1
0
Fork 0
mirror of https://github.com/HACKERALERT/Picocrypt.git synced 2024-11-09 20:40:53 +00:00

Improvements

This commit is contained in:
Evan Su 2022-05-23 00:28:29 -04:00 committed by GitHub
parent 1c4f74a665
commit a45111e997
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -42,7 +42,7 @@ If correct order is not required, Picocrypt will take the SHA3-256 of each keyfi
If correct order is required, Picocrypt will concatenate the keyfiles together in the order they were dropped into the window and take the SHA3-256 of the combined keyfiles. If the order is not correct, the keyfiles, when appended to each other, will result in a different file, and thus a different hash. So, the correct order of keyfiles is required to decrypt the volume successfully. If correct order is required, Picocrypt will concatenate the keyfiles together in the order they were dropped into the window and take the SHA3-256 of the combined keyfiles. If the order is not correct, the keyfiles, when appended to each other, will result in a different file, and thus a different hash. So, the correct order of keyfiles is required to decrypt the volume successfully.
# Reed-Solomon # Reed-Solomon
By default, all Picocrypt volume headers are encoded with Reed-Solomon to improve resiliency against bit rot, etc. The header uses N+2N encoding, where N is the size of a particular header field such as the version number or the Argon2 salt. If Reed-Solomon is to be used with the input data itself, the data will be encoded using 128+8 encoding, with the data being read in chunks of 1 MiB, and the final set padded to 128 bytes using PKCS#7. By default, all Picocrypt volume headers are encoded with Reed-Solomon to improve resiliency against bit rot. The header uses N+2N encoding, where N is the size of a particular header field such as the version number, and 2N is the number of parity bytes. If Reed-Solomon is to be used with the input data itself, the data will be encoded using 128+8 encoding, with the data being read in chunks of 1 MiB, and the final set padded to 128 bytes using PKCS#7.
In the edge case where the final 128-byte block happens to be padded so that it completes a full 1 MiB chunk, a flag is used to distinguish whether the last 128-byte block was padded originally or if it is just a full 128 bytes of data. In the edge case where the final 128-byte block happens to be padded so that it completes a full 1 MiB chunk, a flag is used to distinguish whether the last 128-byte block was padded originally or if it is just a full 128 bytes of data.