mirror of
https://github.com/Stability-AI/stablediffusion.git
synced 2025-01-10 16:27:05 +00:00
195 lines
6.7 KiB
Python
195 lines
6.7 KiB
Python
|
import sys
|
||
|
import cv2
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
import streamlit as st
|
||
|
from PIL import Image
|
||
|
from omegaconf import OmegaConf
|
||
|
from einops import repeat
|
||
|
from streamlit_drawable_canvas import st_canvas
|
||
|
from imwatermark import WatermarkEncoder
|
||
|
|
||
|
from ldm.models.diffusion.ddim import DDIMSampler
|
||
|
from ldm.util import instantiate_from_config
|
||
|
|
||
|
|
||
|
torch.set_grad_enabled(False)
|
||
|
|
||
|
|
||
|
def put_watermark(img, wm_encoder=None):
|
||
|
if wm_encoder is not None:
|
||
|
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
||
|
img = wm_encoder.encode(img, 'dwtDct')
|
||
|
img = Image.fromarray(img[:, :, ::-1])
|
||
|
return img
|
||
|
|
||
|
|
||
|
@st.cache(allow_output_mutation=True)
|
||
|
def initialize_model(config, ckpt):
|
||
|
config = OmegaConf.load(config)
|
||
|
model = instantiate_from_config(config.model)
|
||
|
|
||
|
model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)
|
||
|
|
||
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||
|
model = model.to(device)
|
||
|
sampler = DDIMSampler(model)
|
||
|
|
||
|
return sampler
|
||
|
|
||
|
|
||
|
def make_batch_sd(
|
||
|
image,
|
||
|
mask,
|
||
|
txt,
|
||
|
device,
|
||
|
num_samples=1):
|
||
|
image = np.array(image.convert("RGB"))
|
||
|
image = image[None].transpose(0, 3, 1, 2)
|
||
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
||
|
|
||
|
mask = np.array(mask.convert("L"))
|
||
|
mask = mask.astype(np.float32) / 255.0
|
||
|
mask = mask[None, None]
|
||
|
mask[mask < 0.5] = 0
|
||
|
mask[mask >= 0.5] = 1
|
||
|
mask = torch.from_numpy(mask)
|
||
|
|
||
|
masked_image = image * (mask < 0.5)
|
||
|
|
||
|
batch = {
|
||
|
"image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples),
|
||
|
"txt": num_samples * [txt],
|
||
|
"mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples),
|
||
|
"masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples),
|
||
|
}
|
||
|
return batch
|
||
|
|
||
|
|
||
|
def inpaint(sampler, image, mask, prompt, seed, scale, ddim_steps, num_samples=1, w=512, h=512, eta=1.):
|
||
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||
|
model = sampler.model
|
||
|
|
||
|
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
|
||
|
wm = "SDV2"
|
||
|
wm_encoder = WatermarkEncoder()
|
||
|
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
|
||
|
|
||
|
prng = np.random.RandomState(seed)
|
||
|
start_code = prng.randn(num_samples, 4, h // 8, w // 8)
|
||
|
start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)
|
||
|
|
||
|
with torch.no_grad(), \
|
||
|
torch.autocast("cuda"):
|
||
|
batch = make_batch_sd(image, mask, txt=prompt, device=device, num_samples=num_samples)
|
||
|
|
||
|
c = model.cond_stage_model.encode(batch["txt"])
|
||
|
|
||
|
c_cat = list()
|
||
|
for ck in model.concat_keys:
|
||
|
cc = batch[ck].float()
|
||
|
if ck != model.masked_image_key:
|
||
|
bchw = [num_samples, 4, h // 8, w // 8]
|
||
|
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
|
||
|
else:
|
||
|
cc = model.get_first_stage_encoding(model.encode_first_stage(cc))
|
||
|
c_cat.append(cc)
|
||
|
c_cat = torch.cat(c_cat, dim=1)
|
||
|
|
||
|
# cond
|
||
|
cond = {"c_concat": [c_cat], "c_crossattn": [c]}
|
||
|
|
||
|
# uncond cond
|
||
|
uc_cross = model.get_unconditional_conditioning(num_samples, "")
|
||
|
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
|
||
|
|
||
|
shape = [model.channels, h // 8, w // 8]
|
||
|
samples_cfg, intermediates = sampler.sample(
|
||
|
ddim_steps,
|
||
|
num_samples,
|
||
|
shape,
|
||
|
cond,
|
||
|
verbose=False,
|
||
|
eta=eta,
|
||
|
unconditional_guidance_scale=scale,
|
||
|
unconditional_conditioning=uc_full,
|
||
|
x_T=start_code,
|
||
|
)
|
||
|
x_samples_ddim = model.decode_first_stage(samples_cfg)
|
||
|
|
||
|
result = torch.clamp((x_samples_ddim + 1.0) / 2.0,
|
||
|
min=0.0, max=1.0)
|
||
|
|
||
|
result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
|
||
|
return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]
|
||
|
|
||
|
|
||
|
def run():
|
||
|
st.title("Stable Diffusion Inpainting")
|
||
|
|
||
|
sampler = initialize_model(sys.argv[1], sys.argv[2])
|
||
|
|
||
|
image = st.file_uploader("Image", ["jpg", "png"])
|
||
|
if image:
|
||
|
image = Image.open(image)
|
||
|
w, h = image.size
|
||
|
print(f"loaded input image of size ({w}, {h})")
|
||
|
width, height = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32
|
||
|
image = image.resize((width, height))
|
||
|
|
||
|
prompt = st.text_input("Prompt")
|
||
|
|
||
|
seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0)
|
||
|
num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1)
|
||
|
scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=10., step=0.1)
|
||
|
ddim_steps = st.slider("DDIM Steps", min_value=0, max_value=50, value=50, step=1)
|
||
|
eta = st.sidebar.number_input("eta (DDIM)", value=0., min_value=0., max_value=1.)
|
||
|
|
||
|
fill_color = "rgba(255, 255, 255, 0.0)"
|
||
|
stroke_width = st.number_input("Brush Size",
|
||
|
value=64,
|
||
|
min_value=1,
|
||
|
max_value=100)
|
||
|
stroke_color = "rgba(255, 255, 255, 1.0)"
|
||
|
bg_color = "rgba(0, 0, 0, 1.0)"
|
||
|
drawing_mode = "freedraw"
|
||
|
|
||
|
st.write("Canvas")
|
||
|
st.caption(
|
||
|
"Draw a mask to inpaint, then click the 'Send to Streamlit' button (bottom left, with an arrow on it).")
|
||
|
canvas_result = st_canvas(
|
||
|
fill_color=fill_color,
|
||
|
stroke_width=stroke_width,
|
||
|
stroke_color=stroke_color,
|
||
|
background_color=bg_color,
|
||
|
background_image=image,
|
||
|
update_streamlit=False,
|
||
|
height=height,
|
||
|
width=width,
|
||
|
drawing_mode=drawing_mode,
|
||
|
key="canvas",
|
||
|
)
|
||
|
if canvas_result:
|
||
|
mask = canvas_result.image_data
|
||
|
mask = mask[:, :, -1] > 0
|
||
|
if mask.sum() > 0:
|
||
|
mask = Image.fromarray(mask)
|
||
|
|
||
|
result = inpaint(
|
||
|
sampler=sampler,
|
||
|
image=image,
|
||
|
mask=mask,
|
||
|
prompt=prompt,
|
||
|
seed=seed,
|
||
|
scale=scale,
|
||
|
ddim_steps=ddim_steps,
|
||
|
num_samples=num_samples,
|
||
|
h=height, w=width, eta=eta
|
||
|
)
|
||
|
st.write("Inpainted")
|
||
|
for image in result:
|
||
|
st.image(image, output_format='PNG')
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
run()
|