reactos/win32ss/gdi/ntgdi/path.c
David Quintana 1bc1185f8a Sync with trunk r64222.
svn path=/branches/shell-experiments/; revision=64225
2014-09-22 12:51:09 +00:00

2882 lines
75 KiB
C

/*
* PROJECT: ReactOS win32 kernel mode subsystem
* LICENSE: GPL - See COPYING in the top level directory
* FILE: subsystems/win32/win32k/objects/path.c
* PURPOSE: Graphics paths (BeginPath, EndPath etc.)
* PROGRAMMER: Copyright 1997, 1998 Martin Boehme
* 1999 Huw D M Davies
* 2005 Dmitry Timoshkov
*/
#include <win32k.h>
#include <suppress.h>
#define NDEBUG
#include <debug.h>
#ifdef _MSC_VER
#pragma warning(disable:4244)
#endif
#define NUM_ENTRIES_INITIAL 16 /* Initial size of points / flags arrays */
#define GROW_FACTOR_NUMER 2 /* Numerator of grow factor for the array */
#define GROW_FACTOR_DENOM 1 /* Denominator of grow factor */
/***********************************************************************
* Internal functions
*/
/* PATH_DestroyGdiPath
*
* Destroys a GdiPath structure (frees the memory in the arrays).
*/
VOID
FASTCALL
PATH_DestroyGdiPath(PPATH pPath)
{
ASSERT(pPath != NULL);
if (pPath->pPoints) ExFreePoolWithTag(pPath->pPoints, TAG_PATH);
if (pPath->pFlags) ExFreePoolWithTag(pPath->pFlags, TAG_PATH);
}
BOOL
FASTCALL
PATH_Delete(HPATH hPath)
{
PPATH pPath;
if (!hPath) return FALSE;
pPath = PATH_LockPath(hPath);
if (!pPath) return FALSE;
PATH_DestroyGdiPath(pPath);
GDIOBJ_vDeleteObject(&pPath->BaseObject);
return TRUE;
}
VOID
FASTCALL
IntGdiCloseFigure(PPATH pPath)
{
ASSERT(pPath->state == PATH_Open);
// FIXME: Shouldn't we draw a line to the beginning of the figure?
// Set PT_CLOSEFIGURE on the last entry and start a new stroke
if (pPath->numEntriesUsed)
{
pPath->pFlags[pPath->numEntriesUsed - 1] |= PT_CLOSEFIGURE;
pPath->newStroke = TRUE;
}
}
/* MSDN: This fails if the device coordinates exceed 27 bits, or if the converted
logical coordinates exceed 32 bits. */
BOOL
FASTCALL
GdiPathDPtoLP(
PDC pdc,
PPOINT ppt,
INT count)
{
XFORMOBJ xo;
XFORMOBJ_vInit(&xo, &pdc->pdcattr->mxDeviceToWorld);
return XFORMOBJ_bApplyXform(&xo, XF_LTOL, count, (PPOINTL)ppt, (PPOINTL)ppt);
}
/* PATH_FillPath
*
*
*/
BOOL
FASTCALL
PATH_FillPath(
PDC dc,
PPATH pPath)
{
//INT mapMode, graphicsMode;
//SIZE ptViewportExt, ptWindowExt;
//POINTL ptViewportOrg, ptWindowOrg;
XFORM xform;
PREGION Rgn;
PDC_ATTR pdcattr = dc->pdcattr;
if (pPath->state != PATH_Closed)
{
EngSetLastError(ERROR_CAN_NOT_COMPLETE);
return FALSE;
}
/* Allocate a temporary region */
Rgn = IntSysCreateRectpRgn(0, 0, 0, 0);
if (!Rgn)
{
EngSetLastError(ERROR_NOT_ENOUGH_MEMORY);
return FALSE;
}
if (!PATH_PathToRegion(pPath, pdcattr->jFillMode, Rgn))
{
/* EngSetLastError ? */
REGION_Delete(Rgn);
return FALSE;
}
/* Since PaintRgn interprets the region as being in logical coordinates
* but the points we store for the path are already in device
* coordinates, we have to set the mapping mode to MM_TEXT temporarily.
* Using SaveDC to save information about the mapping mode / world
* transform would be easier but would require more overhead, especially
* now that SaveDC saves the current path.
*/
/* Save the information about the old mapping mode */
//mapMode = pdcattr->iMapMode;
//ptViewportExt = pdcattr->szlViewportExt;
//ptViewportOrg = pdcattr->ptlViewportOrg;
//ptWindowExt = pdcattr->szlWindowExt;
//ptWindowOrg = pdcattr->ptlWindowOrg;
/* Save world transform
* NB: The Windows documentation on world transforms would lead one to
* believe that this has to be done only in GM_ADVANCED; however, my
* tests show that resetting the graphics mode to GM_COMPATIBLE does
* not reset the world transform.
*/
MatrixS2XForm(&xform, &dc->pdcattr->mxWorldToPage);
/* Set MM_TEXT */
// IntGdiSetMapMode(dc, MM_TEXT);
// pdcattr->ptlViewportOrg.x = 0;
// pdcattr->ptlViewportOrg.y = 0;
// pdcattr->ptlWindowOrg.x = 0;
// pdcattr->ptlWindowOrg.y = 0;
// graphicsMode = pdcattr->iGraphicsMode;
// pdcattr->iGraphicsMode = GM_ADVANCED;
// IntGdiModifyWorldTransform(dc, &xform, MWT_IDENTITY);
// pdcattr->iGraphicsMode = graphicsMode;
/* Paint the region */
IntGdiPaintRgn(dc, Rgn);
REGION_Delete(Rgn);
/* Restore the old mapping mode */
// IntGdiSetMapMode(dc, mapMode);
// pdcattr->szlViewportExt = ptViewportExt;
// pdcattr->ptlViewportOrg = ptViewportOrg;
// pdcattr->szlWindowExt = ptWindowExt;
// pdcattr->ptlWindowOrg = ptWindowOrg;
/* Go to GM_ADVANCED temporarily to restore the world transform */
//graphicsMode = pdcattr->iGraphicsMode;
// pdcattr->iGraphicsMode = GM_ADVANCED;
// IntGdiModifyWorldTransform(dc, &xform, MWT_MAX+1);
// pdcattr->iGraphicsMode = graphicsMode;
return TRUE;
}
/* PATH_InitGdiPath
*
* Initializes the GdiPath structure.
*/
VOID
FASTCALL
PATH_InitGdiPath(
PPATH pPath)
{
ASSERT(pPath != NULL);
pPath->state = PATH_Null;
pPath->pPoints = NULL;
pPath->pFlags = NULL;
pPath->numEntriesUsed = 0;
pPath->numEntriesAllocated = 0;
}
/* PATH_AssignGdiPath
*
* Copies the GdiPath structure "pPathSrc" to "pPathDest". A deep copy is
* performed, i.e. the contents of the pPoints and pFlags arrays are copied,
* not just the pointers. Since this means that the arrays in pPathDest may
* need to be resized, pPathDest should have been initialized using
* PATH_InitGdiPath (in C++, this function would be an assignment operator,
* not a copy constructor).
* Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_AssignGdiPath(
PPATH pPathDest,
const PPATH pPathSrc)
{
ASSERT(pPathDest != NULL && pPathSrc != NULL);
/* Make sure destination arrays are big enough */
if (!PATH_ReserveEntries(pPathDest, pPathSrc->numEntriesUsed))
return FALSE;
/* Perform the copy operation */
memcpy(pPathDest->pPoints, pPathSrc->pPoints,
sizeof(POINT)*pPathSrc->numEntriesUsed);
memcpy(pPathDest->pFlags, pPathSrc->pFlags,
sizeof(BYTE)*pPathSrc->numEntriesUsed);
pPathDest->state = pPathSrc->state;
pPathDest->numEntriesUsed = pPathSrc->numEntriesUsed;
pPathDest->newStroke = pPathSrc->newStroke;
return TRUE;
}
/* PATH_MoveTo
*
* Should be called when a MoveTo is performed on a DC that has an
* open path. This starts a new stroke. Returns TRUE if successful, else
* FALSE.
*/
BOOL
FASTCALL
PATH_MoveTo(
PDC dc)
{
PPATH pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath) return FALSE;
/* Check that path is open */
if (pPath->state != PATH_Open)
{
PATH_UnlockPath(pPath);
/* FIXME: Do we have to call SetLastError? */
return FALSE;
}
/* Start a new stroke */
pPath->newStroke = TRUE;
PATH_UnlockPath(pPath);
return TRUE;
}
/* PATH_LineTo
*
* Should be called when a LineTo is performed on a DC that has an
* open path. This adds a PT_LINETO entry to the path (and possibly
* a PT_MOVETO entry, if this is the first LineTo in a stroke).
* Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_LineTo(
PDC dc,
INT x,
INT y)
{
BOOL Ret;
PPATH pPath;
POINT point, pointCurPos;
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath) return FALSE;
/* Check that path is open */
if (pPath->state != PATH_Open)
{
PATH_UnlockPath(pPath);
return FALSE;
}
/* Convert point to device coordinates */
point.x = x;
point.y = y;
CoordLPtoDP(dc, &point);
/* Add a PT_MOVETO if necessary */
if (pPath->newStroke)
{
pPath->newStroke = FALSE;
IntGetCurrentPositionEx(dc, &pointCurPos);
CoordLPtoDP(dc, &pointCurPos);
if (!PATH_AddEntry(pPath, &pointCurPos, PT_MOVETO))
{
PATH_UnlockPath(pPath);
return FALSE;
}
}
/* Add a PT_LINETO entry */
Ret = PATH_AddEntry(pPath, &point, PT_LINETO);
PATH_UnlockPath(pPath);
return Ret;
}
/* PATH_Rectangle
*
* Should be called when a call to Rectangle is performed on a DC that has
* an open path. Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_Rectangle(
PDC dc,
INT x1,
INT y1,
INT x2,
INT y2)
{
PPATH pPath;
POINT corners[2], pointTemp;
INT temp;
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath) return FALSE;
/* Check that path is open */
if (pPath->state != PATH_Open)
{
PATH_UnlockPath(pPath);
return FALSE;
}
/* Convert points to device coordinates */
corners[0].x = x1;
corners[0].y = y1;
corners[1].x = x2;
corners[1].y = y2;
IntLPtoDP(dc, corners, 2);
/* Make sure first corner is top left and second corner is bottom right */
if (corners[0].x > corners[1].x)
{
temp = corners[0].x;
corners[0].x = corners[1].x;
corners[1].x = temp;
}
if (corners[0].y > corners[1].y)
{
temp = corners[0].y;
corners[0].y = corners[1].y;
corners[1].y = temp;
}
/* In GM_COMPATIBLE, don't include bottom and right edges */
if (dc->pdcattr->iGraphicsMode == GM_COMPATIBLE)
{
corners[1].x--;
corners[1].y--;
}
/* Close any previous figure */
IntGdiCloseFigure(pPath);
/* Add four points to the path */
pointTemp.x = corners[1].x;
pointTemp.y = corners[0].y;
if (!PATH_AddEntry(pPath, &pointTemp, PT_MOVETO))
{
PATH_UnlockPath(pPath);
return FALSE;
}
if (!PATH_AddEntry(pPath, corners, PT_LINETO))
{
PATH_UnlockPath(pPath);
return FALSE;
}
pointTemp.x = corners[0].x;
pointTemp.y = corners[1].y;
if (!PATH_AddEntry(pPath, &pointTemp, PT_LINETO))
{
PATH_UnlockPath(pPath);
return FALSE;
}
if (!PATH_AddEntry(pPath, corners + 1, PT_LINETO))
{
PATH_UnlockPath(pPath);
return FALSE;
}
/* Close the rectangle figure */
IntGdiCloseFigure(pPath) ;
PATH_UnlockPath(pPath);
return TRUE;
}
/* PATH_RoundRect
*
* Should be called when a call to RoundRect is performed on a DC that has
* an open path. Returns TRUE if successful, else FALSE.
*
* FIXME: It adds the same entries to the path as windows does, but there
* is an error in the bezier drawing code so that there are small pixel-size
* gaps when the resulting path is drawn by StrokePath()
*/
BOOL
FASTCALL
PATH_RoundRect(
DC *dc,
INT x1,
INT y1,
INT x2,
INT y2,
INT ell_width,
INT ell_height)
{
PPATH pPath;
POINT corners[2], pointTemp;
FLOAT_POINT ellCorners[2];
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath) return FALSE;
/* Check that path is open */
if (pPath->state != PATH_Open)
{
PATH_UnlockPath(pPath);
return FALSE;
}
if (!PATH_CheckCorners(dc, corners, x1, y1, x2, y2))
{
PATH_UnlockPath(pPath);
return FALSE;
}
/* Add points to the roundrect path */
ellCorners[0].x = corners[1].x - ell_width;
ellCorners[0].y = corners[0].y;
ellCorners[1].x = corners[1].x;
ellCorners[1].y = corners[0].y + ell_height;
if (!PATH_DoArcPart(pPath, ellCorners, 0, -M_PI_2, PT_MOVETO))
{
PATH_UnlockPath(pPath);
return FALSE;
}
pointTemp.x = corners[0].x + ell_width / 2;
pointTemp.y = corners[0].y;
if (!PATH_AddEntry(pPath, &pointTemp, PT_LINETO))
{
PATH_UnlockPath(pPath);
return FALSE;
}
ellCorners[0].x = corners[0].x;
ellCorners[1].x = corners[0].x + ell_width;
if (!PATH_DoArcPart(pPath, ellCorners, -M_PI_2, -M_PI, FALSE))
{
PATH_UnlockPath(pPath);
return FALSE;
}
pointTemp.x = corners[0].x;
pointTemp.y = corners[1].y - ell_height / 2;
if (!PATH_AddEntry(pPath, &pointTemp, PT_LINETO))
{
PATH_UnlockPath(pPath);
return FALSE;
}
ellCorners[0].y = corners[1].y - ell_height;
ellCorners[1].y = corners[1].y;
if (!PATH_DoArcPart(pPath, ellCorners, M_PI, M_PI_2, FALSE))
{
PATH_UnlockPath(pPath);
return FALSE;
}
pointTemp.x = corners[1].x - ell_width / 2;
pointTemp.y = corners[1].y;
if (!PATH_AddEntry(pPath, &pointTemp, PT_LINETO))
{
PATH_UnlockPath(pPath);
return FALSE;
}
ellCorners[0].x = corners[1].x - ell_width;
ellCorners[1].x = corners[1].x;
if (!PATH_DoArcPart(pPath, ellCorners, M_PI_2, 0, FALSE))
{
PATH_UnlockPath(pPath);
return FALSE;
}
IntGdiCloseFigure(pPath);
PATH_UnlockPath(pPath);
return TRUE;
}
/* PATH_Ellipse
*
* Should be called when a call to Ellipse is performed on a DC that has
* an open path. This adds four Bezier splines representing the ellipse
* to the path. Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_Ellipse(
PDC dc,
INT x1,
INT y1,
INT x2,
INT y2)
{
PPATH pPath;
/* TODO: This should probably be revised to call PATH_AngleArc */
/* (once it exists) */
BOOL Ret = PATH_Arc(dc, x1, y1, x2, y2, x1, (y1 + y2) / 2, x1, (y1 + y2) / 2, GdiTypeArc);
if (Ret)
{
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath) return FALSE;
IntGdiCloseFigure(pPath);
PATH_UnlockPath(pPath);
}
return Ret;
}
/* PATH_Arc
*
* Should be called when a call to Arc is performed on a DC that has
* an open path. This adds up to five Bezier splines representing the arc
* to the path. When 'lines' is 1, we add 1 extra line to get a chord,
* when 'lines' is 2, we add 2 extra lines to get a pie, and when 'lines' is
* -1 we add 1 extra line from the current DC position to the starting position
* of the arc before drawing the arc itself (arcto). Returns TRUE if successful,
* else FALSE.
*/
BOOL
FASTCALL
PATH_Arc(
PDC dc,
INT x1,
INT y1,
INT x2,
INT y2,
INT xStart,
INT yStart,
INT xEnd,
INT yEnd,
INT lines)
{
double angleStart, angleEnd, angleStartQuadrant, angleEndQuadrant = 0.0;
/* Initialize angleEndQuadrant to silence gcc's warning */
double x, y;
FLOAT_POINT corners[2], pointStart, pointEnd;
POINT centre, pointCurPos;
BOOL start, end, Ret = TRUE;
INT temp;
BOOL clockwise;
PPATH pPath;
/* FIXME: This function should check for all possible error returns */
/* FIXME: Do we have to respect newStroke? */
ASSERT(dc);
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath) return FALSE;
clockwise = ((dc->dclevel.flPath & DCPATH_CLOCKWISE) != 0);
/* Check that path is open */
if (pPath->state != PATH_Open)
{
Ret = FALSE;
goto ArcExit;
}
/* Check for zero height / width */
/* FIXME: Only in GM_COMPATIBLE? */
if (x1 == x2 || y1 == y2)
{
Ret = TRUE;
goto ArcExit;
}
/* Convert points to device coordinates */
corners[0].x = (FLOAT)x1;
corners[0].y = (FLOAT)y1;
corners[1].x = (FLOAT)x2;
corners[1].y = (FLOAT)y2;
pointStart.x = (FLOAT)xStart;
pointStart.y = (FLOAT)yStart;
pointEnd.x = (FLOAT)xEnd;
pointEnd.y = (FLOAT)yEnd;
INTERNAL_LPTODP_FLOAT(dc, corners);
INTERNAL_LPTODP_FLOAT(dc, corners + 1);
INTERNAL_LPTODP_FLOAT(dc, &pointStart);
INTERNAL_LPTODP_FLOAT(dc, &pointEnd);
/* Make sure first corner is top left and second corner is bottom right */
if (corners[0].x > corners[1].x)
{
temp = corners[0].x;
corners[0].x = corners[1].x;
corners[1].x = temp;
}
if (corners[0].y > corners[1].y)
{
temp = corners[0].y;
corners[0].y = corners[1].y;
corners[1].y = temp;
}
/* Compute start and end angle */
PATH_NormalizePoint(corners, &pointStart, &x, &y);
angleStart = atan2(y, x);
PATH_NormalizePoint(corners, &pointEnd, &x, &y);
angleEnd = atan2(y, x);
/* Make sure the end angle is "on the right side" of the start angle */
if (clockwise)
{
if (angleEnd <= angleStart)
{
angleEnd += 2 * M_PI;
ASSERT(angleEnd >= angleStart);
}
}
else
{
if (angleEnd >= angleStart)
{
angleEnd -= 2 * M_PI;
ASSERT(angleEnd <= angleStart);
}
}
/* In GM_COMPATIBLE, don't include bottom and right edges */
if (dc->pdcattr->iGraphicsMode == GM_COMPATIBLE)
{
corners[1].x--;
corners[1].y--;
}
/* arcto: Add a PT_MOVETO only if this is the first entry in a stroke */
if (lines == GdiTypeArcTo && pPath->newStroke) // -1
{
pPath->newStroke = FALSE;
IntGetCurrentPositionEx(dc, &pointCurPos);
CoordLPtoDP(dc, &pointCurPos);
if (!PATH_AddEntry(pPath, &pointCurPos, PT_MOVETO))
{
Ret = FALSE;
goto ArcExit;
}
}
/* Add the arc to the path with one Bezier spline per quadrant that the
* arc spans */
start = TRUE;
end = FALSE;
do
{
/* Determine the start and end angles for this quadrant */
if (start)
{
angleStartQuadrant = angleStart;
if (clockwise)
angleEndQuadrant = (floor(angleStart / M_PI_2) + 1.0) * M_PI_2;
else
angleEndQuadrant = (ceil(angleStart / M_PI_2) - 1.0) * M_PI_2;
}
else
{
angleStartQuadrant = angleEndQuadrant;
if (clockwise)
angleEndQuadrant += M_PI_2;
else
angleEndQuadrant -= M_PI_2;
}
/* Have we reached the last part of the arc? */
if ((clockwise && angleEnd < angleEndQuadrant) ||
(!clockwise && angleEnd > angleEndQuadrant))
{
/* Adjust the end angle for this quadrant */
angleEndQuadrant = angleEnd;
end = TRUE;
}
/* Add the Bezier spline to the path */
PATH_DoArcPart(pPath,
corners,
angleStartQuadrant,
angleEndQuadrant,
start ? (lines == GdiTypeArcTo ? PT_LINETO : PT_MOVETO) : FALSE); // -1
start = FALSE;
}
while (!end);
/* chord: close figure. pie: add line and close figure */
if (lines == GdiTypeChord) // 1
{
IntGdiCloseFigure(pPath);
}
else if (lines == GdiTypePie) // 2
{
centre.x = (corners[0].x + corners[1].x) / 2;
centre.y = (corners[0].y + corners[1].y) / 2;
if (!PATH_AddEntry(pPath, &centre, PT_LINETO | PT_CLOSEFIGURE))
Ret = FALSE;
}
ArcExit:
PATH_UnlockPath(pPath);
return Ret;
}
BOOL
FASTCALL
PATH_PolyBezierTo(
PDC dc,
const POINT *pts,
DWORD cbPoints)
{
POINT pt;
ULONG i;
PPATH pPath;
ASSERT(dc);
ASSERT(pts);
ASSERT(cbPoints);
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath) return FALSE;
/* Check that path is open */
if (pPath->state != PATH_Open)
{
PATH_UnlockPath(pPath);
return FALSE;
}
/* Add a PT_MOVETO if necessary */
if (pPath->newStroke)
{
pPath->newStroke = FALSE;
IntGetCurrentPositionEx(dc, &pt);
CoordLPtoDP(dc, &pt);
if (!PATH_AddEntry(pPath, &pt, PT_MOVETO))
{
PATH_UnlockPath(pPath);
return FALSE;
}
}
for (i = 0; i < cbPoints; i++)
{
pt = pts[i];
CoordLPtoDP(dc, &pt);
PATH_AddEntry(pPath, &pt, PT_BEZIERTO);
}
PATH_UnlockPath(pPath);
return TRUE;
}
BOOL
FASTCALL
PATH_PolyBezier(
PDC dc,
const POINT *pts,
DWORD cbPoints)
{
POINT pt;
ULONG i;
PPATH pPath;
ASSERT(dc);
ASSERT(pts);
ASSERT(cbPoints);
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath) return FALSE;
/* Check that path is open */
if (pPath->state != PATH_Open)
{
PATH_UnlockPath(pPath);
return FALSE;
}
for (i = 0; i < cbPoints; i++)
{
pt = pts[i];
CoordLPtoDP(dc, &pt);
PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : PT_BEZIERTO);
}
PATH_UnlockPath(pPath);
return TRUE;
}
BOOL
FASTCALL
PATH_PolyDraw(
PDC dc,
const POINT *pts,
const BYTE *types,
DWORD cbPoints)
{
PPATH pPath;
POINT lastmove, orig_pos;
ULONG i;
PDC_ATTR pdcattr;
BOOL State = FALSE, Ret = FALSE;
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath) return FALSE;
if (pPath->state != PATH_Open)
{
PATH_UnlockPath(pPath);
return FALSE;
}
pdcattr = dc->pdcattr;
lastmove.x = orig_pos.x = pdcattr->ptlCurrent.x;
lastmove.y = orig_pos.y = pdcattr->ptlCurrent.y;
i = pPath->numEntriesUsed;
while (i != 0)
{
i--;
if (pPath->pFlags[i] == PT_MOVETO)
{
lastmove.x = pPath->pPoints[i].x;
lastmove.y = pPath->pPoints[i].y;
if (!GdiPathDPtoLP(dc, &lastmove, 1))
{
PATH_UnlockPath(pPath);
return FALSE;
}
break;
}
}
for (i = 0; i < cbPoints; i++)
{
if (types[i] == PT_MOVETO)
{
pPath->newStroke = TRUE;
lastmove.x = pts[i].x;
lastmove.y = pts[i].y;
}
else if ((types[i] & ~PT_CLOSEFIGURE) == PT_LINETO)
{
PATH_LineTo(dc, pts[i].x, pts[i].y);
}
else if (types[i] == PT_BEZIERTO)
{
if (!((i + 2 < cbPoints) && (types[i + 1] == PT_BEZIERTO)
&& ((types[i + 2] & ~PT_CLOSEFIGURE) == PT_BEZIERTO)))
goto err;
PATH_PolyBezierTo(dc, &(pts[i]), 3);
i += 2;
}
else
goto err;
pdcattr->ptlCurrent.x = pts[i].x;
pdcattr->ptlCurrent.y = pts[i].y;
State = TRUE;
if (types[i] & PT_CLOSEFIGURE)
{
pPath->pFlags[pPath->numEntriesUsed - 1] |= PT_CLOSEFIGURE;
pPath->newStroke = TRUE;
pdcattr->ptlCurrent.x = lastmove.x;
pdcattr->ptlCurrent.y = lastmove.y;
State = TRUE;
}
}
Ret = TRUE;
goto Exit;
err:
if ((pdcattr->ptlCurrent.x != orig_pos.x) || (pdcattr->ptlCurrent.y != orig_pos.y))
{
pPath->newStroke = TRUE;
pdcattr->ptlCurrent.x = orig_pos.x;
pdcattr->ptlCurrent.y = orig_pos.y;
State = TRUE;
}
Exit:
if (State) // State change?
{
pdcattr->ptfxCurrent = pdcattr->ptlCurrent;
CoordLPtoDP(dc, &pdcattr->ptfxCurrent); // Update fx
pdcattr->ulDirty_ &= ~(DIRTY_PTLCURRENT | DIRTY_PTFXCURRENT | DIRTY_STYLESTATE);
}
PATH_UnlockPath(pPath);
return Ret;
}
BOOL
FASTCALL
PATH_Polyline(
PDC dc,
const POINT *pts,
DWORD cbPoints)
{
POINT pt;
ULONG i;
PPATH pPath;
ASSERT(dc);
ASSERT(pts);
ASSERT(cbPoints);
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath) return FALSE;
/* Check that path is open */
if (pPath->state != PATH_Open)
{
PATH_UnlockPath(pPath);
return FALSE;
}
for (i = 0; i < cbPoints; i++)
{
pt = pts[i];
CoordLPtoDP(dc, &pt);
PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : PT_LINETO);
}
PATH_UnlockPath(pPath);
return TRUE;
}
BOOL
FASTCALL
PATH_PolylineTo(
PDC dc,
const POINT *pts,
DWORD cbPoints)
{
POINT pt;
ULONG i;
PPATH pPath;
ASSERT(dc);
ASSERT(pts);
ASSERT(cbPoints);
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath) return FALSE;
/* Check that path is open */
if (pPath->state != PATH_Open)
{
PATH_UnlockPath(pPath);
return FALSE;
}
/* Add a PT_MOVETO if necessary */
if (pPath->newStroke)
{
pPath->newStroke = FALSE;
IntGetCurrentPositionEx(dc, &pt);
CoordLPtoDP(dc, &pt);
if (!PATH_AddEntry(pPath, &pt, PT_MOVETO))
{
PATH_UnlockPath(pPath);
return FALSE;
}
}
for (i = 0; i < cbPoints; i++)
{
pt = pts[i];
CoordLPtoDP(dc, &pt);
PATH_AddEntry(pPath, &pt, PT_LINETO);
}
PATH_UnlockPath(pPath);
return TRUE;
}
BOOL
FASTCALL
PATH_Polygon(
PDC dc,
const POINT *pts,
DWORD cbPoints)
{
POINT pt;
ULONG i;
PPATH pPath;
ASSERT(dc);
ASSERT(pts);
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath) return FALSE;
/* Check that path is open */
if (pPath->state != PATH_Open)
{
PATH_UnlockPath(pPath);
return FALSE;
}
for (i = 0; i < cbPoints; i++)
{
pt = pts[i];
CoordLPtoDP(dc, &pt);
PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO :
((i == cbPoints - 1) ? PT_LINETO | PT_CLOSEFIGURE :
PT_LINETO));
}
PATH_UnlockPath(pPath);
return TRUE;
}
BOOL
FASTCALL
PATH_PolyPolygon(
PDC dc,
const POINT* pts,
const INT* counts,
UINT polygons)
{
POINT pt, startpt;
ULONG poly, point, i;
PPATH pPath;
ASSERT(dc);
ASSERT(pts);
ASSERT(counts);
ASSERT(polygons);
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath) return FALSE;
/* Check that path is open */
if (pPath->state != PATH_Open)
{
PATH_UnlockPath(pPath);
return FALSE;
}
for (i = 0, poly = 0; poly < polygons; poly++)
{
for (point = 0; point < (ULONG) counts[poly]; point++, i++)
{
pt = pts[i];
CoordLPtoDP(dc, &pt);
if (point == 0) startpt = pt;
PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO);
}
/* Win98 adds an extra line to close the figure for some reason */
PATH_AddEntry(pPath, &startpt, PT_LINETO | PT_CLOSEFIGURE);
}
PATH_UnlockPath(pPath);
return TRUE;
}
BOOL
FASTCALL
PATH_PolyPolyline(
PDC dc,
const POINT* pts,
const DWORD* counts,
DWORD polylines)
{
POINT pt;
ULONG poly, point, i;
PPATH pPath;
ASSERT(dc);
ASSERT(pts);
ASSERT(counts);
ASSERT(polylines);
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath) return FALSE;
/* Check that path is open */
if (pPath->state != PATH_Open)
{
PATH_UnlockPath(pPath);
return FALSE;
}
for (i = 0, poly = 0; poly < polylines; poly++)
{
for (point = 0; point < counts[poly]; point++, i++)
{
pt = pts[i];
CoordLPtoDP(dc, &pt);
PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO);
}
}
PATH_UnlockPath(pPath);
return TRUE;
}
/* PATH_CheckCorners
*
* Helper function for PATH_RoundRect() and PATH_Rectangle()
*/
BOOL
PATH_CheckCorners(
DC *dc,
POINT corners[],
INT x1,
INT y1,
INT x2,
INT y2)
{
INT temp;
PDC_ATTR pdcattr = dc->pdcattr;
/* Convert points to device coordinates */
corners[0].x = x1;
corners[0].y = y1;
corners[1].x = x2;
corners[1].y = y2;
CoordLPtoDP(dc, &corners[0]);
CoordLPtoDP(dc, &corners[1]);
/* Make sure first corner is top left and second corner is bottom right */
if (corners[0].x > corners[1].x)
{
temp = corners[0].x;
corners[0].x = corners[1].x;
corners[1].x = temp;
}
if (corners[0].y > corners[1].y)
{
temp = corners[0].y;
corners[0].y = corners[1].y;
corners[1].y = temp;
}
/* In GM_COMPATIBLE, don't include bottom and right edges */
if (pdcattr->iGraphicsMode == GM_COMPATIBLE)
{
corners[1].x--;
corners[1].y--;
}
return TRUE;
}
/* PATH_AddFlatBezier
*
*/
BOOL
FASTCALL
PATH_AddFlatBezier(
PPATH pPath,
POINT *pt,
BOOL closed)
{
POINT *pts;
INT no, i;
pts = GDI_Bezier(pt, 4, &no);
if (!pts) return FALSE;
for (i = 1; i < no; i++)
PATH_AddEntry(pPath, &pts[i], (i == no - 1 && closed) ? PT_LINETO | PT_CLOSEFIGURE : PT_LINETO);
ExFreePoolWithTag(pts, TAG_BEZIER);
return TRUE;
}
/* PATH_FlattenPath
*
* Replaces Beziers with line segments
*
*/
BOOL
FASTCALL
PATH_FlattenPath(PPATH pPath)
{
PATH newPath;
INT srcpt;
RtlZeroMemory(&newPath, sizeof(newPath));
newPath.state = PATH_Open;
for (srcpt = 0; srcpt < pPath->numEntriesUsed; srcpt++)
{
switch(pPath->pFlags[srcpt] & ~PT_CLOSEFIGURE)
{
case PT_MOVETO:
case PT_LINETO:
PATH_AddEntry(&newPath, &pPath->pPoints[srcpt], pPath->pFlags[srcpt]);
break;
case PT_BEZIERTO:
PATH_AddFlatBezier(&newPath, &pPath->pPoints[srcpt - 1], pPath->pFlags[srcpt + 2] & PT_CLOSEFIGURE);
srcpt += 2;
break;
}
}
newPath.state = PATH_Closed;
PATH_AssignGdiPath(pPath, &newPath);
PATH_EmptyPath(&newPath);
return TRUE;
}
/* PATH_PathToRegion
*
* Creates a region from the specified path using the specified polygon
* filling mode. The path is left unchanged. A handle to the region that
* was created is stored in *pHrgn. If successful, TRUE is returned; if an
* error occurs, SetLastError is called with the appropriate value and
* FALSE is returned.
*/
BOOL
FASTCALL
PATH_PathToRegion(
PPATH pPath,
INT nPolyFillMode,
PREGION Rgn)
{
int numStrokes, iStroke, i;
PULONG pNumPointsInStroke;
BOOL Ret;
ASSERT(pPath != NULL);
ASSERT(Rgn != NULL);
PATH_FlattenPath(pPath);
/* First pass: Find out how many strokes there are in the path */
/* FIXME: We could eliminate this with some bookkeeping in GdiPath */
numStrokes = 0;
for (i = 0; i < pPath->numEntriesUsed; i++)
if ((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO)
numStrokes++;
if (numStrokes == 0)
{
return FALSE;
}
/* Allocate memory for number-of-points-in-stroke array */
pNumPointsInStroke = ExAllocatePoolWithTag(PagedPool, sizeof(ULONG) * numStrokes, TAG_PATH);
if (!pNumPointsInStroke)
{
EngSetLastError(ERROR_NOT_ENOUGH_MEMORY);
return FALSE;
}
/* Second pass: remember number of points in each polygon */
iStroke = -1; /* Will get incremented to 0 at beginning of first stroke */
for (i = 0; i < pPath->numEntriesUsed; i++)
{
/* Is this the beginning of a new stroke? */
if ((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO)
{
iStroke++;
_PRAGMA_WARNING_SUPPRESS(__WARNING_WRITE_OVERRUN)
pNumPointsInStroke[iStroke] = 0;
}
_PRAGMA_WARNING_SUPPRESS(__WARNING_READ_OVERRUN)
pNumPointsInStroke[iStroke]++;
}
/* Fill the region with the strokes */
Ret = IntSetPolyPolygonRgn(pPath->pPoints,
pNumPointsInStroke,
numStrokes,
nPolyFillMode,
Rgn);
/* Free memory for number-of-points-in-stroke array */
ExFreePoolWithTag(pNumPointsInStroke, TAG_PATH);
/* Success! */
return Ret;
}
/* PATH_EmptyPath
*
* Removes all entries from the path and sets the path state to PATH_Null.
*/
VOID
FASTCALL
PATH_EmptyPath(PPATH pPath)
{
ASSERT(pPath != NULL);
pPath->state = PATH_Null;
pPath->numEntriesUsed = 0;
}
/* PATH_AddEntry
*
* Adds an entry to the path. For "flags", pass either PT_MOVETO, PT_LINETO
* or PT_BEZIERTO, optionally ORed with PT_CLOSEFIGURE. Returns TRUE if
* successful, FALSE otherwise (e.g. if not enough memory was available).
*/
BOOL
FASTCALL
PATH_AddEntry(
PPATH pPath,
const POINT *pPoint,
BYTE flags)
{
ASSERT(pPath != NULL);
/* FIXME: If newStroke is true, perhaps we want to check that we're
* getting a PT_MOVETO
*/
/* Check that path is open */
if (pPath->state != PATH_Open)
return FALSE;
/* Reserve enough memory for an extra path entry */
if (!PATH_ReserveEntries(pPath, pPath->numEntriesUsed + 1))
return FALSE;
/* Store information in path entry */
pPath->pPoints[pPath->numEntriesUsed] = *pPoint;
pPath->pFlags[pPath->numEntriesUsed] = flags;
/* If this is PT_CLOSEFIGURE, we have to start a new stroke next time */
if ((flags & PT_CLOSEFIGURE) == PT_CLOSEFIGURE)
pPath->newStroke = TRUE;
/* Increment entry count */
pPath->numEntriesUsed++;
return TRUE;
}
/* PATH_ReserveEntries
*
* Ensures that at least "numEntries" entries (for points and flags) have
* been allocated; allocates larger arrays and copies the existing entries
* to those arrays, if necessary. Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_ReserveEntries(
PPATH pPath,
INT numEntries)
{
INT numEntriesToAllocate;
POINT *pPointsNew;
BYTE *pFlagsNew;
ASSERT(pPath != NULL);
ASSERT(numEntries >= 0);
/* Do we have to allocate more memory? */
if (numEntries > pPath->numEntriesAllocated)
{
/* Find number of entries to allocate. We let the size of the array
* grow exponentially, since that will guarantee linear time
* complexity. */
if (pPath->numEntriesAllocated)
{
numEntriesToAllocate = pPath->numEntriesAllocated;
while (numEntriesToAllocate < numEntries)
numEntriesToAllocate = numEntriesToAllocate * GROW_FACTOR_NUMER / GROW_FACTOR_DENOM;
}
else
numEntriesToAllocate = numEntries;
/* Allocate new arrays */
pPointsNew = (POINT *)ExAllocatePoolWithTag(PagedPool, numEntriesToAllocate * sizeof(POINT), TAG_PATH);
if (!pPointsNew)
return FALSE;
pFlagsNew = (BYTE *)ExAllocatePoolWithTag(PagedPool, numEntriesToAllocate * sizeof(BYTE), TAG_PATH);
if (!pFlagsNew)
{
ExFreePoolWithTag(pPointsNew, TAG_PATH);
return FALSE;
}
/* Copy old arrays to new arrays and discard old arrays */
if (pPath->pPoints)
{
ASSERT(pPath->pFlags);
memcpy(pPointsNew, pPath->pPoints, sizeof(POINT)*pPath->numEntriesUsed);
memcpy(pFlagsNew, pPath->pFlags, sizeof(BYTE)*pPath->numEntriesUsed);
ExFreePoolWithTag(pPath->pPoints, TAG_PATH);
ExFreePoolWithTag(pPath->pFlags, TAG_PATH);
}
pPath->pPoints = pPointsNew;
pPath->pFlags = pFlagsNew;
pPath->numEntriesAllocated = numEntriesToAllocate;
}
return TRUE;
}
/* PATH_DoArcPart
*
* Creates a Bezier spline that corresponds to part of an arc and appends the
* corresponding points to the path. The start and end angles are passed in
* "angleStart" and "angleEnd"; these angles should span a quarter circle
* at most. If "startEntryType" is non-zero, an entry of that type for the first
* control point is added to the path; otherwise, it is assumed that the current
* position is equal to the first control point.
*/
BOOL
FASTCALL
PATH_DoArcPart(
PPATH pPath,
FLOAT_POINT corners[],
double angleStart,
double angleEnd,
BYTE startEntryType)
{
double halfAngle, a;
double xNorm[4], yNorm[4];
POINT point;
int i;
ASSERT(fabs(angleEnd - angleStart) <= M_PI_2);
/* FIXME: Is there an easier way of computing this? */
/* Compute control points */
halfAngle = (angleEnd - angleStart) / 2.0;
if (fabs(halfAngle) > 1e-8)
{
a = 4.0 / 3.0 * (1 - cos(halfAngle)) / sin(halfAngle);
xNorm[0] = cos(angleStart);
yNorm[0] = sin(angleStart);
xNorm[1] = xNorm[0] - a * yNorm[0];
yNorm[1] = yNorm[0] + a * xNorm[0];
xNorm[3] = cos(angleEnd);
yNorm[3] = sin(angleEnd);
xNorm[2] = xNorm[3] + a * yNorm[3];
yNorm[2] = yNorm[3] - a * xNorm[3];
}
else
for (i = 0; i < 4; i++)
{
xNorm[i] = cos(angleStart);
yNorm[i] = sin(angleStart);
}
/* Add starting point to path if desired */
if (startEntryType)
{
PATH_ScaleNormalizedPoint(corners, xNorm[0], yNorm[0], &point);
if (!PATH_AddEntry(pPath, &point, startEntryType))
return FALSE;
}
/* Add remaining control points */
for (i = 1; i < 4; i++)
{
PATH_ScaleNormalizedPoint(corners, xNorm[i], yNorm[i], &point);
if (!PATH_AddEntry(pPath, &point, PT_BEZIERTO))
return FALSE;
}
return TRUE;
}
/* PATH_ScaleNormalizedPoint
*
* Scales a normalized point (x, y) with respect to the box whose corners are
* passed in "corners". The point is stored in "*pPoint". The normalized
* coordinates (-1.0, -1.0) correspond to corners[0], the coordinates
* (1.0, 1.0) correspond to corners[1].
*/
VOID
FASTCALL
PATH_ScaleNormalizedPoint(
FLOAT_POINT corners[],
double x,
double y,
POINT *pPoint)
{
ASSERT(corners);
ASSERT(pPoint);
pPoint->x = GDI_ROUND((double)corners[0].x + (double)(corners[1].x - corners[0].x) * 0.5 * (x + 1.0));
pPoint->y = GDI_ROUND((double)corners[0].y + (double)(corners[1].y - corners[0].y) * 0.5 * (y + 1.0));
}
/* PATH_NormalizePoint
*
* Normalizes a point with respect to the box whose corners are passed in
* corners. The normalized coordinates are stored in *pX and *pY.
*/
VOID
FASTCALL
PATH_NormalizePoint(
FLOAT_POINT corners[],
const FLOAT_POINT *pPoint,
double *pX,
double *pY)
{
ASSERT(corners);
ASSERT(pPoint);
ASSERT(pX);
ASSERT(pY);
*pX = (double)(pPoint->x - corners[0].x) / (double)(corners[1].x - corners[0].x) * 2.0 - 1.0;
*pY = (double)(pPoint->y - corners[0].y) / (double)(corners[1].y - corners[0].y) * 2.0 - 1.0;
}
BOOL
FASTCALL
PATH_StrokePath(
DC *dc,
PPATH pPath)
{
BOOL ret = FALSE;
INT i = 0;
INT nLinePts, nAlloc;
POINT *pLinePts = NULL;
POINT ptViewportOrg, ptWindowOrg;
SIZE szViewportExt, szWindowExt;
DWORD mapMode, graphicsMode;
XFORM xform;
PDC_ATTR pdcattr = dc->pdcattr;
DPRINT("Enter %s\n", __FUNCTION__);
if (pPath->state != PATH_Closed)
return FALSE;
/* Save the mapping mode info */
mapMode = pdcattr->iMapMode;
szViewportExt = *DC_pszlViewportExt(dc);
ptViewportOrg = dc->pdcattr->ptlViewportOrg;
szWindowExt = dc->pdcattr->szlWindowExt;
ptWindowOrg = dc->pdcattr->ptlWindowOrg;
MatrixS2XForm(&xform, &dc->pdcattr->mxWorldToPage);
/* Set MM_TEXT */
pdcattr->iMapMode = MM_TEXT;
pdcattr->ptlViewportOrg.x = 0;
pdcattr->ptlViewportOrg.y = 0;
pdcattr->ptlWindowOrg.x = 0;
pdcattr->ptlWindowOrg.y = 0;
graphicsMode = pdcattr->iGraphicsMode;
pdcattr->iGraphicsMode = GM_ADVANCED;
GreModifyWorldTransform(dc, (XFORML*)&xform, MWT_IDENTITY);
pdcattr->iGraphicsMode = graphicsMode;
/* Allocate enough memory for the worst case without beziers (one PT_MOVETO
* and the rest PT_LINETO with PT_CLOSEFIGURE at the end) plus some buffer
* space in case we get one to keep the number of reallocations small. */
nAlloc = pPath->numEntriesUsed + 1 + 300;
pLinePts = ExAllocatePoolWithTag(PagedPool, nAlloc * sizeof(POINT), TAG_PATH);
if (!pLinePts)
{
DPRINT1("Can't allocate pool!\n");
EngSetLastError(ERROR_NOT_ENOUGH_MEMORY);
goto end;
}
nLinePts = 0;
for (i = 0; i < pPath->numEntriesUsed; i++)
{
if ((i == 0 || (pPath->pFlags[i - 1] & PT_CLOSEFIGURE))
&& (pPath->pFlags[i] != PT_MOVETO))
{
DPRINT1("Expected PT_MOVETO %s, got path flag %d\n",
i == 0 ? "as first point" : "after PT_CLOSEFIGURE",
(INT)pPath->pFlags[i]);
goto end;
}
switch(pPath->pFlags[i])
{
case PT_MOVETO:
DPRINT("Got PT_MOVETO (%ld, %ld)\n",
pPath->pPoints[i].x, pPath->pPoints[i].y);
if (nLinePts >= 2) IntGdiPolyline(dc, pLinePts, nLinePts);
nLinePts = 0;
pLinePts[nLinePts++] = pPath->pPoints[i];
break;
case PT_LINETO:
case (PT_LINETO | PT_CLOSEFIGURE):
DPRINT("Got PT_LINETO (%ld, %ld)\n",
pPath->pPoints[i].x, pPath->pPoints[i].y);
pLinePts[nLinePts++] = pPath->pPoints[i];
break;
case PT_BEZIERTO:
DPRINT("Got PT_BEZIERTO\n");
if (pPath->pFlags[i + 1] != PT_BEZIERTO ||
(pPath->pFlags[i + 2] & ~PT_CLOSEFIGURE) != PT_BEZIERTO)
{
DPRINT1("Path didn't contain 3 successive PT_BEZIERTOs\n");
ret = FALSE;
goto end;
}
else
{
INT nBzrPts, nMinAlloc;
POINT *pBzrPts = GDI_Bezier(&pPath->pPoints[i - 1], 4, &nBzrPts);
/* Make sure we have allocated enough memory for the lines of
* this bezier and the rest of the path, assuming we won't get
* another one (since we won't reallocate again then). */
nMinAlloc = nLinePts + (pPath->numEntriesUsed - i) + nBzrPts;
if (nAlloc < nMinAlloc)
{
// Reallocate memory
POINT *Realloc = NULL;
nAlloc = nMinAlloc * 2;
Realloc = ExAllocatePoolWithTag(PagedPool,
nAlloc * sizeof(POINT),
TAG_PATH);
if (!Realloc)
{
DPRINT1("Can't allocate pool!\n");
goto end;
}
memcpy(Realloc, pLinePts, nLinePts * sizeof(POINT));
ExFreePoolWithTag(pLinePts, TAG_PATH);
pLinePts = Realloc;
}
memcpy(&pLinePts[nLinePts], &pBzrPts[1], (nBzrPts - 1) * sizeof(POINT));
nLinePts += nBzrPts - 1;
ExFreePoolWithTag(pBzrPts, TAG_BEZIER);
i += 2;
}
break;
default:
DPRINT1("Got path flag %d (not supported)\n", (INT)pPath->pFlags[i]);
goto end;
}
if (pPath->pFlags[i] & PT_CLOSEFIGURE)
{
pLinePts[nLinePts++] = pLinePts[0];
}
}
if (nLinePts >= 2)
IntGdiPolyline(dc, pLinePts, nLinePts);
ret = TRUE;
end:
if (pLinePts) ExFreePoolWithTag(pLinePts, TAG_PATH);
/* Restore the old mapping mode */
pdcattr->iMapMode = mapMode;
pdcattr->szlWindowExt.cx = szWindowExt.cx;
pdcattr->szlWindowExt.cy = szWindowExt.cy;
pdcattr->ptlWindowOrg.x = ptWindowOrg.x;
pdcattr->ptlWindowOrg.y = ptWindowOrg.y;
pdcattr->szlViewportExt.cx = szViewportExt.cx;
pdcattr->szlViewportExt.cy = szViewportExt.cy;
pdcattr->ptlViewportOrg.x = ptViewportOrg.x;
pdcattr->ptlViewportOrg.y = ptViewportOrg.y;
/* Restore the world transform */
XForm2MatrixS(&dc->pdcattr->mxWorldToPage, &xform);
/* If we've moved the current point then get its new position
which will be in device (MM_TEXT) co-ords, convert it to
logical co-ords and re-set it. This basically updates
dc->CurPosX|Y so that their values are in the correct mapping
mode.
*/
if (i > 0)
{
POINT pt;
IntGetCurrentPositionEx(dc, &pt);
IntDPtoLP(dc, &pt, 1);
IntGdiMoveToEx(dc, pt.x, pt.y, NULL, FALSE);
}
DPRINT("Leave %s, ret=%d\n", __FUNCTION__, ret);
return ret;
}
#define round(x) ((int)((x)>0?(x)+0.5:(x)-0.5))
static
BOOL
FASTCALL
PATH_WidenPath(DC *dc)
{
INT i, j, numStrokes, numOldStrokes, penWidth, penWidthIn, penWidthOut, size, penStyle;
BOOL ret = FALSE;
PPATH pPath, pNewPath, *pStrokes = NULL, *pOldStrokes, pUpPath, pDownPath;
EXTLOGPEN *elp;
DWORD obj_type, joint, endcap, penType;
PDC_ATTR pdcattr = dc->pdcattr;
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath) return FALSE;
if (pPath->state == PATH_Open)
{
PATH_UnlockPath(pPath);
EngSetLastError(ERROR_CAN_NOT_COMPLETE);
return FALSE;
}
PATH_FlattenPath(pPath);
size = GreGetObject(pdcattr->hpen, 0, NULL);
if (!size)
{
PATH_UnlockPath(pPath);
EngSetLastError(ERROR_CAN_NOT_COMPLETE);
return FALSE;
}
elp = ExAllocatePoolWithTag(PagedPool, size, TAG_PATH);
GreGetObject(pdcattr->hpen, size, elp);
obj_type = GDI_HANDLE_GET_TYPE(pdcattr->hpen);
if (obj_type == GDI_OBJECT_TYPE_PEN)
{
penStyle = ((LOGPEN*)elp)->lopnStyle;
}
else if (obj_type == GDI_OBJECT_TYPE_EXTPEN)
{
penStyle = elp->elpPenStyle;
}
else
{
EngSetLastError(ERROR_CAN_NOT_COMPLETE);
ExFreePoolWithTag(elp, TAG_PATH);
PATH_UnlockPath(pPath);
return FALSE;
}
penWidth = elp->elpWidth;
ExFreePoolWithTag(elp, TAG_PATH);
endcap = (PS_ENDCAP_MASK & penStyle);
joint = (PS_JOIN_MASK & penStyle);
penType = (PS_TYPE_MASK & penStyle);
/* The function cannot apply to cosmetic pens */
if (obj_type == GDI_OBJECT_TYPE_EXTPEN && penType == PS_COSMETIC)
{
PATH_UnlockPath(pPath);
EngSetLastError(ERROR_CAN_NOT_COMPLETE);
return FALSE;
}
penWidthIn = penWidth / 2;
penWidthOut = penWidth / 2;
if (penWidthIn + penWidthOut < penWidth)
penWidthOut++;
numStrokes = 0;
for (i = 0, j = 0; i < pPath->numEntriesUsed; i++, j++)
{
POINT point;
if ((i == 0 || (pPath->pFlags[i - 1] & PT_CLOSEFIGURE)) &&
(pPath->pFlags[i] != PT_MOVETO))
{
DPRINT1("Expected PT_MOVETO %s, got path flag %c\n",
i == 0 ? "as first point" : "after PT_CLOSEFIGURE",
pPath->pFlags[i]);
return FALSE;
}
switch(pPath->pFlags[i])
{
case PT_MOVETO:
if (numStrokes > 0)
{
pStrokes[numStrokes - 1]->state = PATH_Closed;
}
numOldStrokes = numStrokes;
numStrokes++;
j = 0;
if (numStrokes == 1)
pStrokes = ExAllocatePoolWithTag(PagedPool, numStrokes * sizeof(PPATH), TAG_PATH);
else
{
pOldStrokes = pStrokes; // Save old pointer.
pStrokes = ExAllocatePoolWithTag(PagedPool, numStrokes * sizeof(PPATH), TAG_PATH);
if (!pStrokes) return FALSE;
RtlCopyMemory(pStrokes, pOldStrokes, numOldStrokes * sizeof(PPATH));
ExFreePoolWithTag(pOldStrokes, TAG_PATH); // Free old pointer.
}
if (!pStrokes) return FALSE;
pStrokes[numStrokes - 1] = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH);
if (!pStrokes[numStrokes - 1])
{
ASSERT(FALSE); // FIXME
}
PATH_InitGdiPath(pStrokes[numStrokes - 1]);
pStrokes[numStrokes - 1]->state = PATH_Open;
case PT_LINETO:
case (PT_LINETO | PT_CLOSEFIGURE):
point.x = pPath->pPoints[i].x;
point.y = pPath->pPoints[i].y;
PATH_AddEntry(pStrokes[numStrokes - 1], &point, pPath->pFlags[i]);
break;
case PT_BEZIERTO:
/* Should never happen because of the FlattenPath call */
DPRINT1("Should never happen\n");
break;
default:
DPRINT1("Got path flag %c\n", pPath->pFlags[i]);
return FALSE;
}
}
pNewPath = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH);
if (!pNewPath)
{
ASSERT(FALSE); // FIXME
}
PATH_InitGdiPath(pNewPath);
pNewPath->state = PATH_Open;
for (i = 0; i < numStrokes; i++)
{
pUpPath = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH);
PATH_InitGdiPath(pUpPath);
pUpPath->state = PATH_Open;
pDownPath = ExAllocatePoolWithTag(PagedPool, sizeof(PATH), TAG_PATH);
PATH_InitGdiPath(pDownPath);
pDownPath->state = PATH_Open;
for (j = 0; j < pStrokes[i]->numEntriesUsed; j++)
{
/* Beginning or end of the path if not closed */
if ((!(pStrokes[i]->pFlags[pStrokes[i]->numEntriesUsed - 1] & PT_CLOSEFIGURE)) && (j == 0 || j == pStrokes[i]->numEntriesUsed - 1))
{
/* Compute segment angle */
double xo, yo, xa, ya, theta;
POINT pt;
FLOAT_POINT corners[2];
if (j == 0)
{
xo = pStrokes[i]->pPoints[j].x;
yo = pStrokes[i]->pPoints[j].y;
xa = pStrokes[i]->pPoints[1].x;
ya = pStrokes[i]->pPoints[1].y;
}
else
{
xa = pStrokes[i]->pPoints[j - 1].x;
ya = pStrokes[i]->pPoints[j - 1].y;
xo = pStrokes[i]->pPoints[j].x;
yo = pStrokes[i]->pPoints[j].y;
}
theta = atan2(ya - yo, xa - xo);
switch(endcap)
{
case PS_ENDCAP_SQUARE :
pt.x = xo + round(sqrt(2) * penWidthOut * cos(M_PI_4 + theta));
pt.y = yo + round(sqrt(2) * penWidthOut * sin(M_PI_4 + theta));
PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO));
pt.x = xo + round(sqrt(2) * penWidthIn * cos(- M_PI_4 + theta));
pt.y = yo + round(sqrt(2) * penWidthIn * sin(- M_PI_4 + theta));
PATH_AddEntry(pUpPath, &pt, PT_LINETO);
break;
case PS_ENDCAP_FLAT :
pt.x = xo + round(penWidthOut * cos(theta + M_PI_2));
pt.y = yo + round(penWidthOut * sin(theta + M_PI_2));
PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO));
pt.x = xo - round(penWidthIn * cos(theta + M_PI_2));
pt.y = yo - round(penWidthIn * sin(theta + M_PI_2));
PATH_AddEntry(pUpPath, &pt, PT_LINETO);
break;
case PS_ENDCAP_ROUND :
default :
corners[0].x = xo - penWidthIn;
corners[0].y = yo - penWidthIn;
corners[1].x = xo + penWidthOut;
corners[1].y = yo + penWidthOut;
PATH_DoArcPart(pUpPath , corners, theta + M_PI_2 , theta + 3 * M_PI_4, (j == 0 ? PT_MOVETO : FALSE));
PATH_DoArcPart(pUpPath , corners, theta + 3 * M_PI_4 , theta + M_PI, FALSE);
PATH_DoArcPart(pUpPath , corners, theta + M_PI, theta + 5 * M_PI_4, FALSE);
PATH_DoArcPart(pUpPath , corners, theta + 5 * M_PI_4 , theta + 3 * M_PI_2, FALSE);
break;
}
}
/* Corpse of the path */
else
{
/* Compute angle */
INT previous, next;
double xa, ya, xb, yb, xo, yo;
double alpha, theta, miterWidth;
DWORD _joint = joint;
POINT pt;
PPATH pInsidePath, pOutsidePath;
if (j > 0 && j < pStrokes[i]->numEntriesUsed - 1)
{
previous = j - 1;
next = j + 1;
}
else if (j == 0)
{
previous = pStrokes[i]->numEntriesUsed - 1;
next = j + 1;
}
else
{
previous = j - 1;
next = 0;
}
xo = pStrokes[i]->pPoints[j].x;
yo = pStrokes[i]->pPoints[j].y;
xa = pStrokes[i]->pPoints[previous].x;
ya = pStrokes[i]->pPoints[previous].y;
xb = pStrokes[i]->pPoints[next].x;
yb = pStrokes[i]->pPoints[next].y;
theta = atan2(yo - ya, xo - xa);
alpha = atan2(yb - yo, xb - xo) - theta;
if (alpha > 0) alpha -= M_PI;
else alpha += M_PI;
if (_joint == PS_JOIN_MITER && dc->dclevel.laPath.eMiterLimit < fabs(1 / sin(alpha / 2)))
{
_joint = PS_JOIN_BEVEL;
}
if (alpha > 0)
{
pInsidePath = pUpPath;
pOutsidePath = pDownPath;
}
else if (alpha < 0)
{
pInsidePath = pDownPath;
pOutsidePath = pUpPath;
}
else
{
continue;
}
/* Inside angle points */
if (alpha > 0)
{
pt.x = xo - round(penWidthIn * cos(theta + M_PI_2));
pt.y = yo - round(penWidthIn * sin(theta + M_PI_2));
}
else
{
pt.x = xo + round(penWidthIn * cos(theta + M_PI_2));
pt.y = yo + round(penWidthIn * sin(theta + M_PI_2));
}
PATH_AddEntry(pInsidePath, &pt, PT_LINETO);
if (alpha > 0)
{
pt.x = xo + round(penWidthIn * cos(M_PI_2 + alpha + theta));
pt.y = yo + round(penWidthIn * sin(M_PI_2 + alpha + theta));
}
else
{
pt.x = xo - round(penWidthIn * cos(M_PI_2 + alpha + theta));
pt.y = yo - round(penWidthIn * sin(M_PI_2 + alpha + theta));
}
PATH_AddEntry(pInsidePath, &pt, PT_LINETO);
/* Outside angle point */
switch(_joint)
{
case PS_JOIN_MITER :
miterWidth = fabs(penWidthOut / cos(M_PI_2 - fabs(alpha) / 2));
pt.x = xo + round(miterWidth * cos(theta + alpha / 2));
pt.y = yo + round(miterWidth * sin(theta + alpha / 2));
PATH_AddEntry(pOutsidePath, &pt, PT_LINETO);
break;
case PS_JOIN_BEVEL :
if (alpha > 0)
{
pt.x = xo + round(penWidthOut * cos(theta + M_PI_2));
pt.y = yo + round(penWidthOut * sin(theta + M_PI_2));
}
else
{
pt.x = xo - round(penWidthOut * cos(theta + M_PI_2));
pt.y = yo - round(penWidthOut * sin(theta + M_PI_2));
}
PATH_AddEntry(pOutsidePath, &pt, PT_LINETO);
if (alpha > 0)
{
pt.x = xo - round(penWidthOut * cos(M_PI_2 + alpha + theta));
pt.y = yo - round(penWidthOut * sin(M_PI_2 + alpha + theta));
}
else
{
pt.x = xo + round(penWidthOut * cos(M_PI_2 + alpha + theta));
pt.y = yo + round(penWidthOut * sin(M_PI_2 + alpha + theta));
}
PATH_AddEntry(pOutsidePath, &pt, PT_LINETO);
break;
case PS_JOIN_ROUND :
default :
if (alpha > 0)
{
pt.x = xo + round(penWidthOut * cos(theta + M_PI_2));
pt.y = yo + round(penWidthOut * sin(theta + M_PI_2));
}
else
{
pt.x = xo - round(penWidthOut * cos(theta + M_PI_2));
pt.y = yo - round(penWidthOut * sin(theta + M_PI_2));
}
PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO);
pt.x = xo + round(penWidthOut * cos(theta + alpha / 2));
pt.y = yo + round(penWidthOut * sin(theta + alpha / 2));
PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO);
if (alpha > 0)
{
pt.x = xo - round(penWidthOut * cos(M_PI_2 + alpha + theta));
pt.y = yo - round(penWidthOut * sin(M_PI_2 + alpha + theta));
}
else
{
pt.x = xo + round(penWidthOut * cos(M_PI_2 + alpha + theta));
pt.y = yo + round(penWidthOut * sin(M_PI_2 + alpha + theta));
}
PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO);
break;
}
}
}
for (j = 0; j < pUpPath->numEntriesUsed; j++)
{
POINT pt;
pt.x = pUpPath->pPoints[j].x;
pt.y = pUpPath->pPoints[j].y;
PATH_AddEntry(pNewPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO));
}
for (j = 0; j < pDownPath->numEntriesUsed; j++)
{
POINT pt;
pt.x = pDownPath->pPoints[pDownPath->numEntriesUsed - j - 1].x;
pt.y = pDownPath->pPoints[pDownPath->numEntriesUsed - j - 1].y;
PATH_AddEntry(pNewPath, &pt, ((j == 0 && (pStrokes[i]->pFlags[pStrokes[i]->numEntriesUsed - 1] & PT_CLOSEFIGURE)) ? PT_MOVETO : PT_LINETO));
}
PATH_DestroyGdiPath(pStrokes[i]);
ExFreePoolWithTag(pStrokes[i], TAG_PATH);
PATH_DestroyGdiPath(pUpPath);
ExFreePoolWithTag(pUpPath, TAG_PATH);
PATH_DestroyGdiPath(pDownPath);
ExFreePoolWithTag(pDownPath, TAG_PATH);
}
if (pStrokes) ExFreePoolWithTag(pStrokes, TAG_PATH);
pNewPath->state = PATH_Closed;
if (!(ret = PATH_AssignGdiPath(pPath, pNewPath)))
DPRINT1("Assign path failed\n");
PATH_DestroyGdiPath(pNewPath);
ExFreePoolWithTag(pNewPath, TAG_PATH);
PATH_UnlockPath(pPath);
return ret;
}
static inline INT int_from_fixed(FIXED f)
{
return (f.fract >= 0x8000) ? (f.value + 1) : f.value;
}
/**********************************************************************
* PATH_BezierTo
*
* Internally used by PATH_add_outline
*/
static
VOID
FASTCALL
PATH_BezierTo(
PPATH pPath,
POINT *lppt,
INT n)
{
if (n < 2) return;
if (n == 2)
{
PATH_AddEntry(pPath, &lppt[1], PT_LINETO);
}
else if (n == 3)
{
PATH_AddEntry(pPath, &lppt[0], PT_BEZIERTO);
PATH_AddEntry(pPath, &lppt[1], PT_BEZIERTO);
PATH_AddEntry(pPath, &lppt[2], PT_BEZIERTO);
}
else
{
POINT pt[3];
INT i = 0;
pt[2] = lppt[0];
n--;
while (n > 2)
{
pt[0] = pt[2];
pt[1] = lppt[i + 1];
pt[2].x = (lppt[i + 2].x + lppt[i + 1].x) / 2;
pt[2].y = (lppt[i + 2].y + lppt[i + 1].y) / 2;
PATH_BezierTo(pPath, pt, 3);
n--;
i++;
}
pt[0] = pt[2];
pt[1] = lppt[i + 1];
pt[2] = lppt[i + 2];
PATH_BezierTo(pPath, pt, 3);
}
}
static
BOOL
FASTCALL
PATH_add_outline(
PDC dc,
INT x,
INT y,
TTPOLYGONHEADER *header,
DWORD size)
{
PPATH pPath;
TTPOLYGONHEADER *start;
POINT pt;
BOOL bResult = FALSE;
start = header;
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath)
{
return FALSE;
}
while ((char *)header < (char *)start + size)
{
TTPOLYCURVE *curve;
if (header->dwType != TT_POLYGON_TYPE)
{
DPRINT1("Unknown header type %lu\n", header->dwType);
goto cleanup;
}
pt.x = x + int_from_fixed(header->pfxStart.x);
pt.y = y - int_from_fixed(header->pfxStart.y);
PATH_AddEntry(pPath, &pt, PT_MOVETO);
curve = (TTPOLYCURVE *)(header + 1);
while ((char *)curve < (char *)header + header->cb)
{
/*DPRINT1("curve->wType %d\n", curve->wType);*/
switch(curve->wType)
{
case TT_PRIM_LINE:
{
WORD i;
for (i = 0; i < curve->cpfx; i++)
{
pt.x = x + int_from_fixed(curve->apfx[i].x);
pt.y = y - int_from_fixed(curve->apfx[i].y);
PATH_AddEntry(pPath, &pt, PT_LINETO);
}
break;
}
case TT_PRIM_QSPLINE:
case TT_PRIM_CSPLINE:
{
WORD i;
POINTFX ptfx;
POINT *pts = ExAllocatePoolWithTag(PagedPool, (curve->cpfx + 1) * sizeof(POINT), TAG_PATH);
if (!pts) goto cleanup;
ptfx = *(POINTFX *)((char *)curve - sizeof(POINTFX));
pts[0].x = x + int_from_fixed(ptfx.x);
pts[0].y = y - int_from_fixed(ptfx.y);
for (i = 0; i < curve->cpfx; i++)
{
pts[i + 1].x = x + int_from_fixed(curve->apfx[i].x);
pts[i + 1].y = y - int_from_fixed(curve->apfx[i].y);
}
PATH_BezierTo(pPath, pts, curve->cpfx + 1);
ExFreePoolWithTag(pts, TAG_PATH);
break;
}
default:
DPRINT1("Unknown curve type %04x\n", curve->wType);
goto cleanup;
}
curve = (TTPOLYCURVE *)&curve->apfx[curve->cpfx];
}
header = (TTPOLYGONHEADER *)((char *)header + header->cb);
}
bResult = TRUE;
cleanup:
IntGdiCloseFigure(pPath);
PATH_UnlockPath(pPath);
return bResult;
}
/**********************************************************************
* PATH_ExtTextOut
*/
BOOL
FASTCALL
PATH_ExtTextOut(
PDC dc,
INT x,
INT y,
UINT flags,
const RECTL *lprc,
LPCWSTR str,
UINT count,
const INT *dx)
{
unsigned int idx;
POINT offset = {0, 0};
if (!count) return TRUE;
for (idx = 0; idx < count; idx++)
{
MAT2 identity = { {0, 1}, {0, 0}, {0, 0}, {0, 1} };
GLYPHMETRICS gm;
DWORD dwSize;
void *outline;
dwSize = ftGdiGetGlyphOutline(dc,
str[idx],
GGO_GLYPH_INDEX | GGO_NATIVE,
&gm,
0,
NULL,
&identity,
TRUE);
if (dwSize == GDI_ERROR) return FALSE;
/* Add outline only if char is printable */
if (dwSize)
{
outline = ExAllocatePoolWithTag(PagedPool, dwSize, TAG_PATH);
if (!outline) return FALSE;
ftGdiGetGlyphOutline(dc,
str[idx],
GGO_GLYPH_INDEX | GGO_NATIVE,
&gm,
dwSize,
outline,
&identity,
TRUE);
PATH_add_outline(dc, x + offset.x, y + offset.y, outline, dwSize);
ExFreePoolWithTag(outline, TAG_PATH);
}
if (dx)
{
if (flags & ETO_PDY)
{
offset.x += dx[idx * 2];
offset.y += dx[idx * 2 + 1];
}
else
offset.x += dx[idx];
}
else
{
offset.x += gm.gmCellIncX;
offset.y += gm.gmCellIncY;
}
}
return TRUE;
}
/***********************************************************************
* Exported functions
*/
BOOL
APIENTRY
NtGdiAbortPath(HDC hDC)
{
PPATH pPath;
PDC dc = DC_LockDc(hDC);
if (!dc)
{
EngSetLastError(ERROR_INVALID_HANDLE);
return FALSE;
}
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath)
{
DC_UnlockDc(dc);
return FALSE;
}
PATH_EmptyPath(pPath);
PATH_UnlockPath(pPath);
dc->dclevel.flPath &= ~DCPATH_ACTIVE;
DC_UnlockDc(dc);
return TRUE;
}
BOOL
APIENTRY
NtGdiBeginPath(HDC hDC)
{
PPATH pPath;
PDC dc;
dc = DC_LockDc(hDC);
if (!dc)
{
EngSetLastError(ERROR_INVALID_HANDLE);
return FALSE;
}
/* If path is already open, do nothing. Check if not Save DC state */
if ((dc->dclevel.flPath & DCPATH_ACTIVE) && !(dc->dclevel.flPath & DCPATH_SAVE))
{
DC_UnlockDc(dc);
return TRUE;
}
if (dc->dclevel.hPath)
{
DPRINT("BeginPath 1 0x%p\n", dc->dclevel.hPath);
if (!(dc->dclevel.flPath & DCPATH_SAVE))
{
// Remove previous handle.
if (!PATH_Delete(dc->dclevel.hPath))
{
DC_UnlockDc(dc);
return FALSE;
}
}
else
{
// Clear flags and Handle.
dc->dclevel.flPath &= ~(DCPATH_SAVE | DCPATH_ACTIVE);
dc->dclevel.hPath = NULL;
}
}
pPath = PATH_AllocPathWithHandle();
if (!pPath)
{
EngSetLastError(ERROR_NOT_ENOUGH_MEMORY);
return FALSE;
}
dc->dclevel.flPath |= DCPATH_ACTIVE; // Set active ASAP!
dc->dclevel.hPath = pPath->BaseObject.hHmgr;
DPRINT("BeginPath 2 h 0x%p p 0x%p\n", dc->dclevel.hPath, pPath);
// Path handles are shared. Also due to recursion with in the same thread.
GDIOBJ_vUnlockObject((POBJ)pPath); // Unlock
pPath = PATH_LockPath(dc->dclevel.hPath); // Share Lock.
/* Make sure that path is empty */
PATH_EmptyPath(pPath);
/* Initialize variables for new path */
pPath->newStroke = TRUE;
pPath->state = PATH_Open;
PATH_UnlockPath(pPath);
DC_UnlockDc(dc);
return TRUE;
}
BOOL
APIENTRY
NtGdiCloseFigure(HDC hDC)
{
BOOL Ret = FALSE; // Default to failure
PDC pDc;
PPATH pPath;
DPRINT("Enter %s\n", __FUNCTION__);
pDc = DC_LockDc(hDC);
if (!pDc)
{
EngSetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
pPath = PATH_LockPath(pDc->dclevel.hPath);
if (!pPath)
{
DC_UnlockDc(pDc);
return FALSE;
}
if (pPath->state == PATH_Open)
{
IntGdiCloseFigure(pPath);
Ret = TRUE;
}
else
{
// FIXME: Check if lasterror is set correctly
EngSetLastError(ERROR_CAN_NOT_COMPLETE);
}
PATH_UnlockPath(pPath);
DC_UnlockDc(pDc);
return Ret;
}
BOOL
APIENTRY
NtGdiEndPath(HDC hDC)
{
BOOL ret = TRUE;
PPATH pPath;
PDC dc;
dc = DC_LockDc(hDC);
if (!dc)
{
EngSetLastError(ERROR_INVALID_HANDLE);
return FALSE;
}
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath)
{
DC_UnlockDc(dc);
return FALSE;
}
/* Check that path is currently being constructed */
if ((pPath->state != PATH_Open) || !(dc->dclevel.flPath & DCPATH_ACTIVE))
{
DPRINT1("EndPath ERROR! 0x%p\n", dc->dclevel.hPath);
EngSetLastError(ERROR_CAN_NOT_COMPLETE);
ret = FALSE;
}
/* Set flag to indicate that path is finished */
else
{
DPRINT("EndPath 0x%p\n", dc->dclevel.hPath);
pPath->state = PATH_Closed;
dc->dclevel.flPath &= ~DCPATH_ACTIVE;
}
PATH_UnlockPath(pPath);
DC_UnlockDc(dc);
return ret;
}
BOOL
APIENTRY
NtGdiFillPath(HDC hDC)
{
BOOL ret = FALSE;
PPATH pPath;
PDC_ATTR pdcattr;
PDC dc;
dc = DC_LockDc(hDC);
if (!dc)
{
EngSetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath)
{
DC_UnlockDc(dc);
return FALSE;
}
DC_vPrepareDCsForBlit(dc, NULL, NULL, NULL);
pdcattr = dc->pdcattr;
if (pdcattr->ulDirty_ & (DIRTY_LINE | DC_PEN_DIRTY))
DC_vUpdateLineBrush(dc);
if (pdcattr->ulDirty_ & (DIRTY_FILL | DC_BRUSH_DIRTY))
DC_vUpdateFillBrush(dc);
ret = PATH_FillPath(dc, pPath);
if (ret)
{
/* FIXME: Should the path be emptied even if conversion
failed? */
PATH_EmptyPath(pPath);
}
PATH_UnlockPath(pPath);
DC_vFinishBlit(dc, NULL);
DC_UnlockDc(dc);
return ret;
}
BOOL
APIENTRY
NtGdiFlattenPath(HDC hDC)
{
BOOL Ret = FALSE;
DC *pDc;
PPATH pPath;
DPRINT("Enter %s\n", __FUNCTION__);
pDc = DC_LockDc(hDC);
if (!pDc)
{
EngSetLastError(ERROR_INVALID_HANDLE);
return FALSE;
}
pPath = PATH_LockPath(pDc->dclevel.hPath);
if (!pPath)
{
DC_UnlockDc(pDc);
return FALSE;
}
if (pPath->state == PATH_Open)
Ret = PATH_FlattenPath(pPath);
PATH_UnlockPath(pPath);
DC_UnlockDc(pDc);
return Ret;
}
_Success_(return != FALSE)
BOOL
APIENTRY
NtGdiGetMiterLimit(
_In_ HDC hdc,
_Out_ PDWORD pdwOut)
{
DC *pDc;
BOOL bResult = TRUE;
if (!(pDc = DC_LockDc(hdc)))
{
EngSetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
_SEH2_TRY
{
ProbeForWrite(pdwOut, sizeof(DWORD), 1);
*pdwOut = pDc->dclevel.laPath.eMiterLimit;
}
_SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
{
SetLastNtError(_SEH2_GetExceptionCode());
bResult = FALSE;
}
_SEH2_END;
DC_UnlockDc(pDc);
return bResult;
}
INT
APIENTRY
NtGdiGetPath(
HDC hDC,
LPPOINT Points,
LPBYTE Types,
INT nSize)
{
INT ret = -1;
PPATH pPath;
DC *dc = DC_LockDc(hDC);
if (!dc)
{
DPRINT1("Can't lock dc!\n");
EngSetLastError(ERROR_INVALID_PARAMETER);
return -1;
}
pPath = PATH_LockPath(dc->dclevel.hPath);
if (!pPath)
{
DC_UnlockDc(dc);
return -1;
}
if (pPath->state != PATH_Closed)
{
EngSetLastError(ERROR_CAN_NOT_COMPLETE);
goto done;
}
if (nSize == 0)
{
ret = pPath->numEntriesUsed;
}
else if (nSize < pPath->numEntriesUsed)
{
EngSetLastError(ERROR_INVALID_PARAMETER);
goto done;
}
else
{
_SEH2_TRY
{
memcpy(Points, pPath->pPoints, sizeof(POINT)*pPath->numEntriesUsed);
memcpy(Types, pPath->pFlags, sizeof(BYTE)*pPath->numEntriesUsed);
/* Convert the points to logical coordinates */
if (!GdiPathDPtoLP(dc, Points, pPath->numEntriesUsed))
{
EngSetLastError(ERROR_ARITHMETIC_OVERFLOW);
_SEH2_LEAVE;
}
ret = pPath->numEntriesUsed;
}
_SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
{
SetLastNtError(_SEH2_GetExceptionCode());
}
_SEH2_END
}
done:
PATH_UnlockPath(pPath);
DC_UnlockDc(dc);
return ret;
}
HRGN
APIENTRY
NtGdiPathToRegion(HDC hDC)
{
PPATH pPath;
HRGN hrgnRval = 0;
PREGION Rgn;
DC *pDc;
PDC_ATTR pdcattr;
DPRINT("Enter %s\n", __FUNCTION__);
pDc = DC_LockDc(hDC);
if (!pDc)
{
EngSetLastError(ERROR_INVALID_PARAMETER);
return NULL;
}
pdcattr = pDc->pdcattr;
pPath = PATH_LockPath(pDc->dclevel.hPath);
if (!pPath)
{
DC_UnlockDc(pDc);
return NULL;
}
if (pPath->state != PATH_Closed)
{
// FIXME: Check that setlasterror is being called correctly
EngSetLastError(ERROR_CAN_NOT_COMPLETE);
}
else
{
/* Create the region and fill it with the path strokes */
Rgn = REGION_AllocUserRgnWithHandle(1);
if (!Rgn)
{
PATH_UnlockPath(pPath);
DC_UnlockDc(pDc);
return NULL;
}
hrgnRval = Rgn->BaseObject.hHmgr;
/* FIXME: Should we empty the path even if conversion failed? */
if (PATH_PathToRegion(pPath, pdcattr->jFillMode, Rgn))
{
PATH_EmptyPath(pPath);
RGNOBJAPI_Unlock(Rgn);
}
else
{
REGION_Delete(Rgn);
hrgnRval = NULL;
}
}
PATH_UnlockPath(pPath);
DC_UnlockDc(pDc);
return hrgnRval;
}
BOOL
APIENTRY
NtGdiSetMiterLimit(
IN HDC hdc,
IN DWORD dwNew,
IN OUT OPTIONAL PDWORD pdwOut)
{
DC *pDc;
gxf_long worker, worker1;
BOOL bResult = TRUE;
if (!(pDc = DC_LockDc(hdc)))
{
EngSetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
worker.l = dwNew;
worker1.f = pDc->dclevel.laPath.eMiterLimit;
pDc->dclevel.laPath.eMiterLimit = worker.f;
if (pdwOut)
{
_SEH2_TRY
{
ProbeForWrite(pdwOut, sizeof(DWORD), 1);
*pdwOut = worker1.l;
}
_SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
{
SetLastNtError(_SEH2_GetExceptionCode());
bResult = FALSE;
}
_SEH2_END;
}
DC_UnlockDc(pDc);
return bResult;
}
BOOL
APIENTRY
NtGdiStrokeAndFillPath(HDC hDC)
{
DC *pDc;
PDC_ATTR pdcattr;
PPATH pPath;
BOOL bRet = FALSE;
DPRINT1("Enter %s\n", __FUNCTION__);
if (!(pDc = DC_LockDc(hDC)))
{
EngSetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
pPath = PATH_LockPath(pDc->dclevel.hPath);
if (!pPath)
{
DC_UnlockDc(pDc);
return FALSE;
}
DC_vPrepareDCsForBlit(pDc, NULL, NULL, NULL);
pdcattr = pDc->pdcattr;
if (pdcattr->ulDirty_ & (DIRTY_FILL | DC_BRUSH_DIRTY))
DC_vUpdateFillBrush(pDc);
if (pdcattr->ulDirty_ & (DIRTY_LINE | DC_PEN_DIRTY))
DC_vUpdateLineBrush(pDc);
bRet = PATH_FillPath(pDc, pPath);
if (bRet) bRet = PATH_StrokePath(pDc, pPath);
if (bRet) PATH_EmptyPath(pPath);
PATH_UnlockPath(pPath);
DC_vFinishBlit(pDc, NULL);
DC_UnlockDc(pDc);
return bRet;
}
BOOL
APIENTRY
NtGdiStrokePath(HDC hDC)
{
DC *pDc;
PDC_ATTR pdcattr;
PPATH pPath;
BOOL bRet = FALSE;
DPRINT("Enter %s\n", __FUNCTION__);
if (!(pDc = DC_LockDc(hDC)))
{
EngSetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
pPath = PATH_LockPath(pDc->dclevel.hPath);
if (!pPath)
{
DC_UnlockDc(pDc);
return FALSE;
}
DC_vPrepareDCsForBlit(pDc, NULL, NULL, NULL);
pdcattr = pDc->pdcattr;
if (pdcattr->ulDirty_ & (DIRTY_LINE | DC_PEN_DIRTY))
DC_vUpdateLineBrush(pDc);
bRet = PATH_StrokePath(pDc, pPath);
DC_vFinishBlit(pDc, NULL);
PATH_EmptyPath(pPath);
PATH_UnlockPath(pPath);
DC_UnlockDc(pDc);
return bRet;
}
BOOL
APIENTRY
NtGdiWidenPath(HDC hDC)
{
BOOL Ret;
PDC pdc = DC_LockDc(hDC);
if (!pdc)
{
EngSetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
Ret = PATH_WidenPath(pdc);
DC_UnlockDc(pdc);
return Ret;
}
/* EOF */