2022-11-24 00:22:28 +00:00
|
|
|
"""make variations of input image"""
|
|
|
|
|
|
|
|
import argparse, os
|
|
|
|
import PIL
|
|
|
|
import torch
|
|
|
|
import numpy as np
|
|
|
|
from omegaconf import OmegaConf
|
|
|
|
from PIL import Image
|
|
|
|
from tqdm import tqdm, trange
|
|
|
|
from itertools import islice
|
|
|
|
from einops import rearrange, repeat
|
|
|
|
from torchvision.utils import make_grid
|
|
|
|
from torch import autocast
|
|
|
|
from contextlib import nullcontext
|
|
|
|
from pytorch_lightning import seed_everything
|
|
|
|
from imwatermark import WatermarkEncoder
|
|
|
|
|
|
|
|
|
|
|
|
from scripts.txt2img import put_watermark
|
|
|
|
from ldm.util import instantiate_from_config
|
|
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
|
|
|
2022-11-29 10:34:50 +00:00
|
|
|
import deepspeed
|
|
|
|
|
2022-11-24 00:22:28 +00:00
|
|
|
|
|
|
|
def chunk(it, size):
|
|
|
|
it = iter(it)
|
|
|
|
return iter(lambda: tuple(islice(it, size)), ())
|
|
|
|
|
|
|
|
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False):
|
|
|
|
print(f"Loading model from {ckpt}")
|
|
|
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
|
|
|
if "global_step" in pl_sd:
|
|
|
|
print(f"Global Step: {pl_sd['global_step']}")
|
|
|
|
sd = pl_sd["state_dict"]
|
|
|
|
model = instantiate_from_config(config.model)
|
|
|
|
m, u = model.load_state_dict(sd, strict=False)
|
|
|
|
if len(m) > 0 and verbose:
|
|
|
|
print("missing keys:")
|
|
|
|
print(m)
|
|
|
|
if len(u) > 0 and verbose:
|
|
|
|
print("unexpected keys:")
|
|
|
|
print(u)
|
|
|
|
|
|
|
|
model.cuda()
|
|
|
|
model.eval()
|
2022-11-29 10:34:50 +00:00
|
|
|
|
|
|
|
ds_engine = deepspeed.init_inference(model,
|
|
|
|
mp_size=2,
|
|
|
|
dtype=torch.half,
|
|
|
|
checkpoint=None,
|
|
|
|
replace_method='auto',
|
|
|
|
replace_with_kernel_inject=True)
|
|
|
|
|
|
|
|
model = ds_engine.module
|
|
|
|
|
2022-11-24 00:22:28 +00:00
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def load_img(path):
|
|
|
|
image = Image.open(path).convert("RGB")
|
|
|
|
w, h = image.size
|
|
|
|
print(f"loaded input image of size ({w}, {h}) from {path}")
|
|
|
|
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
|
|
|
|
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
|
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
|
|
image = image[None].transpose(0, 3, 1, 2)
|
|
|
|
image = torch.from_numpy(image)
|
|
|
|
return 2. * image - 1.
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--prompt",
|
|
|
|
type=str,
|
|
|
|
nargs="?",
|
|
|
|
default="a painting of a virus monster playing guitar",
|
|
|
|
help="the prompt to render"
|
|
|
|
)
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--init-img",
|
|
|
|
type=str,
|
|
|
|
nargs="?",
|
|
|
|
help="path to the input image"
|
|
|
|
)
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--outdir",
|
|
|
|
type=str,
|
|
|
|
nargs="?",
|
|
|
|
help="dir to write results to",
|
|
|
|
default="outputs/img2img-samples"
|
|
|
|
)
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--ddim_steps",
|
|
|
|
type=int,
|
|
|
|
default=50,
|
|
|
|
help="number of ddim sampling steps",
|
|
|
|
)
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--fixed_code",
|
|
|
|
action='store_true',
|
|
|
|
help="if enabled, uses the same starting code across all samples ",
|
|
|
|
)
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--ddim_eta",
|
|
|
|
type=float,
|
|
|
|
default=0.0,
|
|
|
|
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--n_iter",
|
|
|
|
type=int,
|
|
|
|
default=1,
|
|
|
|
help="sample this often",
|
|
|
|
)
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--C",
|
|
|
|
type=int,
|
|
|
|
default=4,
|
|
|
|
help="latent channels",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--f",
|
|
|
|
type=int,
|
|
|
|
default=8,
|
|
|
|
help="downsampling factor, most often 8 or 16",
|
|
|
|
)
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--n_samples",
|
|
|
|
type=int,
|
|
|
|
default=2,
|
|
|
|
help="how many samples to produce for each given prompt. A.k.a batch size",
|
|
|
|
)
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--n_rows",
|
|
|
|
type=int,
|
|
|
|
default=0,
|
|
|
|
help="rows in the grid (default: n_samples)",
|
|
|
|
)
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--scale",
|
|
|
|
type=float,
|
|
|
|
default=9.0,
|
|
|
|
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
|
|
|
|
)
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--strength",
|
|
|
|
type=float,
|
|
|
|
default=0.8,
|
|
|
|
help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image",
|
|
|
|
)
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--from-file",
|
|
|
|
type=str,
|
|
|
|
help="if specified, load prompts from this file",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--config",
|
|
|
|
type=str,
|
|
|
|
default="configs/stable-diffusion/v2-inference.yaml",
|
|
|
|
help="path to config which constructs model",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--ckpt",
|
|
|
|
type=str,
|
|
|
|
help="path to checkpoint of model",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--seed",
|
|
|
|
type=int,
|
|
|
|
default=42,
|
|
|
|
help="the seed (for reproducible sampling)",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--precision",
|
|
|
|
type=str,
|
|
|
|
help="evaluate at this precision",
|
|
|
|
choices=["full", "autocast"],
|
|
|
|
default="autocast"
|
|
|
|
)
|
|
|
|
|
|
|
|
opt = parser.parse_args()
|
|
|
|
seed_everything(opt.seed)
|
|
|
|
|
|
|
|
config = OmegaConf.load(f"{opt.config}")
|
|
|
|
model = load_model_from_config(config, f"{opt.ckpt}")
|
|
|
|
|
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
|
|
|
model = model.to(device)
|
|
|
|
|
|
|
|
sampler = DDIMSampler(model)
|
|
|
|
|
|
|
|
os.makedirs(opt.outdir, exist_ok=True)
|
|
|
|
outpath = opt.outdir
|
|
|
|
|
|
|
|
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
|
|
|
|
wm = "SDV2"
|
|
|
|
wm_encoder = WatermarkEncoder()
|
|
|
|
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
|
|
|
|
|
|
|
|
batch_size = opt.n_samples
|
|
|
|
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
|
|
|
|
if not opt.from_file:
|
|
|
|
prompt = opt.prompt
|
|
|
|
assert prompt is not None
|
|
|
|
data = [batch_size * [prompt]]
|
|
|
|
|
|
|
|
else:
|
|
|
|
print(f"reading prompts from {opt.from_file}")
|
|
|
|
with open(opt.from_file, "r") as f:
|
|
|
|
data = f.read().splitlines()
|
|
|
|
data = list(chunk(data, batch_size))
|
|
|
|
|
|
|
|
sample_path = os.path.join(outpath, "samples")
|
|
|
|
os.makedirs(sample_path, exist_ok=True)
|
|
|
|
base_count = len(os.listdir(sample_path))
|
|
|
|
grid_count = len(os.listdir(outpath)) - 1
|
|
|
|
|
|
|
|
assert os.path.isfile(opt.init_img)
|
|
|
|
init_image = load_img(opt.init_img).to(device)
|
|
|
|
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
|
|
|
|
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
|
|
|
|
|
|
|
|
sampler.make_schedule(ddim_num_steps=opt.ddim_steps, ddim_eta=opt.ddim_eta, verbose=False)
|
|
|
|
|
|
|
|
assert 0. <= opt.strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
|
|
|
t_enc = int(opt.strength * opt.ddim_steps)
|
|
|
|
print(f"target t_enc is {t_enc} steps")
|
|
|
|
|
|
|
|
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
|
|
|
with torch.no_grad():
|
|
|
|
with precision_scope("cuda"):
|
|
|
|
with model.ema_scope():
|
|
|
|
all_samples = list()
|
|
|
|
for n in trange(opt.n_iter, desc="Sampling"):
|
|
|
|
for prompts in tqdm(data, desc="data"):
|
|
|
|
uc = None
|
|
|
|
if opt.scale != 1.0:
|
|
|
|
uc = model.get_learned_conditioning(batch_size * [""])
|
|
|
|
if isinstance(prompts, tuple):
|
|
|
|
prompts = list(prompts)
|
|
|
|
c = model.get_learned_conditioning(prompts)
|
|
|
|
|
|
|
|
# encode (scaled latent)
|
|
|
|
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc] * batch_size).to(device))
|
|
|
|
# decode it
|
|
|
|
samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=opt.scale,
|
|
|
|
unconditional_conditioning=uc, )
|
|
|
|
|
|
|
|
x_samples = model.decode_first_stage(samples)
|
|
|
|
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
|
|
|
|
for x_sample in x_samples:
|
|
|
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
|
|
|
img = Image.fromarray(x_sample.astype(np.uint8))
|
|
|
|
img = put_watermark(img, wm_encoder)
|
|
|
|
img.save(os.path.join(sample_path, f"{base_count:05}.png"))
|
|
|
|
base_count += 1
|
|
|
|
all_samples.append(x_samples)
|
|
|
|
|
|
|
|
# additionally, save as grid
|
|
|
|
grid = torch.stack(all_samples, 0)
|
|
|
|
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
|
|
|
grid = make_grid(grid, nrow=n_rows)
|
|
|
|
|
|
|
|
# to image
|
|
|
|
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
|
|
|
grid = Image.fromarray(grid.astype(np.uint8))
|
|
|
|
grid = put_watermark(grid, wm_encoder)
|
|
|
|
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
|
|
|
grid_count += 1
|
|
|
|
|
|
|
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|