|
type=int,
|
|
|
|
default=42,
|
|
|
|
help="the seed (for reproducible sampling)",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--precision",
|
|
|
|
type=str,
|
|
|
|
help="evaluate at this precision",
|
|
|
|
choices=["full", "autocast"],
|
|
|
|
default="autocast"
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--repeat",
|
|
|
|
type=int,
|
|
|
|
default=1,
|
|
|
|
help="repeat each prompt in file this often",
|
|
|
|
)
|
2022-12-20 15:18:33 +00:00
|
|
|
parser.add_argument(
|
|
|
|
"--device",
|
|
|
|
type=str,
|
|
|
|
help="Device on which Stable Diffusion will be run",
|
|
|
|
choices=["cpu", "cuda"],
|
|
|
|
default="cpu"
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--torchscript",
|
|
|
|
action='store_true',
|
|
|
|
help="Use TorchScript",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--ipex",
|
|
|
|
action='store_true',
|
|
|
|
help="Use Intel® Extension for PyTorch*",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--bf16",
|
|
|
|
action='store_true',
|
|
|
|
help="Use bfloat16",
|
|
|
|
)
|
2022-11-24 00:22:28 +00:00
|
|
|
opt = parser.parse_args()
|
|
|
|
return opt
|
|
|
|
|
|
|
|
|
|
|
|
def put_watermark(img, wm_encoder=None):
|
|
|
|
if wm_encoder is not None:
|
|
|
|
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
|
|
|
img = wm_encoder.encode(img, 'dwtDct')
|
|
|
|
img = Image.fromarray(img[:, :, ::-1])
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
|
|
def main(opt):
|
|
|
|
seed_everything(opt.seed)
|
|
|
|
|
|
|
|
config = OmegaConf.load(f"{opt.config}")
|
2022-12-20 15:18:33 +00:00
|
|
|
device = torch.device("cuda") if opt.device == "cuda" else torch.device("cpu")
|
|
|
|
model = load_model_from_config(config, f"{opt.ckpt}", device)
|
2022-11-24 00:22:28 +00:00
|
|
|
|
|
|
|
if opt.plms:
|
2022-12-20 15:18:33 +00:00
|
|
|
sampler = PLMSSampler(model, device=device)
|
2022-11-24 00:22:28 +00:00
|
|
|
elif opt.dpm:
|
2022-12-20 15:18:33 +00:00
|
|
|
sampler = DPMSolverSampler(model, device=device)
|
2022-11-24 00:22:28 +00:00
|
|
|
else:
|
2022-12-20 15:18:33 +00:00
|
|
|
sampler = DDIMSampler(model, device=device)
|
2022-11-24 00:22:28 +00:00
|
|
|
|
|
|
|
os.makedirs(opt.outdir, exist_ok=True)
|
|
|
|
outpath = opt.outdir
|
|
|
|
|
|
|
|
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
|
|
|
|
wm = "SDV2"
|
|
|
|
wm_encoder = WatermarkEncoder()
|
|
|
|
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
|
|
|
|
|
|
|
|
batch_size = opt.n_samples
|
|
|
|
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
|
|
|
|
if not opt.from_file:
|
|
|
|
prompt = opt.prompt
|
|
|
|
assert prompt is not None
|
|
|
|
data = [batch_size * [prompt]]
|
|
|
|
|
|
|
|
else:
|
|
|
|
print(f"reading prompts from {opt.from_file}")
|
|
|
|
with open(opt.from_file, "r") as f:
|
|
|
|
data = f.read().splitlines()
|
|
|
|
data = [p for p in data for i in range(opt.repeat)]
|
|
|
|
data = list(chunk(data, batch_size))
|
|
|
|
|
|
|
|
sample_path = os.path.join(outpath, "samples")
|
|
|
|
os.makedirs(sample_path, exist_ok=True)
|
|
|
|
sample_count = 0
|
|
|
|
base_count = len(os.listdir(sample_path))
|
|
|
|
grid_count = len(os.listdir(outpath)) - 1
|
|
|
|
|
|
|
|
start_code = None
|
|
|
|
if opt.fixed_code:
|
|
|
|
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
|
|
|
|
|
2022-12-20 15:18:33 +00:00
|
|
|
if opt.torchscript or opt.ipex:
|
|
|
|
transformer = model.cond_stage_model.model
|
|
|
|
unet = model.model.diffusion_model
|
|
|
|
decoder = model.first_stage_model.decoder
|
|
|
|
additional_context = torch.cpu.amp.autocast() if opt.bf16 else nullcontext()
|
|
|
|
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
|
|
|
|
|
|
|
|
if opt.bf16 and not opt.torchscript and not opt.ipex:
|
|
|
|
raise ValueError('Bfloat16 is supported only for torchscript+ipex')
|
|
|
|
if opt.bf16 and unet.dtype != torch.bfloat16:
|
|
|
|
raise ValueError("Use configs/stable-diffusion/ipex/ configs with bf16 enabled if " +
|
|
|
|
"you'd like to use bfloat16 with CPU.")
|
|
|
|
if unet.dtype == torch.float16 and device == torch.device("cpu"):
|
|
|
|
raise ValueError("Use configs/stable-diffusion/ipex/ configs for your model if you'd like to run it on CPU.")
|
|
|
|
|
|
|
|
if opt.ipex:
|
|
|
|
import intel_extension_for_pytorch as ipex
|
|
|
|
bf16_dtype = torch.bfloat16 if opt.bf16 else None
|
|
|
|
transformer = transformer.to(memory_format=torch.channels_last)
|
|
|
|
transformer = ipex.optimize(transformer, level="O1", inplace=True)
|
|
|
|
|
|
|
|
unet = unet.to(memory_format=torch.channels_last)
|
|
|
|
unet = ipex.optimize(unet, level="O1", auto_kernel_selection=True, inplace=True, dtype=bf16_dtype)
|
|
|
|
|
|
|
|
decoder = decoder.to(memory_format=torch.channels_last)
|
|
|
|
decoder = ipex.optimize(decoder, level="O1", auto_kernel_selection=True, inplace=True, dtype=bf16_dtype)
|
|
|
|
|
|
|
|
if opt.torchscript:
|
|
|
|
with torch.no_grad(), additional_context:
|
|
|
|
# get UNET scripted
|
|
|
|
if unet.use_checkpoint:
|
|
|
|
raise ValueError("Gradient checkpoint won't work with tracing. " +
|
|
|
|
"Use configs/stable-diffusion/ipex/ configs for your model or disable checkpoint in your config.")
|
|
|
|
|
|
|
|
img_in = torch.ones(2, 4, 96, 96, dtype=torch.float32)
|
|
|
|
t_in = torch.ones(2, dtype=torch.int64)
|
|
|
|
context = torch.ones(2, 77, 1024, dtype=torch.float32)
|
|
|
|
scripted_unet = torch.jit.trace(unet, (img_in, t_in, context))
|
|
|
|
scripted_unet = torch.jit.optimize_for_inference(scripted_unet)
|
|
|
|
print(type(scripted_unet))
|
|
|
|
model.model.scripted_diffusion_model = scripted_unet
|
|
|
|
|
|
|
|
# get Decoder for first stage model scripted
|
|
|
|
samples_ddim = torch.ones(1, 4, 96, 96, dtype=torch.float32)
|
|
|
|
scripted_decoder = torch.jit.trace(decoder, (samples_ddim))
|
|
|
|
scripted_decoder = torch.jit.optimize_for_inference(scripted_decoder)
|
|
|
|
print(type(scripted_decoder))
|
|
|
|
model.first_stage_model.decoder = scripted_decoder
|
|
|
|
|
|
|
|
prompts = data[0]
|
|
|
|
print("Running a forward pass to initialize optimizations")
|
|
|
|
uc = None
|
|
|
|
if opt.scale != 1.0:
|
|
|
|
uc = model.get_learned_conditioning(batch_size * [""])
|
|
|
|
if isinstance(prompts, tuple):
|
|
|
|
prompts = list(prompts)
|
|
|
|
|
|
|
|
with torch.no_grad(), additional_context:
|
|
|
|
for _ in range(3):
|
|
|
|
c = model.get_learned_conditioning(prompts)
|
|
|
|
samples_ddim, _ = sampler.sample(S=5,
|
|
|
|
conditioning=c,
|
|
|
|
batch_size=batch_size,
|
|
|
|
shape=shape,
|
|
|
|
verbose=False,
|
|
|
|
unconditional_guidance_scale=opt.scale,
|
|
|
|
unconditional_conditioning=uc,
|
|
|
|
eta=opt.ddim_eta,
|
|
|
|
x_T=start_code)
|
|
|
|
print("Running a forward pass for decoder")
|
|
|
|
for _ in range(3):
|
|
|
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
|
|
|
|
|
|
|
precision_scope = autocast if opt.precision=="autocast" or opt.bf16 else nullcontext
|
2022-11-24 00:22:28 +00:00
|
|
|
with torch.no_grad(), \
|
2022-12-20 15:18:33 +00:00
|
|
|
precision_scope(opt.device), \
|
2022-11-24 00:22:28 +00:00
|
|
|
model.ema_scope():
|
|
|
|
all_samples = list()
|
|
|
|
for n in trange(opt.n_iter, desc="Sampling"):
|
|
|
|
for prompts in tqdm(data, desc="data"):
|
|
|
|
uc = None
|
|
|
|
if opt.scale != 1.0:
|
|
|
|
uc = model.get_learned_conditioning(batch_size * [""])
|
|
|
|
if isinstance(prompts, tuple):
|
|
|
|
prompts = list(prompts)
|
|
|
|
c = model.get_learned_conditioning(prompts)
|
|
|
|
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
|
|
|
|
samples, _ = sampler.sample(S=opt.steps,
|
|
|
|
conditioning=c,
|
|
|
|
batch_size=opt.n_samples,
|
|
|
|
shape=shape,
|
|
|
|
verbose=False,
|
|
|
|
unconditional_guidance_scale=opt.scale,
|
|
|
|
unconditional_conditioning=uc,
|
|
|
|
eta=opt.ddim_eta,
|
|
|
|
x_T=start_code)
|
|
|
|
|
|
|
|
x_samples = model.decode_first_stage(samples)
|
|
|
|
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
|
|
|
|
for x_sample in x_samples:
|
|
|
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
|
|
|
img = Image.fromarray(x_sample.astype(np.uint8))
|
|
|
|
img = put_watermark(img, wm_encoder)
|
|
|
|
img.save(os.path.join(sample_path, f"{base_count:05}.png"))
|
|
|
|
base_count += 1
|
|
|
|
sample_count += 1
|
|
|
|
|
|
|
|
all_samples.append(x_samples)
|
|
|
|
|
|
|
|
# additionally, save as grid
|
|
|
|
grid = torch.stack(all_samples, 0)
|
|
|
|
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
|
|
|
grid = make_grid(grid, nrow=n_rows)
|
|
|
|
|
|
|
|
# to image
|
|
|
|
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
|
|
|
grid = Image.fromarray(grid.astype(np.uint8))
|
|
|
|
grid = put_watermark(grid, wm_encoder)
|
|
|
|
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
|
|
|
grid_count += 1
|
|
|
|
|
|
|
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
|
|
|
f" \nEnjoy.")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
opt = parse_args()
|
|
|
|
main(opt)
|