reactos/win32ss/gdi/ntgdi/bezier.c
Amine Khaldi 527f2f9057 [SHELL/EXPERIMENTS]
* Create a branch for some evul shell experiments.

svn path=/branches/shell-experiments/; revision=61927
2014-02-02 19:37:27 +00:00

222 lines
6.5 KiB
C

/*
* COPYRIGHT: GNU GPL, See COPYING in the top level directory
* PROJECT: ReactOS kernel
* PURPOSE: Bezier functions
* FILE: subsys/win32k/objects/bezier.c
* PROGRAMER: Unknown
*/
#include <win32k.h>
#define NDEBUG
#include <debug.h>
/******************************************************************
*
* *Very* simple bezier drawing code,
*
* It uses a recursive algorithm to divide the curve in a series
* of straight line segements. Not ideal but for me sufficient.
* If you are in need for something better look for some incremental
* algorithm.
*
* 7 July 1998 Rein Klazes
*/
/*
* Some macro definitions for bezier drawing.
*
* To avoid trucation errors the coordinates are
* shifted upwards. When used in drawing they are
* shifted down again, including correct rounding
* and avoiding floating point arithmatic
* 4 bits should allow 27 bits coordinates which I saw
* somewere in the win32 doc's
*
*/
#define BEZIERSHIFTBITS 4
#define BEZIERSHIFTUP(x) ((x)<<BEZIERSHIFTBITS)
#define BEZIERPIXEL BEZIERSHIFTUP(1)
#define BEZIERSHIFTDOWN(x) (((x)+(1<<(BEZIERSHIFTBITS-1)))>>BEZIERSHIFTBITS)
/* Maximum depth of recursion */
#define BEZIERMAXDEPTH 8
/* Size of array to store points on */
/* enough for one curve */
#define BEZIER_INITBUFSIZE (150)
/* Calculate Bezier average, in this case the middle
* correctly rounded...
* */
#define BEZIERMIDDLE(Mid, P1, P2) \
(Mid).x=((P1).x+(P2).x + 1) >> 1;\
(Mid).y=((P1).y+(P2).y + 1) >> 1;
/**********************************************************
* BezierCheck helper function to check
* that recursion can be terminated
* Points[0] and Points[3] are begin and endpoint
* Points[1] and Points[2] are control points
* level is the recursion depth
* returns true if the recusion can be terminated
*/
static BOOL FASTCALL BezierCheck( int level, POINT *Points)
{
INT dx, dy;
dx=Points[3].x-Points[0].x;
dy=Points[3].y-Points[0].y;
if ( abs(dy) <= abs(dx) ) /* Shallow line */
{
/* Check that control points are between begin and end */
if ( Points[1].x < Points[0].x )
{
if ( Points[1].x < Points[3].x )
return FALSE;
}
else if ( Points[1].x > Points[3].x )
return FALSE;
if ( Points[2].x < Points[0].x)
{
if ( Points[2].x < Points[3].x )
return FALSE;
}
else if ( Points[2].x > Points[3].x )
return FALSE;
dx = BEZIERSHIFTDOWN(dx);
if ( !dx )
return TRUE;
if ( abs(Points[1].y-Points[0].y-(dy/dx)*
BEZIERSHIFTDOWN(Points[1].x-Points[0].x)) > BEZIERPIXEL ||
abs(Points[2].y-Points[0].y-(dy/dx)*
BEZIERSHIFTDOWN(Points[2].x-Points[0].x)) > BEZIERPIXEL
)
return FALSE;
else
return TRUE;
}
else
{
/* Steep line */
/* Check that control points are between begin and end */
if(Points[1].y < Points[0].y)
{
if(Points[1].y < Points[3].y)
return FALSE;
}
else if(Points[1].y > Points[3].y)
return FALSE;
if ( Points[2].y < Points[0].y )
{
if ( Points[2].y < Points[3].y )
return FALSE;
}
else if ( Points[2].y > Points[3].y )
return FALSE;
dy = BEZIERSHIFTDOWN(dy);
if ( !dy )
return TRUE;
if ( abs(Points[1].x-Points[0].x-(dx/dy)*
BEZIERSHIFTDOWN(Points[1].y-Points[0].y)) > BEZIERPIXEL ||
abs(Points[2].x-Points[0].x-(dx/dy)*
BEZIERSHIFTDOWN(Points[2].y-Points[0].y)) > BEZIERPIXEL
)
return FALSE;
else
return TRUE;
}
}
/* Helper for GDI_Bezier.
* Just handles one Bezier, so Points should point to four POINTs
*/
static void APIENTRY GDI_InternalBezier( POINT *Points, POINT **PtsOut, INT *dwOut,
INT *nPtsOut, INT level )
{
if(*nPtsOut == *dwOut) {
*dwOut *= 2;
*PtsOut = ExAllocatePoolWithTag(PagedPool, *dwOut * sizeof(POINT), TAG_BEZIER);
}
if(!level || BezierCheck(level, Points)) {
if(*nPtsOut == 0) {
(*PtsOut)[0].x = BEZIERSHIFTDOWN(Points[0].x);
(*PtsOut)[0].y = BEZIERSHIFTDOWN(Points[0].y);
*nPtsOut = 1;
}
(*PtsOut)[*nPtsOut].x = BEZIERSHIFTDOWN(Points[3].x);
(*PtsOut)[*nPtsOut].y = BEZIERSHIFTDOWN(Points[3].y);
(*nPtsOut) ++;
} else {
POINT Points2[4]; /* For the second recursive call */
Points2[3]=Points[3];
BEZIERMIDDLE(Points2[2], Points[2], Points[3]);
BEZIERMIDDLE(Points2[0], Points[1], Points[2]);
BEZIERMIDDLE(Points2[1],Points2[0],Points2[2]);
BEZIERMIDDLE(Points[1], Points[0], Points[1]);
BEZIERMIDDLE(Points[2], Points[1], Points2[0]);
BEZIERMIDDLE(Points[3], Points[2], Points2[1]);
Points2[0]=Points[3];
/* Do the two halves */
GDI_InternalBezier(Points, PtsOut, dwOut, nPtsOut, level-1);
GDI_InternalBezier(Points2, PtsOut, dwOut, nPtsOut, level-1);
}
}
/***********************************************************************
* GDI_Bezier [INTERNAL]
* Calculate line segments that approximate -what microsoft calls- a bezier
* curve.
* The routine recursively divides the curve in two parts until a straight
* line can be drawn
*
* PARAMS
*
* Points [I] Ptr to count POINTs which are the end and control points
* of the set of Bezier curves to flatten.
* count [I] Number of Points. Must be 3n+1.
* nPtsOut [O] Will contain no of points that have been produced (i.e. no. of
* lines+1).
*
* RETURNS
*
* Ptr to an array of POINTs that contain the lines that approximinate the
* Beziers. The array is allocated on the process heap and it is the caller's
* responsibility to HeapFree it. [this is not a particularly nice interface
* but since we can't know in advance how many points will generate, the
* alternative would be to call the function twice, once to determine the size
* and a second time to do the work - I decided this was too much of a pain].
*/
POINT * FASTCALL GDI_Bezier( const POINT *Points, INT count, INT *nPtsOut )
{
POINT *out;
INT Bezier, dwOut = BEZIER_INITBUFSIZE, i;
if((count - 1) % 3 != 0) {
return NULL;
}
*nPtsOut = 0;
out = ExAllocatePoolWithTag(PagedPool, dwOut * sizeof(POINT), TAG_BEZIER);
if(!out) {
return NULL;
}
for(Bezier = 0; Bezier < (count-1)/3; Bezier++) {
POINT ptBuf[4];
memcpy(ptBuf, Points + Bezier * 3, sizeof(POINT) * 4);
for(i = 0; i < 4; i++) {
ptBuf[i].x = BEZIERSHIFTUP(ptBuf[i].x);
ptBuf[i].y = BEZIERSHIFTUP(ptBuf[i].y);
}
GDI_InternalBezier( ptBuf, &out, &dwOut, nPtsOut, BEZIERMAXDEPTH );
}
return out;
}
/* EOF */