t3nsor api gpt-3.5
This commit is contained in:
parent
9922a20f93
commit
81e033023e
2 changed files with 160 additions and 1 deletions
43
README.md
43
README.md
|
@ -1 +1,42 @@
|
||||||
soon.
|
working on it...
|
||||||
|
|
||||||
|
`t3nsor` (use like openai pypi package)
|
||||||
|
|
||||||
|
Import t3nsor:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import t3nsor
|
||||||
|
|
||||||
|
# t3nsor.Completion.create
|
||||||
|
# t3nsor.StreamCompletion.create
|
||||||
|
```
|
||||||
|
|
||||||
|
Example Chatbot
|
||||||
|
```python
|
||||||
|
messages = []
|
||||||
|
|
||||||
|
while True:
|
||||||
|
user = input('you: ')
|
||||||
|
|
||||||
|
t3nsor_cmpl = t3nsor.Completion.create(
|
||||||
|
prompt = user,
|
||||||
|
messages = messages
|
||||||
|
)
|
||||||
|
|
||||||
|
print('gpt:', t3nsor_cmpl.completion.choices[0].text)
|
||||||
|
|
||||||
|
messages.extend([
|
||||||
|
{'role': 'user', 'content': user },
|
||||||
|
{'role': 'assistant', 'content': t3nsor_cmpl.completion.choices[0].text}
|
||||||
|
])
|
||||||
|
```
|
||||||
|
|
||||||
|
Streaming Response:
|
||||||
|
|
||||||
|
```python
|
||||||
|
for response in t3nsor.StreamCompletion.create(
|
||||||
|
prompt = 'write python code to reverse a string',
|
||||||
|
messages = []):
|
||||||
|
|
||||||
|
print(response.completion.choices[0].text)
|
||||||
|
```
|
118
t3nsor/__init__.py
Normal file
118
t3nsor/__init__.py
Normal file
|
@ -0,0 +1,118 @@
|
||||||
|
from requests import post
|
||||||
|
from time import time
|
||||||
|
|
||||||
|
class T3nsorResponse:
|
||||||
|
|
||||||
|
class Completion:
|
||||||
|
|
||||||
|
class Choices:
|
||||||
|
def __init__(self, choice: dict) -> None:
|
||||||
|
self.text = choice['text']
|
||||||
|
self.content = self.text.encode()
|
||||||
|
self.index = choice['index']
|
||||||
|
self.logprobs = choice['logprobs']
|
||||||
|
self.finish_reason = choice['finish_reason']
|
||||||
|
|
||||||
|
def __repr__(self) -> str:
|
||||||
|
return f'''<__main__.APIResponse.Completion.Choices(\n text = {self.text.encode()},\n index = {self.index},\n logprobs = {self.logprobs},\n finish_reason = {self.finish_reason})object at 0x1337>'''
|
||||||
|
|
||||||
|
def __init__(self, choices: dict) -> None:
|
||||||
|
self.choices = [self.Choices(choice) for choice in choices]
|
||||||
|
|
||||||
|
class Usage:
|
||||||
|
def __init__(self, usage_dict: dict) -> None:
|
||||||
|
self.prompt_tokens = usage_dict['prompt_tokens']
|
||||||
|
self.completion_tokens = usage_dict['completion_tokens']
|
||||||
|
self.total_tokens = usage_dict['total_tokens']
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return f'''<__main__.APIResponse.Usage(\n prompt_tokens = {self.prompt_tokens},\n completion_tokens = {self.completion_tokens},\n total_tokens = {self.total_tokens})object at 0x1337>'''
|
||||||
|
|
||||||
|
def __init__(self, response_dict: dict) -> None:
|
||||||
|
|
||||||
|
self.response_dict = response_dict
|
||||||
|
self.id = response_dict['id']
|
||||||
|
self.object = response_dict['object']
|
||||||
|
self.created = response_dict['created']
|
||||||
|
self.model = response_dict['model']
|
||||||
|
self.completion = self.Completion(response_dict['choices'])
|
||||||
|
self.usage = self.Usage(response_dict['usage'])
|
||||||
|
|
||||||
|
def json(self) -> dict:
|
||||||
|
return self.response_dict
|
||||||
|
|
||||||
|
class Completion:
|
||||||
|
model = {
|
||||||
|
'model': {
|
||||||
|
'id' : 'gpt-3.5-turbo',
|
||||||
|
'name' : 'Default (GPT-3.5)'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def create(
|
||||||
|
prompt: str = 'hello world',
|
||||||
|
messages: list = []) -> T3nsorResponse:
|
||||||
|
|
||||||
|
response = post('https://www.t3nsor.tech/api/chat', json = Completion.model | {
|
||||||
|
'messages' : messages,
|
||||||
|
'key' : '',
|
||||||
|
'prompt' : prompt
|
||||||
|
})
|
||||||
|
|
||||||
|
return T3nsorResponse({
|
||||||
|
'id' : f'cmpl-1337-{int(time())}',
|
||||||
|
'object' : 'text_completion',
|
||||||
|
'created': int(time()),
|
||||||
|
'model' : Completion.model,
|
||||||
|
'choices': [{
|
||||||
|
'text' : response.text,
|
||||||
|
'index' : 0,
|
||||||
|
'logprobs' : None,
|
||||||
|
'finish_reason' : 'stop'
|
||||||
|
}],
|
||||||
|
'usage': {
|
||||||
|
'prompt_chars' : len(prompt),
|
||||||
|
'completion_chars' : len(response.text),
|
||||||
|
'total_chars' : len(prompt) + len(response.text)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
class StreamCompletion:
|
||||||
|
model = {
|
||||||
|
'model': {
|
||||||
|
'id' : 'gpt-3.5-turbo',
|
||||||
|
'name' : 'Default (GPT-3.5)'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def create(
|
||||||
|
prompt: str = 'hello world',
|
||||||
|
messages: list = []) -> T3nsorResponse:
|
||||||
|
|
||||||
|
response = post('https://www.t3nsor.tech/api/chat', stream = True, json = Completion.model | {
|
||||||
|
'messages' : messages,
|
||||||
|
'key' : '',
|
||||||
|
'prompt' : prompt
|
||||||
|
})
|
||||||
|
|
||||||
|
for resp in response.iter_lines():
|
||||||
|
if resp:
|
||||||
|
yield T3nsorResponse({
|
||||||
|
'id' : f'cmpl-1337-{int(time())}',
|
||||||
|
'object' : 'text_completion',
|
||||||
|
'created': int(time()),
|
||||||
|
'model' : Completion.model,
|
||||||
|
|
||||||
|
'choices': [{
|
||||||
|
'text' : resp.decode(),
|
||||||
|
'index' : 0,
|
||||||
|
'logprobs' : None,
|
||||||
|
'finish_reason' : 'stop'
|
||||||
|
}],
|
||||||
|
|
||||||
|
'usage': {
|
||||||
|
'prompt_chars' : len(prompt),
|
||||||
|
'completion_chars' : len(resp.decode()),
|
||||||
|
'total_chars' : len(prompt) + len(resp.decode())
|
||||||
|
}
|
||||||
|
})
|
Loading…
Reference in a new issue