reactos/ntoskrnl/include/internal/ke_x.h
Thomas Faber 2e76fb9fe1
[NTOS:IO] Use a guarded region in IopQueueIrpToThread.
We're protecting against IopCompleteRequest, which is a special
kernel APC. So this is a little bit faster than raising the IRQL.
2021-11-20 14:58:51 -05:00

1714 lines
58 KiB
C

/*
* PROJECT: ReactOS Kernel
* LICENSE: GPL - See COPYING in the top level directory
* FILE: ntoskrnl/include/internal/ke_x.h
* PURPOSE: Internal Inlined Functions for the Kernel
* PROGRAMMERS: Alex Ionescu (alex.ionescu@reactos.org)
*/
#ifdef __cplusplus
extern "C"
{
#endif
#ifndef _M_ARM
FORCEINLINE
KPROCESSOR_MODE
KeGetPreviousMode(VOID)
{
/* Return the current mode */
return KeGetCurrentThread()->PreviousMode;
}
#endif
//
// Enters a Guarded Region
//
#define KeEnterGuardedRegionThread(_Thread) \
{ \
/* Sanity checks */ \
ASSERT(KeGetCurrentIrql() <= APC_LEVEL); \
ASSERT((_Thread) == KeGetCurrentThread()); \
ASSERT(((_Thread)->SpecialApcDisable <= 0) && \
((_Thread)->SpecialApcDisable != -32768)); \
\
/* Disable Special APCs */ \
(_Thread)->SpecialApcDisable--; \
}
#define KeEnterGuardedRegion() \
{ \
PKTHREAD _Thread = KeGetCurrentThread(); \
KeEnterGuardedRegionThread(_Thread); \
}
//
// Leaves a Guarded Region
//
#define KeLeaveGuardedRegionThread(_Thread) \
{ \
/* Sanity checks */ \
ASSERT(KeGetCurrentIrql() <= APC_LEVEL); \
ASSERT((_Thread) == KeGetCurrentThread()); \
ASSERT((_Thread)->SpecialApcDisable < 0); \
\
/* Leave region and check if APCs are OK now */ \
if (!(++(_Thread)->SpecialApcDisable)) \
{ \
/* Check for Kernel APCs on the list */ \
if (!IsListEmpty(&(_Thread)->ApcState. \
ApcListHead[KernelMode])) \
{ \
/* Check for APC Delivery */ \
KiCheckForKernelApcDelivery(); \
} \
} \
}
#define KeLeaveGuardedRegion() \
{ \
PKTHREAD _Thread = KeGetCurrentThread(); \
KeLeaveGuardedRegionThread(_Thread); \
}
//
// Enters a Critical Region
//
#define KeEnterCriticalRegionThread(_Thread) \
{ \
/* Sanity checks */ \
ASSERT((_Thread) == KeGetCurrentThread()); \
ASSERT(((_Thread)->KernelApcDisable <= 0) && \
((_Thread)->KernelApcDisable != -32768)); \
\
/* Disable Kernel APCs */ \
(_Thread)->KernelApcDisable--; \
}
#define KeEnterCriticalRegion() \
{ \
PKTHREAD _Thread = KeGetCurrentThread(); \
KeEnterCriticalRegionThread(_Thread); \
}
//
// Leaves a Critical Region
//
#define KeLeaveCriticalRegionThread(_Thread) \
{ \
/* Sanity checks */ \
ASSERT((_Thread) == KeGetCurrentThread()); \
ASSERT((_Thread)->KernelApcDisable < 0); \
\
/* Enable Kernel APCs */ \
(_Thread)->KernelApcDisable++; \
\
/* Check if Kernel APCs are now enabled */ \
if (!((_Thread)->KernelApcDisable)) \
{ \
/* Check if we need to request an APC Delivery */ \
if (!(IsListEmpty(&(_Thread)->ApcState.ApcListHead[KernelMode])) && \
!((_Thread)->SpecialApcDisable)) \
{ \
/* Check for the right environment */ \
KiCheckForKernelApcDelivery(); \
} \
} \
}
#define KeLeaveCriticalRegion() \
{ \
PKTHREAD _Thread = KeGetCurrentThread(); \
KeLeaveCriticalRegionThread(_Thread); \
}
#ifndef CONFIG_SMP
//
// This routine protects against multiple CPU acquires, it's meaningless on UP.
//
FORCEINLINE
VOID
KiAcquireDispatcherObject(IN DISPATCHER_HEADER* Object)
{
UNREFERENCED_PARAMETER(Object);
}
//
// This routine protects against multiple CPU acquires, it's meaningless on UP.
//
FORCEINLINE
VOID
KiReleaseDispatcherObject(IN DISPATCHER_HEADER* Object)
{
UNREFERENCED_PARAMETER(Object);
}
FORCEINLINE
KIRQL
KiAcquireDispatcherLock(VOID)
{
/* Raise to synch level */
return KfRaiseIrql(SYNCH_LEVEL);
}
FORCEINLINE
VOID
KiReleaseDispatcherLock(IN KIRQL OldIrql)
{
/* Just exit the dispatcher */
KiExitDispatcher(OldIrql);
}
FORCEINLINE
VOID
KiAcquireDispatcherLockAtSynchLevel(VOID)
{
/* This is a no-op at SYNCH_LEVEL for UP systems */
ASSERT(KeGetCurrentIrql() >= SYNCH_LEVEL);
return;
}
FORCEINLINE
VOID
KiReleaseDispatcherLockFromSynchLevel(VOID)
{
/* This is a no-op at SYNCH_LEVEL for UP systems */
return;
}
//
// This routine makes the thread deferred ready on the boot CPU.
//
FORCEINLINE
VOID
KiInsertDeferredReadyList(IN PKTHREAD Thread)
{
/* Set the thread to deferred state and boot CPU */
Thread->State = DeferredReady;
Thread->DeferredProcessor = 0;
/* Make the thread ready immediately */
KiDeferredReadyThread(Thread);
}
FORCEINLINE
VOID
KiRescheduleThread(IN BOOLEAN NewThread,
IN ULONG Cpu)
{
/* This is meaningless on UP systems */
UNREFERENCED_PARAMETER(NewThread);
UNREFERENCED_PARAMETER(Cpu);
}
//
// This routine protects against multiple CPU acquires, it's meaningless on UP.
//
FORCEINLINE
VOID
KiSetThreadSwapBusy(IN PKTHREAD Thread)
{
UNREFERENCED_PARAMETER(Thread);
}
//
// This routine protects against multiple CPU acquires, it's meaningless on UP.
//
FORCEINLINE
VOID
KiAcquirePrcbLock(IN PKPRCB Prcb)
{
UNREFERENCED_PARAMETER(Prcb);
}
//
// This routine protects against multiple CPU acquires, it's meaningless on UP.
//
FORCEINLINE
VOID
KiReleasePrcbLock(IN PKPRCB Prcb)
{
UNREFERENCED_PARAMETER(Prcb);
}
//
// This routine protects against multiple CPU acquires, it's meaningless on UP.
//
FORCEINLINE
VOID
KiAcquireThreadLock(IN PKTHREAD Thread)
{
UNREFERENCED_PARAMETER(Thread);
}
//
// This routine protects against multiple CPU acquires, it's meaningless on UP.
//
FORCEINLINE
VOID
KiReleaseThreadLock(IN PKTHREAD Thread)
{
UNREFERENCED_PARAMETER(Thread);
}
//
// This routine protects against multiple CPU acquires, it's meaningless on UP.
//
FORCEINLINE
BOOLEAN
KiTryThreadLock(IN PKTHREAD Thread)
{
UNREFERENCED_PARAMETER(Thread);
return FALSE;
}
FORCEINLINE
VOID
KiCheckDeferredReadyList(IN PKPRCB Prcb)
{
/* There are no deferred ready lists on UP systems */
UNREFERENCED_PARAMETER(Prcb);
}
FORCEINLINE
VOID
KiRequestApcInterrupt(IN BOOLEAN NeedApc,
IN UCHAR Processor)
{
/* We deliver instantly on UP */
UNREFERENCED_PARAMETER(NeedApc);
UNREFERENCED_PARAMETER(Processor);
}
FORCEINLINE
PKSPIN_LOCK_QUEUE
KiAcquireTimerLock(IN ULONG Hand)
{
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
/* Nothing to do on UP */
UNREFERENCED_PARAMETER(Hand);
return NULL;
}
FORCEINLINE
VOID
KiReleaseTimerLock(IN PKSPIN_LOCK_QUEUE LockQueue)
{
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
/* Nothing to do on UP */
UNREFERENCED_PARAMETER(LockQueue);
}
#else
FORCEINLINE
VOID
KiAcquireDispatcherObject(IN DISPATCHER_HEADER* Object)
{
LONG OldValue;
/* Make sure we're at a safe level to touch the lock */
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
/* Start acquire loop */
do
{
/* Loop until the other CPU releases it */
while (TRUE)
{
/* Check if it got released */
OldValue = Object->Lock;
if ((OldValue & KOBJECT_LOCK_BIT) == 0) break;
/* Let the CPU know that this is a loop */
YieldProcessor();
}
/* Try acquiring the lock now */
} while (InterlockedCompareExchange(&Object->Lock,
OldValue | KOBJECT_LOCK_BIT,
OldValue) != OldValue);
}
FORCEINLINE
VOID
KiReleaseDispatcherObject(IN DISPATCHER_HEADER* Object)
{
/* Make sure we're at a safe level to touch the lock */
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
/* Release it */
InterlockedAnd(&Object->Lock, ~KOBJECT_LOCK_BIT);
}
FORCEINLINE
KIRQL
KiAcquireDispatcherLock(VOID)
{
/* Raise to synchronization level and acquire the dispatcher lock */
return KeAcquireQueuedSpinLockRaiseToSynch(LockQueueDispatcherLock);
}
FORCEINLINE
VOID
KiReleaseDispatcherLock(IN KIRQL OldIrql)
{
/* First release the lock */
KeReleaseQueuedSpinLockFromDpcLevel(&KeGetCurrentPrcb()->
LockQueue[LockQueueDispatcherLock]);
/* Then exit the dispatcher */
KiExitDispatcher(OldIrql);
}
FORCEINLINE
VOID
KiAcquireDispatcherLockAtSynchLevel(VOID)
{
/* Acquire the dispatcher lock */
ASSERT(KeGetCurrentIrql() >= SYNCH_LEVEL);
KeAcquireQueuedSpinLockAtDpcLevel(&KeGetCurrentPrcb()->
LockQueue[LockQueueDispatcherLock]);
}
FORCEINLINE
VOID
KiReleaseDispatcherLockFromSynchLevel(VOID)
{
/* Release the dispatcher lock */
KeReleaseQueuedSpinLockFromDpcLevel(&KeGetCurrentPrcb()->
LockQueue[LockQueueDispatcherLock]);
}
//
// This routine inserts a thread into the deferred ready list of the current CPU
//
FORCEINLINE
VOID
KiInsertDeferredReadyList(IN PKTHREAD Thread)
{
PKPRCB Prcb = KeGetCurrentPrcb();
/* Set the thread to deferred state and CPU */
Thread->State = DeferredReady;
Thread->DeferredProcessor = Prcb->Number;
/* Add it on the list */
PushEntryList(&Prcb->DeferredReadyListHead, &Thread->SwapListEntry);
}
FORCEINLINE
VOID
KiRescheduleThread(IN BOOLEAN NewThread,
IN ULONG Cpu)
{
/* Check if a new thread needs to be scheduled on a different CPU */
if ((NewThread) && !(KeGetCurrentPrcb()->Number == Cpu))
{
/* Send an IPI to request delivery */
KiIpiSend(AFFINITY_MASK(Cpu), IPI_DPC);
}
}
//
// This routine sets the current thread in a swap busy state, which ensure that
// nobody else tries to swap it concurrently.
//
FORCEINLINE
VOID
KiSetThreadSwapBusy(IN PKTHREAD Thread)
{
/* Make sure nobody already set it */
ASSERT(Thread->SwapBusy == FALSE);
/* Set it ourselves */
Thread->SwapBusy = TRUE;
}
//
// This routine acquires the PRCB lock so that only one caller can touch
// volatile PRCB data.
//
// Since this is a simple optimized spin-lock, it must only be acquired
// at dispatcher level or higher!
//
FORCEINLINE
VOID
KiAcquirePrcbLock(IN PKPRCB Prcb)
{
/* Make sure we're at a safe level to touch the PRCB lock */
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
/* Start acquire loop */
for (;;)
{
/* Acquire the lock and break out if we acquired it first */
if (!InterlockedExchange((PLONG)&Prcb->PrcbLock, 1)) break;
/* Loop until the other CPU releases it */
do
{
/* Let the CPU know that this is a loop */
YieldProcessor();
} while (Prcb->PrcbLock);
}
}
//
// This routine releases the PRCB lock so that other callers can touch
// volatile PRCB data.
//
// Since this is a simple optimized spin-lock, it must be be only acquired
// at dispatcher level or higher!
//
FORCEINLINE
VOID
KiReleasePrcbLock(IN PKPRCB Prcb)
{
/* Make sure we are above dispatch and the lock is acquired! */
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
ASSERT(Prcb->PrcbLock != 0);
/* Release it */
InterlockedAnd((PLONG)&Prcb->PrcbLock, 0);
}
//
// This routine acquires the thread lock so that only one caller can touch
// volatile thread data.
//
// Since this is a simple optimized spin-lock, it must be be only acquired
// at dispatcher level or higher!
//
FORCEINLINE
VOID
KiAcquireThreadLock(IN PKTHREAD Thread)
{
/* Make sure we're at a safe level to touch the thread lock */
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
/* Start acquire loop */
for (;;)
{
/* Acquire the lock and break out if we acquired it first */
if (!InterlockedExchange((PLONG)&Thread->ThreadLock, 1)) break;
/* Loop until the other CPU releases it */
do
{
/* Let the CPU know that this is a loop */
YieldProcessor();
} while (Thread->ThreadLock);
}
}
//
// This routine releases the thread lock so that other callers can touch
// volatile thread data.
//
// Since this is a simple optimized spin-lock, it must be be only acquired
// at dispatcher level or higher!
//
FORCEINLINE
VOID
KiReleaseThreadLock(IN PKTHREAD Thread)
{
/* Make sure we are still above dispatch */
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
/* Release it */
InterlockedAnd((PLONG)&Thread->ThreadLock, 0);
}
FORCEINLINE
BOOLEAN
KiTryThreadLock(IN PKTHREAD Thread)
{
LONG Value;
/* If the lock isn't acquired, return false */
if (!Thread->ThreadLock) return FALSE;
/* Otherwise, try to acquire it and check the result */
Value = 1;
Value = InterlockedExchange((PLONG)&Thread->ThreadLock, Value);
/* Return the lock state */
return (Value == 1);
}
FORCEINLINE
VOID
KiCheckDeferredReadyList(IN PKPRCB Prcb)
{
/* Scan the deferred ready lists if required */
if (Prcb->DeferredReadyListHead.Next) KiProcessDeferredReadyList(Prcb);
}
FORCEINLINE
VOID
KiRequestApcInterrupt(IN BOOLEAN NeedApc,
IN UCHAR Processor)
{
/* Check if we need to request APC delivery */
if (NeedApc)
{
/* Check if it's on another CPU */
if (KeGetCurrentPrcb()->Number != Processor)
{
/* Send an IPI to request delivery */
KiIpiSend(AFFINITY_MASK(Processor), IPI_APC);
}
else
{
/* Request a software interrupt */
HalRequestSoftwareInterrupt(APC_LEVEL);
}
}
}
FORCEINLINE
PKSPIN_LOCK_QUEUE
KiAcquireTimerLock(IN ULONG Hand)
{
PKSPIN_LOCK_QUEUE LockQueue;
ULONG LockIndex;
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
/* Get the lock index */
LockIndex = Hand >> LOCK_QUEUE_TIMER_LOCK_SHIFT;
LockIndex &= (LOCK_QUEUE_TIMER_TABLE_LOCKS - 1);
/* Now get the lock */
LockQueue = &KeGetCurrentPrcb()->LockQueue[LockQueueTimerTableLock + LockIndex];
/* Acquire it and return */
KeAcquireQueuedSpinLockAtDpcLevel(LockQueue);
return LockQueue;
}
FORCEINLINE
VOID
KiReleaseTimerLock(IN PKSPIN_LOCK_QUEUE LockQueue)
{
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
/* Release the lock */
KeReleaseQueuedSpinLockFromDpcLevel(LockQueue);
}
#endif
FORCEINLINE
VOID
KiAcquireApcLockRaiseToSynch(IN PKTHREAD Thread,
IN PKLOCK_QUEUE_HANDLE Handle)
{
/* Acquire the lock and raise to synchronization level */
KeAcquireInStackQueuedSpinLockRaiseToSynch(&Thread->ApcQueueLock, Handle);
}
FORCEINLINE
VOID
KiAcquireApcLockAtSynchLevel(IN PKTHREAD Thread,
IN PKLOCK_QUEUE_HANDLE Handle)
{
/* Acquire the lock */
ASSERT(KeGetCurrentIrql() >= SYNCH_LEVEL);
KeAcquireInStackQueuedSpinLockAtDpcLevel(&Thread->ApcQueueLock, Handle);
}
FORCEINLINE
VOID
KiAcquireApcLockRaiseToDpc(IN PKTHREAD Thread,
IN PKLOCK_QUEUE_HANDLE Handle)
{
/* Acquire the lock */
KeAcquireInStackQueuedSpinLock(&Thread->ApcQueueLock, Handle);
}
FORCEINLINE
VOID
KiReleaseApcLock(IN PKLOCK_QUEUE_HANDLE Handle)
{
/* Release the lock */
KeReleaseInStackQueuedSpinLock(Handle);
}
FORCEINLINE
VOID
KiReleaseApcLockFromSynchLevel(IN PKLOCK_QUEUE_HANDLE Handle)
{
/* Release the lock */
KeReleaseInStackQueuedSpinLockFromDpcLevel(Handle);
}
FORCEINLINE
VOID
KiAcquireProcessLockRaiseToSynch(IN PKPROCESS Process,
IN PKLOCK_QUEUE_HANDLE Handle)
{
/* Acquire the lock and raise to synchronization level */
KeAcquireInStackQueuedSpinLockRaiseToSynch(&Process->ProcessLock, Handle);
}
FORCEINLINE
VOID
KiReleaseProcessLock(IN PKLOCK_QUEUE_HANDLE Handle)
{
/* Release the lock and restore previous IRQL */
KeReleaseInStackQueuedSpinLock(Handle);
}
FORCEINLINE
VOID
KiReleaseProcessLockFromSynchLevel(IN PKLOCK_QUEUE_HANDLE Handle)
{
/* Release the lock without lowering IRQL */
KeReleaseInStackQueuedSpinLockFromDpcLevel(Handle);
}
FORCEINLINE
VOID
KiAcquireDeviceQueueLock(IN PKDEVICE_QUEUE DeviceQueue,
IN PKLOCK_QUEUE_HANDLE DeviceLock)
{
/* Check if we were called from a threaded DPC */
if (KeGetCurrentPrcb()->DpcThreadActive)
{
/* Lock the Queue, we're not at DPC level */
KeAcquireInStackQueuedSpinLock(&DeviceQueue->Lock, DeviceLock);
}
else
{
/* We must be at DPC level, acquire the lock safely */
ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);
KeAcquireInStackQueuedSpinLockAtDpcLevel(&DeviceQueue->Lock,
DeviceLock);
}
}
FORCEINLINE
VOID
KiReleaseDeviceQueueLock(IN PKLOCK_QUEUE_HANDLE DeviceLock)
{
/* Check if we were called from a threaded DPC */
if (KeGetCurrentPrcb()->DpcThreadActive)
{
/* Unlock the Queue, we're not at DPC level */
KeReleaseInStackQueuedSpinLock(DeviceLock);
}
else
{
/* We must be at DPC level, release the lock safely */
ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);
KeReleaseInStackQueuedSpinLockFromDpcLevel(DeviceLock);
}
}
//
// Satisfies the wait of a mutant dispatcher object
//
#define KiSatisfyMutantWait(Object, Thread) \
{ \
/* Decrease the Signal State */ \
(Object)->Header.SignalState--; \
\
/* Check if it's now non-signaled */ \
if (!(Object)->Header.SignalState) \
{ \
/* Set the Owner Thread */ \
(Object)->OwnerThread = Thread; \
\
/* Disable APCs if needed */ \
Thread->KernelApcDisable = Thread->KernelApcDisable - \
(Object)->ApcDisable; \
\
/* Check if it's abandoned */ \
if ((Object)->Abandoned) \
{ \
/* Unabandon it */ \
(Object)->Abandoned = FALSE; \
\
/* Return Status */ \
Thread->WaitStatus = STATUS_ABANDONED; \
} \
\
/* Insert it into the Mutant List */ \
InsertHeadList(Thread->MutantListHead.Blink, \
&(Object)->MutantListEntry); \
} \
}
//
// Satisfies the wait of any nonmutant dispatcher object
//
#define KiSatisfyNonMutantWait(Object) \
{ \
if (((Object)->Header.Type & TIMER_OR_EVENT_TYPE) == \
EventSynchronizationObject) \
{ \
/* Synchronization Timers and Events just get un-signaled */ \
(Object)->Header.SignalState = 0; \
} \
else if ((Object)->Header.Type == SemaphoreObject) \
{ \
/* These ones can have multiple states, so we only decrease it */ \
(Object)->Header.SignalState--; \
} \
}
//
// Satisfies the wait of any dispatcher object
//
#define KiSatisfyObjectWait(Object, Thread) \
{ \
/* Special case for Mutants */ \
if ((Object)->Header.Type == MutantObject) \
{ \
KiSatisfyMutantWait((Object), (Thread)); \
} \
else \
{ \
KiSatisfyNonMutantWait(Object); \
} \
}
//
// Recalculates the due time
//
FORCEINLINE
PLARGE_INTEGER
KiRecalculateDueTime(IN PLARGE_INTEGER OriginalDueTime,
IN PLARGE_INTEGER DueTime,
IN OUT PLARGE_INTEGER NewDueTime)
{
/* Don't do anything for absolute waits */
if (OriginalDueTime->QuadPart >= 0) return OriginalDueTime;
/* Otherwise, query the interrupt time and recalculate */
NewDueTime->QuadPart = KeQueryInterruptTime();
NewDueTime->QuadPart -= DueTime->QuadPart;
return NewDueTime;
}
//
// Determines whether a thread should be added to the wait list
//
FORCEINLINE
BOOLEAN
KiCheckThreadStackSwap(IN PKTHREAD Thread,
IN KPROCESSOR_MODE WaitMode)
{
/* Check the required conditions */
if ((WaitMode != KernelMode) &&
(Thread->EnableStackSwap) &&
(Thread->Priority >= (LOW_REALTIME_PRIORITY + 9)))
{
/* We are go for swap */
return TRUE;
}
else
{
/* Don't swap the thread */
return FALSE;
}
}
//
// Adds a thread to the wait list
//
#define KiAddThreadToWaitList(Thread, Swappable) \
{ \
/* Make sure it's swappable */ \
if (Swappable) \
{ \
/* Insert it into the PRCB's List */ \
InsertTailList(&KeGetCurrentPrcb()->WaitListHead, \
&Thread->WaitListEntry); \
} \
}
//
// Checks if a wait in progress should be interrupted by APCs or an alertable
// state.
//
FORCEINLINE
NTSTATUS
KiCheckAlertability(IN PKTHREAD Thread,
IN BOOLEAN Alertable,
IN KPROCESSOR_MODE WaitMode)
{
/* Check if the wait is alertable */
if (Alertable)
{
/* It is, first check if the thread is alerted in this mode */
if (Thread->Alerted[WaitMode])
{
/* It is, so bail out of the wait */
Thread->Alerted[WaitMode] = FALSE;
return STATUS_ALERTED;
}
else if ((WaitMode != KernelMode) &&
(!IsListEmpty(&Thread->ApcState.ApcListHead[UserMode])))
{
/* It's isn't, but this is a user wait with queued user APCs */
Thread->ApcState.UserApcPending = TRUE;
return STATUS_USER_APC;
}
else if (Thread->Alerted[KernelMode])
{
/* It isn't that either, but we're alered in kernel mode */
Thread->Alerted[KernelMode] = FALSE;
return STATUS_ALERTED;
}
}
else if ((WaitMode != KernelMode) && (Thread->ApcState.UserApcPending))
{
/* Not alertable, but this is a user wait with pending user APCs */
return STATUS_USER_APC;
}
/* Otherwise, we're fine */
return STATUS_WAIT_0;
}
FORCEINLINE
ULONG
KiComputeTimerTableIndex(IN ULONGLONG DueTime)
{
return (DueTime / KeMaximumIncrement) & (TIMER_TABLE_SIZE - 1);
}
//
// Called from KiCompleteTimer, KiInsertTreeTimer, KeSetSystemTime
// to remove timer entries
// See Windows HPI blog for more information.
FORCEINLINE
VOID
KiRemoveEntryTimer(IN PKTIMER Timer)
{
ULONG Hand;
PKTIMER_TABLE_ENTRY TableEntry;
/* Remove the timer from the timer list and check if it's empty */
Hand = Timer->Header.Hand;
if (RemoveEntryList(&Timer->TimerListEntry))
{
/* Get the respective timer table entry */
TableEntry = &KiTimerTableListHead[Hand];
if (&TableEntry->Entry == TableEntry->Entry.Flink)
{
/* Set the entry to an infinite absolute time */
TableEntry->Time.HighPart = 0xFFFFFFFF;
}
}
/* Clear the list entries on dbg builds so we can tell the timer is gone */
#if DBG
Timer->TimerListEntry.Flink = NULL;
Timer->TimerListEntry.Blink = NULL;
#endif
}
//
// Called by Wait and Queue code to insert a timer for dispatching.
// Also called by KeSetTimerEx to insert a timer from the caller.
//
FORCEINLINE
VOID
KxInsertTimer(IN PKTIMER Timer,
IN ULONG Hand)
{
PKSPIN_LOCK_QUEUE LockQueue;
ASSERT(KeGetCurrentIrql() >= SYNCH_LEVEL);
/* Acquire the lock and release the dispatcher lock */
LockQueue = KiAcquireTimerLock(Hand);
KiReleaseDispatcherLockFromSynchLevel();
/* Try to insert the timer */
if (KiInsertTimerTable(Timer, Hand))
{
/* Complete it */
KiCompleteTimer(Timer, LockQueue);
}
else
{
/* Do nothing, just release the lock */
KiReleaseTimerLock(LockQueue);
}
}
//
// Called by KeSetTimerEx and KiInsertTreeTimer to calculate Due Time
// See the Windows HPI Blog for more information
//
FORCEINLINE
BOOLEAN
KiComputeDueTime(IN PKTIMER Timer,
IN LARGE_INTEGER DueTime,
OUT PULONG Hand)
{
LARGE_INTEGER InterruptTime, SystemTime, DifferenceTime;
/* Convert to relative time if needed */
Timer->Header.Absolute = FALSE;
if (DueTime.HighPart >= 0)
{
/* Get System Time */
KeQuerySystemTime(&SystemTime);
/* Do the conversion */
DifferenceTime.QuadPart = SystemTime.QuadPart - DueTime.QuadPart;
/* Make sure it hasn't already expired */
Timer->Header.Absolute = TRUE;
if (DifferenceTime.HighPart >= 0)
{
/* Cancel everything */
Timer->Header.SignalState = TRUE;
Timer->Header.Hand = 0;
Timer->DueTime.QuadPart = 0;
*Hand = 0;
return FALSE;
}
/* Set the time as Absolute */
DueTime = DifferenceTime;
}
/* Get the Interrupt Time */
InterruptTime.QuadPart = KeQueryInterruptTime();
/* Recalculate due time */
Timer->DueTime.QuadPart = InterruptTime.QuadPart - DueTime.QuadPart;
/* Get the handle */
*Hand = KiComputeTimerTableIndex(Timer->DueTime.QuadPart);
Timer->Header.Hand = (UCHAR)*Hand;
Timer->Header.Inserted = TRUE;
return TRUE;
}
//
// Called from Unlink and Queue Insert Code.
// Also called by timer code when canceling an inserted timer.
// Removes a timer from it's tree.
//
FORCEINLINE
VOID
KxRemoveTreeTimer(IN PKTIMER Timer)
{
ULONG Hand = Timer->Header.Hand;
PKSPIN_LOCK_QUEUE LockQueue;
PKTIMER_TABLE_ENTRY TimerEntry;
/* Acquire timer lock */
LockQueue = KiAcquireTimerLock(Hand);
/* Set the timer as non-inserted */
Timer->Header.Inserted = FALSE;
/* Remove it from the timer list */
if (RemoveEntryList(&Timer->TimerListEntry))
{
/* Get the entry and check if it's empty */
TimerEntry = &KiTimerTableListHead[Hand];
if (IsListEmpty(&TimerEntry->Entry))
{
/* Clear the time then */
TimerEntry->Time.HighPart = 0xFFFFFFFF;
}
}
/* Release the timer lock */
KiReleaseTimerLock(LockQueue);
}
FORCEINLINE
VOID
KxSetTimerForThreadWait(IN PKTIMER Timer,
IN LARGE_INTEGER Interval,
OUT PULONG Hand)
{
ULONGLONG DueTime;
LARGE_INTEGER InterruptTime, SystemTime, TimeDifference;
/* Check the timer's interval to see if it's absolute */
Timer->Header.Absolute = FALSE;
if (Interval.HighPart >= 0)
{
/* Get the system time and calculate the relative time */
KeQuerySystemTime(&SystemTime);
TimeDifference.QuadPart = SystemTime.QuadPart - Interval.QuadPart;
Timer->Header.Absolute = TRUE;
/* Check if we've already expired */
if (TimeDifference.HighPart >= 0)
{
/* Reset everything */
Timer->DueTime.QuadPart = 0;
*Hand = 0;
Timer->Header.Hand = 0;
return;
}
else
{
/* Update the interval */
Interval = TimeDifference;
}
}
/* Calculate the due time */
InterruptTime.QuadPart = KeQueryInterruptTime();
DueTime = InterruptTime.QuadPart - Interval.QuadPart;
Timer->DueTime.QuadPart = DueTime;
/* Calculate the timer handle */
*Hand = KiComputeTimerTableIndex(DueTime);
Timer->Header.Hand = (UCHAR)*Hand;
}
#define KxDelayThreadWait() \
\
/* Setup the Wait Block */ \
Thread->WaitBlockList = TimerBlock; \
\
/* Setup the timer */ \
KxSetTimerForThreadWait(Timer, *Interval, &Hand); \
\
/* Save the due time for the caller */ \
DueTime.QuadPart = Timer->DueTime.QuadPart; \
\
/* Link the timer to this Wait Block */ \
TimerBlock->NextWaitBlock = TimerBlock; \
Timer->Header.WaitListHead.Flink = &TimerBlock->WaitListEntry; \
Timer->Header.WaitListHead.Blink = &TimerBlock->WaitListEntry; \
\
/* Clear wait status */ \
Thread->WaitStatus = STATUS_SUCCESS; \
\
/* Setup wait fields */ \
Thread->Alertable = Alertable; \
Thread->WaitReason = DelayExecution; \
Thread->WaitMode = WaitMode; \
\
/* Check if we can swap the thread's stack */ \
Thread->WaitListEntry.Flink = NULL; \
Swappable = KiCheckThreadStackSwap(Thread, WaitMode); \
\
/* Set the wait time */ \
Thread->WaitTime = KeTickCount.LowPart;
#define KxMultiThreadWait() \
/* Link wait block array to the thread */ \
Thread->WaitBlockList = WaitBlockArray; \
\
/* Reset the index */ \
Index = 0; \
\
/* Loop wait blocks */ \
do \
{ \
/* Fill out the wait block */ \
WaitBlock = &WaitBlockArray[Index]; \
WaitBlock->Object = Object[Index]; \
WaitBlock->WaitKey = (USHORT)Index; \
WaitBlock->WaitType = WaitType; \
WaitBlock->Thread = Thread; \
\
/* Link to next block */ \
WaitBlock->NextWaitBlock = &WaitBlockArray[Index + 1]; \
Index++; \
} while (Index < Count); \
\
/* Link the last block */ \
WaitBlock->NextWaitBlock = WaitBlockArray; \
\
/* Set default wait status */ \
Thread->WaitStatus = STATUS_WAIT_0; \
\
/* Check if we have a timer */ \
if (Timeout) \
{ \
/* Link to the block */ \
TimerBlock->NextWaitBlock = WaitBlockArray; \
\
/* Setup the timer */ \
KxSetTimerForThreadWait(Timer, *Timeout, &Hand); \
\
/* Save the due time for the caller */ \
DueTime.QuadPart = Timer->DueTime.QuadPart; \
\
/* Initialize the list */ \
InitializeListHead(&Timer->Header.WaitListHead); \
} \
\
/* Set wait settings */ \
Thread->Alertable = Alertable; \
Thread->WaitMode = WaitMode; \
Thread->WaitReason = WaitReason; \
\
/* Check if we can swap the thread's stack */ \
Thread->WaitListEntry.Flink = NULL; \
Swappable = KiCheckThreadStackSwap(Thread, WaitMode); \
\
/* Set the wait time */ \
Thread->WaitTime = KeTickCount.LowPart;
#define KxSingleThreadWait() \
/* Setup the Wait Block */ \
Thread->WaitBlockList = WaitBlock; \
WaitBlock->WaitKey = STATUS_SUCCESS; \
WaitBlock->Object = Object; \
WaitBlock->WaitType = WaitAny; \
\
/* Clear wait status */ \
Thread->WaitStatus = STATUS_SUCCESS; \
\
/* Check if we have a timer */ \
if (Timeout) \
{ \
/* Setup the timer */ \
KxSetTimerForThreadWait(Timer, *Timeout, &Hand); \
\
/* Save the due time for the caller */ \
DueTime.QuadPart = Timer->DueTime.QuadPart; \
\
/* Pointer to timer block */ \
WaitBlock->NextWaitBlock = TimerBlock; \
TimerBlock->NextWaitBlock = WaitBlock; \
\
/* Link the timer to this Wait Block */ \
Timer->Header.WaitListHead.Flink = &TimerBlock->WaitListEntry; \
Timer->Header.WaitListHead.Blink = &TimerBlock->WaitListEntry; \
} \
else \
{ \
/* No timer block, just ourselves */ \
WaitBlock->NextWaitBlock = WaitBlock; \
} \
\
/* Set wait settings */ \
Thread->Alertable = Alertable; \
Thread->WaitMode = WaitMode; \
Thread->WaitReason = WaitReason; \
\
/* Check if we can swap the thread's stack */ \
Thread->WaitListEntry.Flink = NULL; \
Swappable = KiCheckThreadStackSwap(Thread, WaitMode); \
\
/* Set the wait time */ \
Thread->WaitTime = KeTickCount.LowPart;
#define KxQueueThreadWait() \
/* Setup the Wait Block */ \
Thread->WaitBlockList = WaitBlock; \
WaitBlock->WaitKey = STATUS_SUCCESS; \
WaitBlock->Object = Queue; \
WaitBlock->WaitType = WaitAny; \
WaitBlock->Thread = Thread; \
\
/* Clear wait status */ \
Thread->WaitStatus = STATUS_SUCCESS; \
\
/* Check if we have a timer */ \
if (Timeout) \
{ \
/* Setup the timer */ \
KxSetTimerForThreadWait(Timer, *Timeout, &Hand); \
\
/* Save the due time for the caller */ \
DueTime.QuadPart = Timer->DueTime.QuadPart; \
\
/* Pointer to timer block */ \
WaitBlock->NextWaitBlock = TimerBlock; \
TimerBlock->NextWaitBlock = WaitBlock; \
\
/* Link the timer to this Wait Block */ \
Timer->Header.WaitListHead.Flink = &TimerBlock->WaitListEntry; \
Timer->Header.WaitListHead.Blink = &TimerBlock->WaitListEntry; \
} \
else \
{ \
/* No timer block, just ourselves */ \
WaitBlock->NextWaitBlock = WaitBlock; \
} \
\
/* Set wait settings */ \
Thread->Alertable = FALSE; \
Thread->WaitMode = WaitMode; \
Thread->WaitReason = WrQueue; \
\
/* Check if we can swap the thread's stack */ \
Thread->WaitListEntry.Flink = NULL; \
Swappable = KiCheckThreadStackSwap(Thread, WaitMode); \
\
/* Set the wait time */ \
Thread->WaitTime = KeTickCount.LowPart;
//
// Unwaits a Thread
//
FORCEINLINE
VOID
KxUnwaitThread(IN DISPATCHER_HEADER *Object,
IN KPRIORITY Increment)
{
PLIST_ENTRY WaitEntry, WaitList;
PKWAIT_BLOCK WaitBlock;
PKTHREAD WaitThread;
ULONG WaitKey;
/* Loop the Wait Entries */
WaitList = &Object->WaitListHead;
ASSERT(IsListEmpty(&Object->WaitListHead) == FALSE);
WaitEntry = WaitList->Flink;
do
{
/* Get the current wait block */
WaitBlock = CONTAINING_RECORD(WaitEntry, KWAIT_BLOCK, WaitListEntry);
/* Get the waiting thread */
WaitThread = WaitBlock->Thread;
/* Check the current Wait Mode */
if (WaitBlock->WaitType == WaitAny)
{
/* Use the actual wait key */
WaitKey = WaitBlock->WaitKey;
}
else
{
/* Otherwise, use STATUS_KERNEL_APC */
WaitKey = STATUS_KERNEL_APC;
}
/* Unwait the thread */
KiUnwaitThread(WaitThread, WaitKey, Increment);
/* Next entry */
WaitEntry = WaitList->Flink;
} while (WaitEntry != WaitList);
}
//
// Unwaits a Thread waiting on an event
//
FORCEINLINE
VOID
KxUnwaitThreadForEvent(IN PKEVENT Event,
IN KPRIORITY Increment)
{
PLIST_ENTRY WaitEntry, WaitList;
PKWAIT_BLOCK WaitBlock;
PKTHREAD WaitThread;
/* Loop the Wait Entries */
WaitList = &Event->Header.WaitListHead;
ASSERT(IsListEmpty(&Event->Header.WaitListHead) == FALSE);
WaitEntry = WaitList->Flink;
do
{
/* Get the current wait block */
WaitBlock = CONTAINING_RECORD(WaitEntry, KWAIT_BLOCK, WaitListEntry);
/* Get the waiting thread */
WaitThread = WaitBlock->Thread;
/* Check the current Wait Mode */
if (WaitBlock->WaitType == WaitAny)
{
/* Un-signal it */
Event->Header.SignalState = 0;
/* Un-signal the event and unwait the thread */
KiUnwaitThread(WaitThread, WaitBlock->WaitKey, Increment);
break;
}
/* Unwait the thread with STATUS_KERNEL_APC */
KiUnwaitThread(WaitThread, STATUS_KERNEL_APC, Increment);
/* Next entry */
WaitEntry = WaitList->Flink;
} while (WaitEntry != WaitList);
}
//
// This routine queues a thread that is ready on the PRCB's ready lists.
// If this thread cannot currently run on this CPU, then the thread is
// added to the deferred ready list instead.
//
// This routine must be entered with the PRCB lock held and it will exit
// with the PRCB lock released!
//
_Requires_lock_held_(Prcb->PrcbLock)
_Releases_lock_(Prcb->PrcbLock)
FORCEINLINE
VOID
KxQueueReadyThread(IN PKTHREAD Thread,
IN PKPRCB Prcb)
{
BOOLEAN Preempted;
KPRIORITY Priority;
/* Sanity checks */
ASSERT(Prcb == KeGetCurrentPrcb());
ASSERT(Thread->State == Running);
ASSERT(Thread->NextProcessor == Prcb->Number);
/* Check if this thread is allowed to run in this CPU */
#ifdef CONFIG_SMP
if ((Thread->Affinity) & (Prcb->SetMember))
#else
if (TRUE)
#endif
{
/* Set thread ready for execution */
Thread->State = Ready;
/* Save current priority and if someone had pre-empted it */
Priority = Thread->Priority;
Preempted = Thread->Preempted;
/* We're not pre-empting now, and set the wait time */
Thread->Preempted = FALSE;
Thread->WaitTime = KeTickCount.LowPart;
/* Sanity check */
ASSERT((Priority >= 0) && (Priority <= HIGH_PRIORITY));
/* Insert this thread in the appropriate order */
Preempted ? InsertHeadList(&Prcb->DispatcherReadyListHead[Priority],
&Thread->WaitListEntry) :
InsertTailList(&Prcb->DispatcherReadyListHead[Priority],
&Thread->WaitListEntry);
/* Update the ready summary */
Prcb->ReadySummary |= PRIORITY_MASK(Priority);
/* Sanity check */
ASSERT(Priority == Thread->Priority);
/* Release the PRCB lock */
KiReleasePrcbLock(Prcb);
}
else
{
/* Otherwise, prepare this thread to be deferred */
Thread->State = DeferredReady;
Thread->DeferredProcessor = Prcb->Number;
/* Release the lock and defer scheduling */
KiReleasePrcbLock(Prcb);
KiDeferredReadyThread(Thread);
}
}
//
// This routine scans for an appropriate ready thread to select at the
// given priority and for the given CPU.
//
FORCEINLINE
PKTHREAD
KiSelectReadyThread(IN KPRIORITY Priority,
IN PKPRCB Prcb)
{
ULONG PrioritySet;
LONG HighPriority;
PLIST_ENTRY ListEntry;
PKTHREAD Thread = NULL;
/* Save the current mask and get the priority set for the CPU */
PrioritySet = Prcb->ReadySummary >> Priority;
if (!PrioritySet) goto Quickie;
/* Get the highest priority possible */
BitScanReverse((PULONG)&HighPriority, PrioritySet);
ASSERT((PrioritySet & PRIORITY_MASK(HighPriority)) != 0);
HighPriority += Priority;
/* Make sure the list isn't empty at the highest priority */
ASSERT(IsListEmpty(&Prcb->DispatcherReadyListHead[HighPriority]) == FALSE);
/* Get the first thread on the list */
ListEntry = Prcb->DispatcherReadyListHead[HighPriority].Flink;
Thread = CONTAINING_RECORD(ListEntry, KTHREAD, WaitListEntry);
/* Make sure this thread is here for a reason */
ASSERT(HighPriority == Thread->Priority);
ASSERT(Thread->Affinity & AFFINITY_MASK(Prcb->Number));
ASSERT(Thread->NextProcessor == Prcb->Number);
/* Remove it from the list */
if (RemoveEntryList(&Thread->WaitListEntry))
{
/* The list is empty now, reset the ready summary */
Prcb->ReadySummary ^= PRIORITY_MASK(HighPriority);
}
/* Sanity check and return the thread */
Quickie:
ASSERT((Thread == NULL) ||
(Thread->BasePriority == 0) ||
(Thread->Priority != 0));
return Thread;
}
//
// This routine computes the new priority for a thread. It is only valid for
// threads with priorities in the dynamic priority range.
//
FORCEINLINE
SCHAR
KiComputeNewPriority(IN PKTHREAD Thread,
IN SCHAR Adjustment)
{
SCHAR Priority;
/* Priority sanity checks */
ASSERT((Thread->PriorityDecrement >= 0) &&
(Thread->PriorityDecrement <= Thread->Priority));
ASSERT((Thread->Priority < LOW_REALTIME_PRIORITY) ?
TRUE : (Thread->PriorityDecrement == 0));
/* Get the current priority */
Priority = Thread->Priority;
if (Priority < LOW_REALTIME_PRIORITY)
{
/* Decrease priority by the priority decrement */
Priority -= (Thread->PriorityDecrement + Adjustment);
/* Don't go out of bounds */
if (Priority < Thread->BasePriority) Priority = Thread->BasePriority;
/* Reset the priority decrement */
Thread->PriorityDecrement = 0;
}
/* Sanity check */
ASSERT((Thread->BasePriority == 0) || (Priority != 0));
/* Return the new priority */
return Priority;
}
//
// Guarded Mutex Routines
//
FORCEINLINE
VOID
_KeInitializeGuardedMutex(OUT PKGUARDED_MUTEX GuardedMutex)
{
/* Setup the Initial Data */
GuardedMutex->Count = GM_LOCK_BIT;
GuardedMutex->Owner = NULL;
GuardedMutex->Contention = 0;
/* Initialize the Wait Gate */
KeInitializeGate(&GuardedMutex->Gate);
}
FORCEINLINE
VOID
_KeAcquireGuardedMutexUnsafe(IN OUT PKGUARDED_MUTEX GuardedMutex)
{
PKTHREAD Thread = KeGetCurrentThread();
/* Sanity checks */
ASSERT((KeGetCurrentIrql() == APC_LEVEL) ||
(Thread->SpecialApcDisable < 0) ||
(Thread->Teb == NULL) ||
(Thread->Teb >= (PTEB)MM_SYSTEM_RANGE_START));
ASSERT(GuardedMutex->Owner != Thread);
/* Remove the lock */
if (!InterlockedBitTestAndReset(&GuardedMutex->Count, GM_LOCK_BIT_V))
{
/* The Guarded Mutex was already locked, enter contented case */
KiAcquireGuardedMutex(GuardedMutex);
}
/* Set the Owner */
GuardedMutex->Owner = Thread;
}
FORCEINLINE
VOID
_KeReleaseGuardedMutexUnsafe(IN OUT PKGUARDED_MUTEX GuardedMutex)
{
LONG OldValue, NewValue;
/* Sanity checks */
ASSERT((KeGetCurrentIrql() == APC_LEVEL) ||
(KeGetCurrentThread()->SpecialApcDisable < 0) ||
(KeGetCurrentThread()->Teb == NULL) ||
(KeGetCurrentThread()->Teb >= (PTEB)MM_SYSTEM_RANGE_START));
ASSERT(GuardedMutex->Owner == KeGetCurrentThread());
/* Destroy the Owner */
GuardedMutex->Owner = NULL;
/* Add the Lock Bit */
OldValue = InterlockedExchangeAdd(&GuardedMutex->Count, GM_LOCK_BIT);
ASSERT((OldValue & GM_LOCK_BIT) == 0);
/* Check if it was already locked, but not woken */
if ((OldValue) && !(OldValue & GM_LOCK_WAITER_WOKEN))
{
/* Update the Oldvalue to what it should be now */
OldValue += GM_LOCK_BIT;
/* The mutex will be woken, minus one waiter */
NewValue = OldValue + GM_LOCK_WAITER_WOKEN -
GM_LOCK_WAITER_INC;
/* Remove the Woken bit */
if (InterlockedCompareExchange(&GuardedMutex->Count,
NewValue,
OldValue) == OldValue)
{
/* Signal the Gate */
KeSignalGateBoostPriority(&GuardedMutex->Gate);
}
}
}
FORCEINLINE
VOID
_KeAcquireGuardedMutex(IN PKGUARDED_MUTEX GuardedMutex)
{
PKTHREAD Thread = KeGetCurrentThread();
/* Sanity checks */
ASSERT(KeGetCurrentIrql() <= APC_LEVEL);
ASSERT(GuardedMutex->Owner != Thread);
/* Disable Special APCs */
KeEnterGuardedRegionThread(Thread);
/* Remove the lock */
if (!InterlockedBitTestAndReset(&GuardedMutex->Count, GM_LOCK_BIT_V))
{
/* The Guarded Mutex was already locked, enter contented case */
KiAcquireGuardedMutex(GuardedMutex);
}
/* Set the Owner and Special APC Disable state */
GuardedMutex->Owner = Thread;
GuardedMutex->SpecialApcDisable = Thread->SpecialApcDisable;
}
FORCEINLINE
VOID
_KeReleaseGuardedMutex(IN OUT PKGUARDED_MUTEX GuardedMutex)
{
PKTHREAD Thread = KeGetCurrentThread();
LONG OldValue, NewValue;
/* Sanity checks */
ASSERT(KeGetCurrentIrql() <= APC_LEVEL);
ASSERT(GuardedMutex->Owner == Thread);
ASSERT(Thread->SpecialApcDisable == GuardedMutex->SpecialApcDisable);
/* Destroy the Owner */
GuardedMutex->Owner = NULL;
/* Add the Lock Bit */
OldValue = InterlockedExchangeAdd(&GuardedMutex->Count, GM_LOCK_BIT);
ASSERT((OldValue & GM_LOCK_BIT) == 0);
/* Check if it was already locked, but not woken */
if ((OldValue) && !(OldValue & GM_LOCK_WAITER_WOKEN))
{
/* Update the Oldvalue to what it should be now */
OldValue += GM_LOCK_BIT;
/* The mutex will be woken, minus one waiter */
NewValue = OldValue + GM_LOCK_WAITER_WOKEN -
GM_LOCK_WAITER_INC;
/* Remove the Woken bit */
if (InterlockedCompareExchange(&GuardedMutex->Count,
NewValue,
OldValue) == OldValue)
{
/* Signal the Gate */
KeSignalGateBoostPriority(&GuardedMutex->Gate);
}
}
/* Re-enable APCs */
KeLeaveGuardedRegionThread(Thread);
}
FORCEINLINE
BOOLEAN
_KeTryToAcquireGuardedMutex(IN OUT PKGUARDED_MUTEX GuardedMutex)
{
PKTHREAD Thread = KeGetCurrentThread();
/* Block APCs */
KeEnterGuardedRegionThread(Thread);
/* Remove the lock */
if (!InterlockedBitTestAndReset(&GuardedMutex->Count, GM_LOCK_BIT_V))
{
/* Re-enable APCs */
KeLeaveGuardedRegionThread(Thread);
YieldProcessor();
/* Return failure */
return FALSE;
}
/* Set the Owner and APC State */
GuardedMutex->Owner = Thread;
GuardedMutex->SpecialApcDisable = Thread->SpecialApcDisable;
return TRUE;
}
FORCEINLINE
VOID
KiAcquireNmiListLock(OUT PKIRQL OldIrql)
{
KeAcquireSpinLock(&KiNmiCallbackListLock, OldIrql);
}
FORCEINLINE
VOID
KiReleaseNmiListLock(IN KIRQL OldIrql)
{
KeReleaseSpinLock(&KiNmiCallbackListLock, OldIrql);
}
#if defined(_M_IX86) || defined(_M_AMD64)
FORCEINLINE
VOID
KiCpuId(
PCPU_INFO CpuInfo,
ULONG Function)
{
__cpuid((INT*)CpuInfo->AsUINT32, Function);
}
FORCEINLINE
VOID
KiCpuIdEx(
PCPU_INFO CpuInfo,
ULONG Function,
ULONG SubFunction)
{
__cpuidex((INT*)CpuInfo->AsUINT32, Function, SubFunction);
}
#endif /* _M_IX86 || _M_AMD64 */
#ifdef __cplusplus
} // extern "C"
#endif