reactos/drivers/filesystems/btrfs/flushthread.c
Pierre Schweitzer 62e630de4c
[BTRFS] Upgrade to 1.5
CORE-16494
2019-11-12 19:35:43 +01:00

7736 lines
262 KiB
C

/* Copyright (c) Mark Harmstone 2016-17
*
* This file is part of WinBtrfs.
*
* WinBtrfs is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public Licence as published by
* the Free Software Foundation, either version 3 of the Licence, or
* (at your option) any later version.
*
* WinBtrfs is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public Licence for more details.
*
* You should have received a copy of the GNU Lesser General Public Licence
* along with WinBtrfs. If not, see <http://www.gnu.org/licenses/>. */
#include "btrfs_drv.h"
#include <ata.h>
#include <ntddscsi.h>
#include <ntddstor.h>
#define MAX_CSUM_SIZE (4096 - sizeof(tree_header) - sizeof(leaf_node))
// #define DEBUG_WRITE_LOOPS
typedef struct {
KEVENT Event;
IO_STATUS_BLOCK iosb;
} write_context;
typedef struct {
EXTENT_ITEM_TREE eit;
uint8_t type;
TREE_BLOCK_REF tbr;
} EXTENT_ITEM_TREE2;
typedef struct {
EXTENT_ITEM ei;
uint8_t type;
TREE_BLOCK_REF tbr;
} EXTENT_ITEM_SKINNY_METADATA;
static NTSTATUS create_chunk(device_extension* Vcb, chunk* c, PIRP Irp);
static NTSTATUS update_tree_extents(device_extension* Vcb, tree* t, PIRP Irp, LIST_ENTRY* rollback);
#ifndef _MSC_VER // not in mingw yet
#define DEVICE_DSM_FLAG_TRIM_NOT_FS_ALLOCATED 0x80000000
#endif
_Function_class_(IO_COMPLETION_ROUTINE)
static NTSTATUS __stdcall write_completion(PDEVICE_OBJECT DeviceObject, PIRP Irp, PVOID conptr) {
write_context* context = conptr;
UNUSED(DeviceObject);
context->iosb = Irp->IoStatus;
KeSetEvent(&context->Event, 0, false);
return STATUS_MORE_PROCESSING_REQUIRED;
}
NTSTATUS write_data_phys(_In_ PDEVICE_OBJECT device, _In_ PFILE_OBJECT fileobj, _In_ uint64_t address,
_In_reads_bytes_(length) void* data, _In_ uint32_t length) {
NTSTATUS Status;
LARGE_INTEGER offset;
PIRP Irp;
PIO_STACK_LOCATION IrpSp;
write_context context;
TRACE("(%p, %I64x, %p, %x)\n", device, address, data, length);
RtlZeroMemory(&context, sizeof(write_context));
KeInitializeEvent(&context.Event, NotificationEvent, false);
offset.QuadPart = address;
Irp = IoAllocateIrp(device->StackSize, false);
if (!Irp) {
ERR("IoAllocateIrp failed\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
IrpSp = IoGetNextIrpStackLocation(Irp);
IrpSp->MajorFunction = IRP_MJ_WRITE;
IrpSp->FileObject = fileobj;
if (device->Flags & DO_BUFFERED_IO) {
Irp->AssociatedIrp.SystemBuffer = data;
Irp->Flags = IRP_BUFFERED_IO;
} else if (device->Flags & DO_DIRECT_IO) {
Irp->MdlAddress = IoAllocateMdl(data, length, false, false, NULL);
if (!Irp->MdlAddress) {
DbgPrint("IoAllocateMdl failed\n");
Status = STATUS_INSUFFICIENT_RESOURCES;
goto exit;
}
Status = STATUS_SUCCESS;
_SEH2_TRY {
MmProbeAndLockPages(Irp->MdlAddress, KernelMode, IoReadAccess);
} _SEH2_EXCEPT (EXCEPTION_EXECUTE_HANDLER) {
Status = _SEH2_GetExceptionCode();
} _SEH2_END;
if (!NT_SUCCESS(Status)) {
ERR("MmProbeAndLockPages threw exception %08x\n", Status);
IoFreeMdl(Irp->MdlAddress);
goto exit;
}
} else {
Irp->UserBuffer = data;
}
IrpSp->Parameters.Write.Length = length;
IrpSp->Parameters.Write.ByteOffset = offset;
Irp->UserIosb = &context.iosb;
Irp->UserEvent = &context.Event;
IoSetCompletionRoutine(Irp, write_completion, &context, true, true, true);
Status = IoCallDriver(device, Irp);
if (Status == STATUS_PENDING) {
KeWaitForSingleObject(&context.Event, Executive, KernelMode, false, NULL);
Status = context.iosb.Status;
}
if (!NT_SUCCESS(Status)) {
ERR("IoCallDriver returned %08x\n", Status);
}
if (device->Flags & DO_DIRECT_IO) {
MmUnlockPages(Irp->MdlAddress);
IoFreeMdl(Irp->MdlAddress);
}
exit:
IoFreeIrp(Irp);
return Status;
}
static void add_trim_entry(device* dev, uint64_t address, uint64_t size) {
space* s = ExAllocatePoolWithTag(PagedPool, sizeof(space), ALLOC_TAG);
if (!s) {
ERR("out of memory\n");
return;
}
s->address = address;
s->size = size;
dev->num_trim_entries++;
InsertTailList(&dev->trim_list, &s->list_entry);
}
static void clean_space_cache_chunk(device_extension* Vcb, chunk* c) {
ULONG type;
if (Vcb->trim && !Vcb->options.no_trim) {
if (c->chunk_item->type & BLOCK_FLAG_DUPLICATE)
type = BLOCK_FLAG_DUPLICATE;
else if (c->chunk_item->type & BLOCK_FLAG_RAID0)
type = BLOCK_FLAG_RAID0;
else if (c->chunk_item->type & BLOCK_FLAG_RAID1)
type = BLOCK_FLAG_DUPLICATE;
else if (c->chunk_item->type & BLOCK_FLAG_RAID10)
type = BLOCK_FLAG_RAID10;
else if (c->chunk_item->type & BLOCK_FLAG_RAID5)
type = BLOCK_FLAG_RAID5;
else if (c->chunk_item->type & BLOCK_FLAG_RAID6)
type = BLOCK_FLAG_RAID6;
else // SINGLE
type = BLOCK_FLAG_DUPLICATE;
}
while (!IsListEmpty(&c->deleting)) {
space* s = CONTAINING_RECORD(c->deleting.Flink, space, list_entry);
if (Vcb->trim && !Vcb->options.no_trim && (!Vcb->options.no_barrier || !(c->chunk_item->type & BLOCK_FLAG_METADATA))) {
CHUNK_ITEM_STRIPE* cis = (CHUNK_ITEM_STRIPE*)&c->chunk_item[1];
if (type == BLOCK_FLAG_DUPLICATE) {
uint16_t i;
for (i = 0; i < c->chunk_item->num_stripes; i++) {
if (c->devices[i] && c->devices[i]->devobj && !c->devices[i]->readonly && c->devices[i]->trim)
add_trim_entry(c->devices[i], s->address - c->offset + cis[i].offset, s->size);
}
} else if (type == BLOCK_FLAG_RAID0) {
uint64_t startoff, endoff;
uint16_t startoffstripe, endoffstripe, i;
get_raid0_offset(s->address - c->offset, c->chunk_item->stripe_length, c->chunk_item->num_stripes, &startoff, &startoffstripe);
get_raid0_offset(s->address - c->offset + s->size - 1, c->chunk_item->stripe_length, c->chunk_item->num_stripes, &endoff, &endoffstripe);
for (i = 0; i < c->chunk_item->num_stripes; i++) {
if (c->devices[i] && c->devices[i]->devobj && !c->devices[i]->readonly && c->devices[i]->trim) {
uint64_t stripestart, stripeend;
if (startoffstripe > i)
stripestart = startoff - (startoff % c->chunk_item->stripe_length) + c->chunk_item->stripe_length;
else if (startoffstripe == i)
stripestart = startoff;
else
stripestart = startoff - (startoff % c->chunk_item->stripe_length);
if (endoffstripe > i)
stripeend = endoff - (endoff % c->chunk_item->stripe_length) + c->chunk_item->stripe_length;
else if (endoffstripe == i)
stripeend = endoff + 1;
else
stripeend = endoff - (endoff % c->chunk_item->stripe_length);
if (stripestart != stripeend)
add_trim_entry(c->devices[i], stripestart + cis[i].offset, stripeend - stripestart);
}
}
} else if (type == BLOCK_FLAG_RAID10) {
uint64_t startoff, endoff;
uint16_t sub_stripes, startoffstripe, endoffstripe, i;
sub_stripes = max(1, c->chunk_item->sub_stripes);
get_raid0_offset(s->address - c->offset, c->chunk_item->stripe_length, c->chunk_item->num_stripes / sub_stripes, &startoff, &startoffstripe);
get_raid0_offset(s->address - c->offset + s->size - 1, c->chunk_item->stripe_length, c->chunk_item->num_stripes / sub_stripes, &endoff, &endoffstripe);
startoffstripe *= sub_stripes;
endoffstripe *= sub_stripes;
for (i = 0; i < c->chunk_item->num_stripes; i += sub_stripes) {
ULONG j;
uint64_t stripestart, stripeend;
if (startoffstripe > i)
stripestart = startoff - (startoff % c->chunk_item->stripe_length) + c->chunk_item->stripe_length;
else if (startoffstripe == i)
stripestart = startoff;
else
stripestart = startoff - (startoff % c->chunk_item->stripe_length);
if (endoffstripe > i)
stripeend = endoff - (endoff % c->chunk_item->stripe_length) + c->chunk_item->stripe_length;
else if (endoffstripe == i)
stripeend = endoff + 1;
else
stripeend = endoff - (endoff % c->chunk_item->stripe_length);
if (stripestart != stripeend) {
for (j = 0; j < sub_stripes; j++) {
if (c->devices[i+j] && c->devices[i+j]->devobj && !c->devices[i+j]->readonly && c->devices[i+j]->trim)
add_trim_entry(c->devices[i+j], stripestart + cis[i+j].offset, stripeend - stripestart);
}
}
}
}
// FIXME - RAID5(?), RAID6(?)
}
RemoveEntryList(&s->list_entry);
ExFreePool(s);
}
}
typedef struct {
DEVICE_MANAGE_DATA_SET_ATTRIBUTES* dmdsa;
ATA_PASS_THROUGH_EX apte;
PIRP Irp;
IO_STATUS_BLOCK iosb;
#ifdef DEBUG_TRIM_EMULATION
PMDL mdl;
void* buf;
#endif
} ioctl_context_stripe;
typedef struct {
KEVENT Event;
LONG left;
ioctl_context_stripe* stripes;
} ioctl_context;
_Function_class_(IO_COMPLETION_ROUTINE)
static NTSTATUS __stdcall ioctl_completion(PDEVICE_OBJECT DeviceObject, PIRP Irp, PVOID conptr) {
ioctl_context* context = (ioctl_context*)conptr;
LONG left2 = InterlockedDecrement(&context->left);
UNUSED(DeviceObject);
UNUSED(Irp);
if (left2 == 0)
KeSetEvent(&context->Event, 0, false);
return STATUS_MORE_PROCESSING_REQUIRED;
}
#ifdef DEBUG_TRIM_EMULATION
static void trim_emulation(device* dev) {
LIST_ENTRY* le;
ioctl_context context;
unsigned int i = 0, count = 0;
le = dev->trim_list.Flink;
while (le != &dev->trim_list) {
count++;
le = le->Flink;
}
context.left = count;
KeInitializeEvent(&context.Event, NotificationEvent, false);
context.stripes = ExAllocatePoolWithTag(NonPagedPool, sizeof(ioctl_context_stripe) * context.left, ALLOC_TAG);
if (!context.stripes) {
ERR("out of memory\n");
return;
}
RtlZeroMemory(context.stripes, sizeof(ioctl_context_stripe) * context.left);
i = 0;
le = dev->trim_list.Flink;
while (le != &dev->trim_list) {
ioctl_context_stripe* stripe = &context.stripes[i];
space* s = CONTAINING_RECORD(le, space, list_entry);
WARN("(%I64x, %I64x)\n", s->address, s->size);
stripe->Irp = IoAllocateIrp(dev->devobj->StackSize, false);
if (!stripe->Irp) {
ERR("IoAllocateIrp failed\n");
} else {
PIO_STACK_LOCATION IrpSp = IoGetNextIrpStackLocation(stripe->Irp);
IrpSp->MajorFunction = IRP_MJ_WRITE;
IrpSp->FileObject = dev->fileobj;
stripe->buf = ExAllocatePoolWithTag(NonPagedPool, (uint32_t)s->size, ALLOC_TAG);
if (!stripe->buf) {
ERR("out of memory\n");
} else {
RtlZeroMemory(stripe->buf, (uint32_t)s->size); // FIXME - randomize instead?
stripe->mdl = IoAllocateMdl(stripe->buf, (uint32_t)s->size, false, false, NULL);
if (!stripe->mdl) {
ERR("IoAllocateMdl failed\n");
} else {
MmBuildMdlForNonPagedPool(stripe->mdl);
stripe->Irp->MdlAddress = stripe->mdl;
IrpSp->Parameters.Write.ByteOffset.QuadPart = s->address;
IrpSp->Parameters.Write.Length = s->size;
stripe->Irp->UserIosb = &stripe->iosb;
IoSetCompletionRoutine(stripe->Irp, ioctl_completion, &context, true, true, true);
IoCallDriver(dev->devobj, stripe->Irp);
}
}
}
i++;
le = le->Flink;
}
KeWaitForSingleObject(&context.Event, Executive, KernelMode, false, NULL);
for (i = 0; i < count; i++) {
ioctl_context_stripe* stripe = &context.stripes[i];
if (stripe->mdl)
IoFreeMdl(stripe->mdl);
if (stripe->buf)
ExFreePool(stripe->buf);
}
ExFreePool(context.stripes);
}
#endif
static void clean_space_cache(device_extension* Vcb) {
LIST_ENTRY* le;
chunk* c;
#ifndef DEBUG_TRIM_EMULATION
ULONG num;
#endif
TRACE("(%p)\n", Vcb);
ExAcquireResourceSharedLite(&Vcb->chunk_lock, true);
le = Vcb->chunks.Flink;
while (le != &Vcb->chunks) {
c = CONTAINING_RECORD(le, chunk, list_entry);
if (c->space_changed) {
acquire_chunk_lock(c, Vcb);
if (c->space_changed)
clean_space_cache_chunk(Vcb, c);
c->space_changed = false;
release_chunk_lock(c, Vcb);
}
le = le->Flink;
}
ExReleaseResourceLite(&Vcb->chunk_lock);
if (Vcb->trim && !Vcb->options.no_trim) {
#ifndef DEBUG_TRIM_EMULATION
ioctl_context context;
ULONG total_num;
context.left = 0;
le = Vcb->devices.Flink;
while (le != &Vcb->devices) {
device* dev = CONTAINING_RECORD(le, device, list_entry);
if (dev->devobj && !dev->readonly && dev->trim && dev->num_trim_entries > 0)
context.left++;
le = le->Flink;
}
if (context.left == 0)
return;
total_num = context.left;
num = 0;
KeInitializeEvent(&context.Event, NotificationEvent, false);
context.stripes = ExAllocatePoolWithTag(NonPagedPool, sizeof(ioctl_context_stripe) * context.left, ALLOC_TAG);
if (!context.stripes) {
ERR("out of memory\n");
return;
}
RtlZeroMemory(context.stripes, sizeof(ioctl_context_stripe) * context.left);
#endif
le = Vcb->devices.Flink;
while (le != &Vcb->devices) {
device* dev = CONTAINING_RECORD(le, device, list_entry);
if (dev->devobj && !dev->readonly && dev->trim && dev->num_trim_entries > 0) {
#ifdef DEBUG_TRIM_EMULATION
trim_emulation(dev);
#else
LIST_ENTRY* le2;
ioctl_context_stripe* stripe = &context.stripes[num];
DEVICE_DATA_SET_RANGE* ranges;
ULONG datalen = (ULONG)sector_align(sizeof(DEVICE_MANAGE_DATA_SET_ATTRIBUTES), sizeof(uint64_t)) + (dev->num_trim_entries * sizeof(DEVICE_DATA_SET_RANGE)), i;
PIO_STACK_LOCATION IrpSp;
stripe->dmdsa = ExAllocatePoolWithTag(PagedPool, datalen, ALLOC_TAG);
if (!stripe->dmdsa) {
ERR("out of memory\n");
goto nextdev;
}
stripe->dmdsa->Size = sizeof(DEVICE_MANAGE_DATA_SET_ATTRIBUTES);
stripe->dmdsa->Action = DeviceDsmAction_Trim;
stripe->dmdsa->Flags = DEVICE_DSM_FLAG_TRIM_NOT_FS_ALLOCATED;
stripe->dmdsa->ParameterBlockOffset = 0;
stripe->dmdsa->ParameterBlockLength = 0;
stripe->dmdsa->DataSetRangesOffset = (ULONG)sector_align(sizeof(DEVICE_MANAGE_DATA_SET_ATTRIBUTES), sizeof(uint64_t));
stripe->dmdsa->DataSetRangesLength = dev->num_trim_entries * sizeof(DEVICE_DATA_SET_RANGE);
ranges = (DEVICE_DATA_SET_RANGE*)((uint8_t*)stripe->dmdsa + stripe->dmdsa->DataSetRangesOffset);
i = 0;
le2 = dev->trim_list.Flink;
while (le2 != &dev->trim_list) {
space* s = CONTAINING_RECORD(le2, space, list_entry);
ranges[i].StartingOffset = s->address;
ranges[i].LengthInBytes = s->size;
i++;
le2 = le2->Flink;
}
stripe->Irp = IoAllocateIrp(dev->devobj->StackSize, false);
if (!stripe->Irp) {
ERR("IoAllocateIrp failed\n");
goto nextdev;
}
IrpSp = IoGetNextIrpStackLocation(stripe->Irp);
IrpSp->MajorFunction = IRP_MJ_DEVICE_CONTROL;
IrpSp->FileObject = dev->fileobj;
IrpSp->Parameters.DeviceIoControl.IoControlCode = IOCTL_STORAGE_MANAGE_DATA_SET_ATTRIBUTES;
IrpSp->Parameters.DeviceIoControl.InputBufferLength = datalen;
IrpSp->Parameters.DeviceIoControl.OutputBufferLength = 0;
stripe->Irp->AssociatedIrp.SystemBuffer = stripe->dmdsa;
stripe->Irp->Flags |= IRP_BUFFERED_IO;
stripe->Irp->UserBuffer = NULL;
stripe->Irp->UserIosb = &stripe->iosb;
IoSetCompletionRoutine(stripe->Irp, ioctl_completion, &context, true, true, true);
IoCallDriver(dev->devobj, stripe->Irp);
nextdev:
#endif
while (!IsListEmpty(&dev->trim_list)) {
space* s = CONTAINING_RECORD(RemoveHeadList(&dev->trim_list), space, list_entry);
ExFreePool(s);
}
dev->num_trim_entries = 0;
#ifndef DEBUG_TRIM_EMULATION
num++;
#endif
}
le = le->Flink;
}
#ifndef DEBUG_TRIM_EMULATION
KeWaitForSingleObject(&context.Event, Executive, KernelMode, false, NULL);
for (num = 0; num < total_num; num++) {
if (context.stripes[num].dmdsa)
ExFreePool(context.stripes[num].dmdsa);
if (context.stripes[num].Irp)
IoFreeIrp(context.stripes[num].Irp);
}
ExFreePool(context.stripes);
#endif
}
}
static bool trees_consistent(device_extension* Vcb) {
ULONG maxsize = Vcb->superblock.node_size - sizeof(tree_header);
LIST_ENTRY* le;
le = Vcb->trees.Flink;
while (le != &Vcb->trees) {
tree* t = CONTAINING_RECORD(le, tree, list_entry);
if (t->write) {
if (t->header.num_items == 0 && t->parent) {
#ifdef DEBUG_WRITE_LOOPS
ERR("empty tree found, looping again\n");
#endif
return false;
}
if (t->size > maxsize) {
#ifdef DEBUG_WRITE_LOOPS
ERR("overlarge tree found (%u > %u), looping again\n", t->size, maxsize);
#endif
return false;
}
if (!t->has_new_address) {
#ifdef DEBUG_WRITE_LOOPS
ERR("tree found without new address, looping again\n");
#endif
return false;
}
}
le = le->Flink;
}
return true;
}
static NTSTATUS add_parents(device_extension* Vcb, PIRP Irp) {
ULONG level;
LIST_ENTRY* le;
for (level = 0; level <= 255; level++) {
bool nothing_found = true;
TRACE("level = %u\n", level);
le = Vcb->trees.Flink;
while (le != &Vcb->trees) {
tree* t = CONTAINING_RECORD(le, tree, list_entry);
if (t->write && t->header.level == level) {
TRACE("tree %p: root = %I64x, level = %x, parent = %p\n", t, t->header.tree_id, t->header.level, t->parent);
nothing_found = false;
if (t->parent) {
if (!t->parent->write)
TRACE("adding tree %p (level %x)\n", t->parent, t->header.level);
t->parent->write = true;
} else if (t->root != Vcb->root_root && t->root != Vcb->chunk_root) {
KEY searchkey;
traverse_ptr tp;
NTSTATUS Status;
#ifdef __REACTOS__
tree* t2;
#endif
searchkey.obj_id = t->root->id;
searchkey.obj_type = TYPE_ROOT_ITEM;
searchkey.offset = 0xffffffffffffffff;
Status = find_item(Vcb, Vcb->root_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (tp.item->key.obj_id != searchkey.obj_id || tp.item->key.obj_type != searchkey.obj_type) {
ERR("could not find ROOT_ITEM for tree %I64x\n", searchkey.obj_id);
return STATUS_INTERNAL_ERROR;
}
if (tp.item->size < sizeof(ROOT_ITEM)) { // if not full length, delete and create new entry
ROOT_ITEM* ri = ExAllocatePoolWithTag(PagedPool, sizeof(ROOT_ITEM), ALLOC_TAG);
if (!ri) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(ri, &t->root->root_item, sizeof(ROOT_ITEM));
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
ExFreePool(ri);
return Status;
}
Status = insert_tree_item(Vcb, Vcb->root_root, tp.item->key.obj_id, tp.item->key.obj_type, tp.item->key.offset, ri, sizeof(ROOT_ITEM), NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(ri);
return Status;
}
}
#ifndef __REACTOS__
tree* t2 = tp.tree;
#else
t2 = tp.tree;
#endif
while (t2) {
t2->write = true;
t2 = t2->parent;
}
}
}
le = le->Flink;
}
if (nothing_found)
break;
}
return STATUS_SUCCESS;
}
static void add_parents_to_cache(tree* t) {
while (t->parent) {
t = t->parent;
t->write = true;
}
}
static bool insert_tree_extent_skinny(device_extension* Vcb, uint8_t level, uint64_t root_id, chunk* c, uint64_t address, PIRP Irp, LIST_ENTRY* rollback) {
NTSTATUS Status;
EXTENT_ITEM_SKINNY_METADATA* eism;
traverse_ptr insert_tp;
eism = ExAllocatePoolWithTag(PagedPool, sizeof(EXTENT_ITEM_SKINNY_METADATA), ALLOC_TAG);
if (!eism) {
ERR("out of memory\n");
return false;
}
eism->ei.refcount = 1;
eism->ei.generation = Vcb->superblock.generation;
eism->ei.flags = EXTENT_ITEM_TREE_BLOCK;
eism->type = TYPE_TREE_BLOCK_REF;
eism->tbr.offset = root_id;
Status = insert_tree_item(Vcb, Vcb->extent_root, address, TYPE_METADATA_ITEM, level, eism, sizeof(EXTENT_ITEM_SKINNY_METADATA), &insert_tp, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(eism);
return false;
}
acquire_chunk_lock(c, Vcb);
space_list_subtract(c, false, address, Vcb->superblock.node_size, rollback);
release_chunk_lock(c, Vcb);
add_parents_to_cache(insert_tp.tree);
return true;
}
bool find_metadata_address_in_chunk(device_extension* Vcb, chunk* c, uint64_t* address) {
LIST_ENTRY* le;
space* s;
TRACE("(%p, %I64x, %p)\n", Vcb, c->offset, address);
if (Vcb->superblock.node_size > c->chunk_item->size - c->used)
return false;
if (!c->cache_loaded) {
NTSTATUS Status = load_cache_chunk(Vcb, c, NULL);
if (!NT_SUCCESS(Status)) {
ERR("load_cache_chunk returned %08x\n", Status);
return false;
}
}
if (IsListEmpty(&c->space_size))
return false;
if (!c->last_alloc_set) {
s = CONTAINING_RECORD(c->space.Blink, space, list_entry);
c->last_alloc = s->address;
c->last_alloc_set = true;
if (s->size >= Vcb->superblock.node_size) {
*address = s->address;
c->last_alloc += Vcb->superblock.node_size;
return true;
}
}
le = c->space.Flink;
while (le != &c->space) {
s = CONTAINING_RECORD(le, space, list_entry);
if (s->address <= c->last_alloc && s->address + s->size >= c->last_alloc + Vcb->superblock.node_size) {
*address = c->last_alloc;
c->last_alloc += Vcb->superblock.node_size;
return true;
}
le = le->Flink;
}
le = c->space_size.Flink;
while (le != &c->space_size) {
s = CONTAINING_RECORD(le, space, list_entry_size);
if (s->size == Vcb->superblock.node_size) {
*address = s->address;
c->last_alloc = s->address + Vcb->superblock.node_size;
return true;
} else if (s->size < Vcb->superblock.node_size) {
if (le == c->space_size.Flink)
return false;
s = CONTAINING_RECORD(le->Blink, space, list_entry_size);
*address = s->address;
c->last_alloc = s->address + Vcb->superblock.node_size;
return true;
}
le = le->Flink;
}
s = CONTAINING_RECORD(c->space_size.Blink, space, list_entry_size);
if (s->size > Vcb->superblock.node_size) {
*address = s->address;
c->last_alloc = s->address + Vcb->superblock.node_size;
return true;
}
return false;
}
static bool insert_tree_extent(device_extension* Vcb, uint8_t level, uint64_t root_id, chunk* c, uint64_t* new_address, PIRP Irp, LIST_ENTRY* rollback) {
NTSTATUS Status;
uint64_t address;
EXTENT_ITEM_TREE2* eit2;
traverse_ptr insert_tp;
TRACE("(%p, %x, %I64x, %p, %p, %p, %p)\n", Vcb, level, root_id, c, new_address, rollback);
if (!find_metadata_address_in_chunk(Vcb, c, &address))
return false;
if (Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_SKINNY_METADATA) {
bool b = insert_tree_extent_skinny(Vcb, level, root_id, c, address, Irp, rollback);
if (b)
*new_address = address;
return b;
}
eit2 = ExAllocatePoolWithTag(PagedPool, sizeof(EXTENT_ITEM_TREE2), ALLOC_TAG);
if (!eit2) {
ERR("out of memory\n");
return false;
}
eit2->eit.extent_item.refcount = 1;
eit2->eit.extent_item.generation = Vcb->superblock.generation;
eit2->eit.extent_item.flags = EXTENT_ITEM_TREE_BLOCK;
eit2->eit.level = level;
eit2->type = TYPE_TREE_BLOCK_REF;
eit2->tbr.offset = root_id;
Status = insert_tree_item(Vcb, Vcb->extent_root, address, TYPE_EXTENT_ITEM, Vcb->superblock.node_size, eit2, sizeof(EXTENT_ITEM_TREE2), &insert_tp, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(eit2);
return false;
}
acquire_chunk_lock(c, Vcb);
space_list_subtract(c, false, address, Vcb->superblock.node_size, rollback);
release_chunk_lock(c, Vcb);
add_parents_to_cache(insert_tp.tree);
*new_address = address;
return true;
}
NTSTATUS get_tree_new_address(device_extension* Vcb, tree* t, PIRP Irp, LIST_ENTRY* rollback) {
NTSTATUS Status;
chunk *origchunk = NULL, *c;
LIST_ENTRY* le;
uint64_t flags, addr;
if (t->root->id == BTRFS_ROOT_CHUNK)
flags = Vcb->system_flags;
else
flags = Vcb->metadata_flags;
if (t->has_address) {
origchunk = get_chunk_from_address(Vcb, t->header.address);
if (origchunk && !origchunk->readonly && !origchunk->reloc && origchunk->chunk_item->type == flags &&
insert_tree_extent(Vcb, t->header.level, t->root->id, origchunk, &addr, Irp, rollback)) {
t->new_address = addr;
t->has_new_address = true;
return STATUS_SUCCESS;
}
}
ExAcquireResourceExclusiveLite(&Vcb->chunk_lock, true);
le = Vcb->chunks.Flink;
while (le != &Vcb->chunks) {
c = CONTAINING_RECORD(le, chunk, list_entry);
if (!c->readonly && !c->reloc) {
acquire_chunk_lock(c, Vcb);
if (c != origchunk && c->chunk_item->type == flags && (c->chunk_item->size - c->used) >= Vcb->superblock.node_size) {
if (insert_tree_extent(Vcb, t->header.level, t->root->id, c, &addr, Irp, rollback)) {
release_chunk_lock(c, Vcb);
ExReleaseResourceLite(&Vcb->chunk_lock);
t->new_address = addr;
t->has_new_address = true;
return STATUS_SUCCESS;
}
}
release_chunk_lock(c, Vcb);
}
le = le->Flink;
}
// allocate new chunk if necessary
Status = alloc_chunk(Vcb, flags, &c, false);
if (!NT_SUCCESS(Status)) {
ERR("alloc_chunk returned %08x\n", Status);
ExReleaseResourceLite(&Vcb->chunk_lock);
return Status;
}
acquire_chunk_lock(c, Vcb);
if ((c->chunk_item->size - c->used) >= Vcb->superblock.node_size) {
if (insert_tree_extent(Vcb, t->header.level, t->root->id, c, &addr, Irp, rollback)) {
release_chunk_lock(c, Vcb);
ExReleaseResourceLite(&Vcb->chunk_lock);
t->new_address = addr;
t->has_new_address = true;
return STATUS_SUCCESS;
}
}
release_chunk_lock(c, Vcb);
ExReleaseResourceLite(&Vcb->chunk_lock);
ERR("couldn't find any metadata chunks with %x bytes free\n", Vcb->superblock.node_size);
return STATUS_DISK_FULL;
}
static NTSTATUS reduce_tree_extent(device_extension* Vcb, uint64_t address, tree* t, uint64_t parent_root, uint8_t level, PIRP Irp, LIST_ENTRY* rollback) {
NTSTATUS Status;
uint64_t rc, root;
TRACE("(%p, %I64x, %p)\n", Vcb, address, t);
rc = get_extent_refcount(Vcb, address, Vcb->superblock.node_size, Irp);
if (rc == 0) {
ERR("error - refcount for extent %I64x was 0\n", address);
return STATUS_INTERNAL_ERROR;
}
if (!t || t->parent)
root = parent_root;
else
root = t->header.tree_id;
Status = decrease_extent_refcount_tree(Vcb, address, Vcb->superblock.node_size, root, level, Irp);
if (!NT_SUCCESS(Status)) {
ERR("decrease_extent_refcount_tree returned %08x\n", Status);
return Status;
}
if (rc == 1) {
chunk* c = get_chunk_from_address(Vcb, address);
if (c) {
acquire_chunk_lock(c, Vcb);
if (!c->cache_loaded) {
Status = load_cache_chunk(Vcb, c, NULL);
if (!NT_SUCCESS(Status)) {
ERR("load_cache_chunk returned %08x\n", Status);
release_chunk_lock(c, Vcb);
return Status;
}
}
c->used -= Vcb->superblock.node_size;
space_list_add(c, address, Vcb->superblock.node_size, rollback);
release_chunk_lock(c, Vcb);
} else
ERR("could not find chunk for address %I64x\n", address);
}
return STATUS_SUCCESS;
}
static NTSTATUS add_changed_extent_ref_edr(changed_extent* ce, EXTENT_DATA_REF* edr, bool old) {
LIST_ENTRY *le2, *list;
changed_extent_ref* cer;
list = old ? &ce->old_refs : &ce->refs;
le2 = list->Flink;
while (le2 != list) {
cer = CONTAINING_RECORD(le2, changed_extent_ref, list_entry);
if (cer->type == TYPE_EXTENT_DATA_REF && cer->edr.root == edr->root && cer->edr.objid == edr->objid && cer->edr.offset == edr->offset) {
cer->edr.count += edr->count;
goto end;
}
le2 = le2->Flink;
}
cer = ExAllocatePoolWithTag(PagedPool, sizeof(changed_extent_ref), ALLOC_TAG);
if (!cer) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
cer->type = TYPE_EXTENT_DATA_REF;
RtlCopyMemory(&cer->edr, edr, sizeof(EXTENT_DATA_REF));
InsertTailList(list, &cer->list_entry);
end:
if (old)
ce->old_count += edr->count;
else
ce->count += edr->count;
return STATUS_SUCCESS;
}
static NTSTATUS add_changed_extent_ref_sdr(changed_extent* ce, SHARED_DATA_REF* sdr, bool old) {
LIST_ENTRY *le2, *list;
changed_extent_ref* cer;
list = old ? &ce->old_refs : &ce->refs;
le2 = list->Flink;
while (le2 != list) {
cer = CONTAINING_RECORD(le2, changed_extent_ref, list_entry);
if (cer->type == TYPE_SHARED_DATA_REF && cer->sdr.offset == sdr->offset) {
cer->sdr.count += sdr->count;
goto end;
}
le2 = le2->Flink;
}
cer = ExAllocatePoolWithTag(PagedPool, sizeof(changed_extent_ref), ALLOC_TAG);
if (!cer) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
cer->type = TYPE_SHARED_DATA_REF;
RtlCopyMemory(&cer->sdr, sdr, sizeof(SHARED_DATA_REF));
InsertTailList(list, &cer->list_entry);
end:
if (old)
ce->old_count += sdr->count;
else
ce->count += sdr->count;
return STATUS_SUCCESS;
}
static bool shared_tree_is_unique(device_extension* Vcb, tree* t, PIRP Irp, LIST_ENTRY* rollback) {
KEY searchkey;
traverse_ptr tp;
NTSTATUS Status;
if (!t->updated_extents && t->has_address) {
Status = update_tree_extents(Vcb, t, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("update_tree_extents returned %08x\n", Status);
return false;
}
}
searchkey.obj_id = t->header.address;
searchkey.obj_type = Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_SKINNY_METADATA ? TYPE_METADATA_ITEM : TYPE_EXTENT_ITEM;
searchkey.offset = 0xffffffffffffffff;
Status = find_item(Vcb, Vcb->extent_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return false;
}
if (tp.item->key.obj_id == t->header.address && (tp.item->key.obj_type == TYPE_METADATA_ITEM || tp.item->key.obj_type == TYPE_EXTENT_ITEM))
return false;
else
return true;
}
static NTSTATUS update_tree_extents(device_extension* Vcb, tree* t, PIRP Irp, LIST_ENTRY* rollback) {
NTSTATUS Status;
uint64_t rc = get_extent_refcount(Vcb, t->header.address, Vcb->superblock.node_size, Irp);
uint64_t flags = get_extent_flags(Vcb, t->header.address, Irp);
if (rc == 0) {
ERR("refcount for extent %I64x was 0\n", t->header.address);
return STATUS_INTERNAL_ERROR;
}
if (flags & EXTENT_ITEM_SHARED_BACKREFS || t->header.flags & HEADER_FLAG_SHARED_BACKREF || !(t->header.flags & HEADER_FLAG_MIXED_BACKREF)) {
TREE_BLOCK_REF tbr;
bool unique = rc > 1 ? false : (t->parent ? shared_tree_is_unique(Vcb, t->parent, Irp, rollback) : false);
if (t->header.level == 0) {
LIST_ENTRY* le;
le = t->itemlist.Flink;
while (le != &t->itemlist) {
tree_data* td = CONTAINING_RECORD(le, tree_data, list_entry);
if (!td->inserted && td->key.obj_type == TYPE_EXTENT_DATA && td->size >= sizeof(EXTENT_DATA) - 1 + sizeof(EXTENT_DATA2)) {
EXTENT_DATA* ed = (EXTENT_DATA*)td->data;
if (ed->type == EXTENT_TYPE_REGULAR || ed->type == EXTENT_TYPE_PREALLOC) {
EXTENT_DATA2* ed2 = (EXTENT_DATA2*)ed->data;
if (ed2->size > 0) {
EXTENT_DATA_REF edr;
changed_extent* ce = NULL;
chunk* c = get_chunk_from_address(Vcb, ed2->address);
if (c) {
LIST_ENTRY* le2;
le2 = c->changed_extents.Flink;
while (le2 != &c->changed_extents) {
changed_extent* ce2 = CONTAINING_RECORD(le2, changed_extent, list_entry);
if (ce2->address == ed2->address) {
ce = ce2;
break;
}
le2 = le2->Flink;
}
}
edr.root = t->root->id;
edr.objid = td->key.obj_id;
edr.offset = td->key.offset - ed2->offset;
edr.count = 1;
if (ce) {
Status = add_changed_extent_ref_edr(ce, &edr, true);
if (!NT_SUCCESS(Status)) {
ERR("add_changed_extent_ref_edr returned %08x\n", Status);
return Status;
}
Status = add_changed_extent_ref_edr(ce, &edr, false);
if (!NT_SUCCESS(Status)) {
ERR("add_changed_extent_ref_edr returned %08x\n", Status);
return Status;
}
}
Status = increase_extent_refcount(Vcb, ed2->address, ed2->size, TYPE_EXTENT_DATA_REF, &edr, NULL, 0, Irp);
if (!NT_SUCCESS(Status)) {
ERR("increase_extent_refcount returned %08x\n", Status);
return Status;
}
if ((flags & EXTENT_ITEM_SHARED_BACKREFS && unique) || !(t->header.flags & HEADER_FLAG_MIXED_BACKREF)) {
uint64_t sdrrc = find_extent_shared_data_refcount(Vcb, ed2->address, t->header.address, Irp);
if (sdrrc > 0) {
SHARED_DATA_REF sdr;
sdr.offset = t->header.address;
sdr.count = 1;
Status = decrease_extent_refcount(Vcb, ed2->address, ed2->size, TYPE_SHARED_DATA_REF, &sdr, NULL, 0,
t->header.address, ce ? ce->superseded : false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("decrease_extent_refcount returned %08x\n", Status);
return Status;
}
if (ce) {
LIST_ENTRY* le2;
le2 = ce->refs.Flink;
while (le2 != &ce->refs) {
changed_extent_ref* cer = CONTAINING_RECORD(le2, changed_extent_ref, list_entry);
if (cer->type == TYPE_SHARED_DATA_REF && cer->sdr.offset == sdr.offset) {
ce->count--;
cer->sdr.count--;
break;
}
le2 = le2->Flink;
}
le2 = ce->old_refs.Flink;
while (le2 != &ce->old_refs) {
changed_extent_ref* cer = CONTAINING_RECORD(le2, changed_extent_ref, list_entry);
if (cer->type == TYPE_SHARED_DATA_REF && cer->sdr.offset == sdr.offset) {
ce->old_count--;
if (cer->sdr.count > 1)
cer->sdr.count--;
else {
RemoveEntryList(&cer->list_entry);
ExFreePool(cer);
}
break;
}
le2 = le2->Flink;
}
}
}
}
// FIXME - clear shared flag if unique?
}
}
}
le = le->Flink;
}
} else {
LIST_ENTRY* le;
le = t->itemlist.Flink;
while (le != &t->itemlist) {
tree_data* td = CONTAINING_RECORD(le, tree_data, list_entry);
if (!td->inserted) {
tbr.offset = t->root->id;
Status = increase_extent_refcount(Vcb, td->treeholder.address, Vcb->superblock.node_size, TYPE_TREE_BLOCK_REF,
&tbr, &td->key, t->header.level - 1, Irp);
if (!NT_SUCCESS(Status)) {
ERR("increase_extent_refcount returned %08x\n", Status);
return Status;
}
if (unique || !(t->header.flags & HEADER_FLAG_MIXED_BACKREF)) {
uint64_t sbrrc = find_extent_shared_tree_refcount(Vcb, td->treeholder.address, t->header.address, Irp);
if (sbrrc > 0) {
SHARED_BLOCK_REF sbr;
sbr.offset = t->header.address;
Status = decrease_extent_refcount(Vcb, td->treeholder.address, Vcb->superblock.node_size, TYPE_SHARED_BLOCK_REF, &sbr, NULL, 0,
t->header.address, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("decrease_extent_refcount returned %08x\n", Status);
return Status;
}
}
}
// FIXME - clear shared flag if unique?
}
le = le->Flink;
}
}
if (unique) {
uint64_t sbrrc = find_extent_shared_tree_refcount(Vcb, t->header.address, t->parent->header.address, Irp);
if (sbrrc == 1) {
SHARED_BLOCK_REF sbr;
sbr.offset = t->parent->header.address;
Status = decrease_extent_refcount(Vcb, t->header.address, Vcb->superblock.node_size, TYPE_SHARED_BLOCK_REF, &sbr, NULL, 0,
t->parent->header.address, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("decrease_extent_refcount returned %08x\n", Status);
return Status;
}
}
}
if (t->parent)
tbr.offset = t->parent->header.tree_id;
else
tbr.offset = t->header.tree_id;
Status = increase_extent_refcount(Vcb, t->header.address, Vcb->superblock.node_size, TYPE_TREE_BLOCK_REF, &tbr,
t->parent ? &t->paritem->key : NULL, t->header.level, Irp);
if (!NT_SUCCESS(Status)) {
ERR("increase_extent_refcount returned %08x\n", Status);
return Status;
}
// FIXME - clear shared flag if unique?
t->header.flags &= ~HEADER_FLAG_SHARED_BACKREF;
}
if (rc > 1 || t->header.tree_id == t->root->id) {
Status = reduce_tree_extent(Vcb, t->header.address, t, t->parent ? t->parent->header.tree_id : t->header.tree_id, t->header.level, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("reduce_tree_extent returned %08x\n", Status);
return Status;
}
}
t->has_address = false;
if ((rc > 1 || t->header.tree_id != t->root->id) && !(flags & EXTENT_ITEM_SHARED_BACKREFS)) {
if (t->header.tree_id == t->root->id) {
flags |= EXTENT_ITEM_SHARED_BACKREFS;
update_extent_flags(Vcb, t->header.address, flags, Irp);
}
if (t->header.level > 0) {
LIST_ENTRY* le;
le = t->itemlist.Flink;
while (le != &t->itemlist) {
tree_data* td = CONTAINING_RECORD(le, tree_data, list_entry);
if (!td->inserted) {
if (t->header.tree_id == t->root->id) {
SHARED_BLOCK_REF sbr;
sbr.offset = t->header.address;
Status = increase_extent_refcount(Vcb, td->treeholder.address, Vcb->superblock.node_size, TYPE_SHARED_BLOCK_REF, &sbr, &td->key, t->header.level - 1, Irp);
} else {
TREE_BLOCK_REF tbr;
tbr.offset = t->root->id;
Status = increase_extent_refcount(Vcb, td->treeholder.address, Vcb->superblock.node_size, TYPE_TREE_BLOCK_REF, &tbr, &td->key, t->header.level - 1, Irp);
}
if (!NT_SUCCESS(Status)) {
ERR("increase_extent_refcount returned %08x\n", Status);
return Status;
}
}
le = le->Flink;
}
} else {
LIST_ENTRY* le;
le = t->itemlist.Flink;
while (le != &t->itemlist) {
tree_data* td = CONTAINING_RECORD(le, tree_data, list_entry);
if (!td->inserted && td->key.obj_type == TYPE_EXTENT_DATA && td->size >= sizeof(EXTENT_DATA) - 1 + sizeof(EXTENT_DATA2)) {
EXTENT_DATA* ed = (EXTENT_DATA*)td->data;
if (ed->type == EXTENT_TYPE_REGULAR || ed->type == EXTENT_TYPE_PREALLOC) {
EXTENT_DATA2* ed2 = (EXTENT_DATA2*)ed->data;
if (ed2->size > 0) {
changed_extent* ce = NULL;
chunk* c = get_chunk_from_address(Vcb, ed2->address);
if (c) {
LIST_ENTRY* le2;
le2 = c->changed_extents.Flink;
while (le2 != &c->changed_extents) {
changed_extent* ce2 = CONTAINING_RECORD(le2, changed_extent, list_entry);
if (ce2->address == ed2->address) {
ce = ce2;
break;
}
le2 = le2->Flink;
}
}
if (t->header.tree_id == t->root->id) {
SHARED_DATA_REF sdr;
sdr.offset = t->header.address;
sdr.count = 1;
if (ce) {
Status = add_changed_extent_ref_sdr(ce, &sdr, true);
if (!NT_SUCCESS(Status)) {
ERR("add_changed_extent_ref_edr returned %08x\n", Status);
return Status;
}
Status = add_changed_extent_ref_sdr(ce, &sdr, false);
if (!NT_SUCCESS(Status)) {
ERR("add_changed_extent_ref_edr returned %08x\n", Status);
return Status;
}
}
Status = increase_extent_refcount(Vcb, ed2->address, ed2->size, TYPE_SHARED_DATA_REF, &sdr, NULL, 0, Irp);
} else {
EXTENT_DATA_REF edr;
edr.root = t->root->id;
edr.objid = td->key.obj_id;
edr.offset = td->key.offset - ed2->offset;
edr.count = 1;
if (ce) {
Status = add_changed_extent_ref_edr(ce, &edr, true);
if (!NT_SUCCESS(Status)) {
ERR("add_changed_extent_ref_edr returned %08x\n", Status);
return Status;
}
Status = add_changed_extent_ref_edr(ce, &edr, false);
if (!NT_SUCCESS(Status)) {
ERR("add_changed_extent_ref_edr returned %08x\n", Status);
return Status;
}
}
Status = increase_extent_refcount(Vcb, ed2->address, ed2->size, TYPE_EXTENT_DATA_REF, &edr, NULL, 0, Irp);
}
if (!NT_SUCCESS(Status)) {
ERR("increase_extent_refcount returned %08x\n", Status);
return Status;
}
}
}
}
le = le->Flink;
}
}
}
t->updated_extents = true;
t->header.tree_id = t->root->id;
return STATUS_SUCCESS;
}
static NTSTATUS allocate_tree_extents(device_extension* Vcb, PIRP Irp, LIST_ENTRY* rollback) {
LIST_ENTRY* le;
NTSTATUS Status;
bool changed = false;
uint8_t max_level = 0, level;
TRACE("(%p)\n", Vcb);
le = Vcb->trees.Flink;
while (le != &Vcb->trees) {
tree* t = CONTAINING_RECORD(le, tree, list_entry);
if (t->write && !t->has_new_address) {
chunk* c;
if (t->has_address) {
c = get_chunk_from_address(Vcb, t->header.address);
if (c) {
if (!c->cache_loaded) {
acquire_chunk_lock(c, Vcb);
if (!c->cache_loaded) {
Status = load_cache_chunk(Vcb, c, NULL);
if (!NT_SUCCESS(Status)) {
ERR("load_cache_chunk returned %08x\n", Status);
release_chunk_lock(c, Vcb);
return Status;
}
}
release_chunk_lock(c, Vcb);
}
}
}
Status = get_tree_new_address(Vcb, t, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("get_tree_new_address returned %08x\n", Status);
return Status;
}
TRACE("allocated extent %I64x\n", t->new_address);
c = get_chunk_from_address(Vcb, t->new_address);
if (c)
c->used += Vcb->superblock.node_size;
else {
ERR("could not find chunk for address %I64x\n", t->new_address);
return STATUS_INTERNAL_ERROR;
}
changed = true;
if (t->header.level > max_level)
max_level = t->header.level;
}
le = le->Flink;
}
if (!changed)
return STATUS_SUCCESS;
level = max_level;
do {
le = Vcb->trees.Flink;
while (le != &Vcb->trees) {
tree* t = CONTAINING_RECORD(le, tree, list_entry);
if (t->write && !t->updated_extents && t->has_address && t->header.level == level) {
Status = update_tree_extents(Vcb, t, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("update_tree_extents returned %08x\n", Status);
return Status;
}
}
le = le->Flink;
}
if (level == 0)
break;
level--;
} while (true);
return STATUS_SUCCESS;
}
static NTSTATUS update_root_root(device_extension* Vcb, bool no_cache, PIRP Irp, LIST_ENTRY* rollback) {
LIST_ENTRY* le;
NTSTATUS Status;
TRACE("(%p)\n", Vcb);
le = Vcb->trees.Flink;
while (le != &Vcb->trees) {
tree* t = CONTAINING_RECORD(le, tree, list_entry);
if (t->write && !t->parent) {
if (t->root != Vcb->root_root && t->root != Vcb->chunk_root) {
KEY searchkey;
traverse_ptr tp;
searchkey.obj_id = t->root->id;
searchkey.obj_type = TYPE_ROOT_ITEM;
searchkey.offset = 0xffffffffffffffff;
Status = find_item(Vcb, Vcb->root_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (tp.item->key.obj_id != searchkey.obj_id || tp.item->key.obj_type != searchkey.obj_type) {
ERR("could not find ROOT_ITEM for tree %I64x\n", searchkey.obj_id);
return STATUS_INTERNAL_ERROR;
}
TRACE("updating the address for root %I64x to %I64x\n", searchkey.obj_id, t->new_address);
t->root->root_item.block_number = t->new_address;
t->root->root_item.root_level = t->header.level;
t->root->root_item.generation = Vcb->superblock.generation;
t->root->root_item.generation2 = Vcb->superblock.generation;
// item is guaranteed to be at least sizeof(ROOT_ITEM), due to add_parents
RtlCopyMemory(tp.item->data, &t->root->root_item, sizeof(ROOT_ITEM));
}
t->root->treeholder.address = t->new_address;
t->root->treeholder.generation = Vcb->superblock.generation;
}
le = le->Flink;
}
if (!no_cache && !(Vcb->superblock.compat_ro_flags & BTRFS_COMPAT_RO_FLAGS_FREE_SPACE_CACHE)) {
ExAcquireResourceSharedLite(&Vcb->chunk_lock, true);
Status = update_chunk_caches(Vcb, Irp, rollback);
ExReleaseResourceLite(&Vcb->chunk_lock);
if (!NT_SUCCESS(Status)) {
ERR("update_chunk_caches returned %08x\n", Status);
return Status;
}
}
return STATUS_SUCCESS;
}
NTSTATUS do_tree_writes(device_extension* Vcb, LIST_ENTRY* tree_writes, bool no_free) {
chunk* c;
LIST_ENTRY* le;
tree_write* tw;
NTSTATUS Status;
ULONG i, num_bits;
write_data_context* wtc;
ULONG bit_num = 0;
bool raid56 = false;
// merge together runs
c = NULL;
le = tree_writes->Flink;
while (le != tree_writes) {
tw = CONTAINING_RECORD(le, tree_write, list_entry);
if (!c || tw->address < c->offset || tw->address >= c->offset + c->chunk_item->size)
c = get_chunk_from_address(Vcb, tw->address);
else {
tree_write* tw2 = CONTAINING_RECORD(le->Blink, tree_write, list_entry);
if (tw->address == tw2->address + tw2->length) {
uint8_t* data = ExAllocatePoolWithTag(NonPagedPool, tw2->length + tw->length, ALLOC_TAG);
if (!data) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(data, tw2->data, tw2->length);
RtlCopyMemory(&data[tw2->length], tw->data, tw->length);
if (!no_free || tw2->allocated)
ExFreePool(tw2->data);
tw2->data = data;
tw2->length += tw->length;
tw2->allocated = true;
if (!no_free || tw->allocated)
ExFreePool(tw->data);
RemoveEntryList(&tw->list_entry);
ExFreePool(tw);
le = tw2->list_entry.Flink;
continue;
}
}
tw->c = c;
if (c->chunk_item->type & (BLOCK_FLAG_RAID5 | BLOCK_FLAG_RAID6))
raid56 = true;
le = le->Flink;
}
num_bits = 0;
le = tree_writes->Flink;
while (le != tree_writes) {
tw = CONTAINING_RECORD(le, tree_write, list_entry);
num_bits++;
le = le->Flink;
}
wtc = ExAllocatePoolWithTag(NonPagedPool, sizeof(write_data_context) * num_bits, ALLOC_TAG);
if (!wtc) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
le = tree_writes->Flink;
while (le != tree_writes) {
tw = CONTAINING_RECORD(le, tree_write, list_entry);
TRACE("address: %I64x, size: %x\n", tw->address, tw->length);
KeInitializeEvent(&wtc[bit_num].Event, NotificationEvent, false);
InitializeListHead(&wtc[bit_num].stripes);
wtc[bit_num].need_wait = false;
wtc[bit_num].stripes_left = 0;
wtc[bit_num].parity1 = wtc[bit_num].parity2 = wtc[bit_num].scratch = NULL;
wtc[bit_num].mdl = wtc[bit_num].parity1_mdl = wtc[bit_num].parity2_mdl = NULL;
Status = write_data(Vcb, tw->address, tw->data, tw->length, &wtc[bit_num], NULL, NULL, false, 0, HighPagePriority);
if (!NT_SUCCESS(Status)) {
ERR("write_data returned %08x\n", Status);
for (i = 0; i < num_bits; i++) {
free_write_data_stripes(&wtc[i]);
}
ExFreePool(wtc);
return Status;
}
bit_num++;
le = le->Flink;
}
for (i = 0; i < num_bits; i++) {
if (wtc[i].stripes.Flink != &wtc[i].stripes) {
// launch writes and wait
le = wtc[i].stripes.Flink;
while (le != &wtc[i].stripes) {
write_data_stripe* stripe = CONTAINING_RECORD(le, write_data_stripe, list_entry);
if (stripe->status != WriteDataStatus_Ignore) {
wtc[i].need_wait = true;
IoCallDriver(stripe->device->devobj, stripe->Irp);
}
le = le->Flink;
}
}
}
for (i = 0; i < num_bits; i++) {
if (wtc[i].need_wait)
KeWaitForSingleObject(&wtc[i].Event, Executive, KernelMode, false, NULL);
}
for (i = 0; i < num_bits; i++) {
le = wtc[i].stripes.Flink;
while (le != &wtc[i].stripes) {
write_data_stripe* stripe = CONTAINING_RECORD(le, write_data_stripe, list_entry);
if (stripe->status != WriteDataStatus_Ignore && !NT_SUCCESS(stripe->iosb.Status)) {
Status = stripe->iosb.Status;
log_device_error(Vcb, stripe->device, BTRFS_DEV_STAT_WRITE_ERRORS);
break;
}
le = le->Flink;
}
free_write_data_stripes(&wtc[i]);
}
ExFreePool(wtc);
if (raid56) {
c = NULL;
le = tree_writes->Flink;
while (le != tree_writes) {
tw = CONTAINING_RECORD(le, tree_write, list_entry);
if (tw->c != c) {
c = tw->c;
ExAcquireResourceExclusiveLite(&c->partial_stripes_lock, true);
while (!IsListEmpty(&c->partial_stripes)) {
partial_stripe* ps = CONTAINING_RECORD(RemoveHeadList(&c->partial_stripes), partial_stripe, list_entry);
Status = flush_partial_stripe(Vcb, c, ps);
if (ps->bmparr)
ExFreePool(ps->bmparr);
ExFreePool(ps);
if (!NT_SUCCESS(Status)) {
ERR("flush_partial_stripe returned %08x\n", Status);
ExReleaseResourceLite(&c->partial_stripes_lock);
return Status;
}
}
ExReleaseResourceLite(&c->partial_stripes_lock);
}
le = le->Flink;
}
}
return STATUS_SUCCESS;
}
static NTSTATUS write_trees(device_extension* Vcb, PIRP Irp) {
ULONG level;
uint8_t *data, *body;
uint32_t crc32;
NTSTATUS Status;
LIST_ENTRY* le;
LIST_ENTRY tree_writes;
tree_write* tw;
TRACE("(%p)\n", Vcb);
InitializeListHead(&tree_writes);
for (level = 0; level <= 255; level++) {
bool nothing_found = true;
TRACE("level = %u\n", level);
le = Vcb->trees.Flink;
while (le != &Vcb->trees) {
tree* t = CONTAINING_RECORD(le, tree, list_entry);
if (t->write && t->header.level == level) {
KEY firstitem, searchkey;
LIST_ENTRY* le2;
traverse_ptr tp;
if (!t->has_new_address) {
ERR("error - tried to write tree with no new address\n");
return STATUS_INTERNAL_ERROR;
}
le2 = t->itemlist.Flink;
while (le2 != &t->itemlist) {
tree_data* td = CONTAINING_RECORD(le2, tree_data, list_entry);
if (!td->ignore) {
firstitem = td->key;
break;
}
le2 = le2->Flink;
}
if (t->parent) {
t->paritem->key = firstitem;
t->paritem->treeholder.address = t->new_address;
t->paritem->treeholder.generation = Vcb->superblock.generation;
}
if (!(Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_SKINNY_METADATA)) {
EXTENT_ITEM_TREE* eit;
searchkey.obj_id = t->new_address;
searchkey.obj_type = TYPE_EXTENT_ITEM;
searchkey.offset = Vcb->superblock.node_size;
Status = find_item(Vcb, Vcb->extent_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (keycmp(searchkey, tp.item->key)) {
ERR("could not find %I64x,%x,%I64x in extent_root (found %I64x,%x,%I64x instead)\n", searchkey.obj_id, searchkey.obj_type, searchkey.offset, tp.item->key.obj_id, tp.item->key.obj_type, tp.item->key.offset);
return STATUS_INTERNAL_ERROR;
}
if (tp.item->size < sizeof(EXTENT_ITEM_TREE)) {
ERR("(%I64x,%x,%I64x) was %u bytes, expected at least %u\n", tp.item->key.obj_id, tp.item->key.obj_type, tp.item->key.offset, tp.item->size, sizeof(EXTENT_ITEM_TREE));
return STATUS_INTERNAL_ERROR;
}
eit = (EXTENT_ITEM_TREE*)tp.item->data;
eit->firstitem = firstitem;
}
nothing_found = false;
}
le = le->Flink;
}
if (nothing_found)
break;
}
TRACE("allocated tree extents\n");
le = Vcb->trees.Flink;
while (le != &Vcb->trees) {
tree* t = CONTAINING_RECORD(le, tree, list_entry);
LIST_ENTRY* le2;
#ifdef DEBUG_PARANOID
uint32_t num_items = 0, size = 0;
bool crash = false;
#endif
if (t->write) {
#ifdef DEBUG_PARANOID
bool first = true;
KEY lastkey;
le2 = t->itemlist.Flink;
while (le2 != &t->itemlist) {
tree_data* td = CONTAINING_RECORD(le2, tree_data, list_entry);
if (!td->ignore) {
num_items++;
if (!first) {
if (keycmp(td->key, lastkey) == 0) {
ERR("(%I64x,%x,%I64x): duplicate key\n", td->key.obj_id, td->key.obj_type, td->key.offset);
crash = true;
} else if (keycmp(td->key, lastkey) == -1) {
ERR("(%I64x,%x,%I64x): key out of order\n", td->key.obj_id, td->key.obj_type, td->key.offset);
crash = true;
}
} else
first = false;
lastkey = td->key;
if (t->header.level == 0)
size += td->size;
}
le2 = le2->Flink;
}
if (t->header.level == 0)
size += num_items * sizeof(leaf_node);
else
size += num_items * sizeof(internal_node);
if (num_items != t->header.num_items) {
ERR("tree %I64x, level %x: num_items was %x, expected %x\n", t->root->id, t->header.level, num_items, t->header.num_items);
crash = true;
}
if (size != t->size) {
ERR("tree %I64x, level %x: size was %x, expected %x\n", t->root->id, t->header.level, size, t->size);
crash = true;
}
if (t->header.num_items == 0 && t->parent) {
ERR("tree %I64x, level %x: tried to write empty tree with parent\n", t->root->id, t->header.level);
crash = true;
}
if (t->size > Vcb->superblock.node_size - sizeof(tree_header)) {
ERR("tree %I64x, level %x: tried to write overlarge tree (%x > %x)\n", t->root->id, t->header.level, t->size, Vcb->superblock.node_size - sizeof(tree_header));
crash = true;
}
if (crash) {
ERR("tree %p\n", t);
le2 = t->itemlist.Flink;
while (le2 != &t->itemlist) {
tree_data* td = CONTAINING_RECORD(le2, tree_data, list_entry);
if (!td->ignore) {
ERR("%I64x,%x,%I64x inserted=%u\n", td->key.obj_id, td->key.obj_type, td->key.offset, td->inserted);
}
le2 = le2->Flink;
}
int3;
}
#endif
t->header.address = t->new_address;
t->header.generation = Vcb->superblock.generation;
t->header.tree_id = t->root->id;
t->header.flags |= HEADER_FLAG_MIXED_BACKREF;
t->header.fs_uuid = Vcb->superblock.uuid;
t->has_address = true;
data = ExAllocatePoolWithTag(NonPagedPool, Vcb->superblock.node_size, ALLOC_TAG);
if (!data) {
ERR("out of memory\n");
Status = STATUS_INSUFFICIENT_RESOURCES;
goto end;
}
body = data + sizeof(tree_header);
RtlCopyMemory(data, &t->header, sizeof(tree_header));
RtlZeroMemory(body, Vcb->superblock.node_size - sizeof(tree_header));
if (t->header.level == 0) {
leaf_node* itemptr = (leaf_node*)body;
int i = 0;
uint8_t* dataptr = data + Vcb->superblock.node_size;
le2 = t->itemlist.Flink;
while (le2 != &t->itemlist) {
tree_data* td = CONTAINING_RECORD(le2, tree_data, list_entry);
if (!td->ignore) {
dataptr = dataptr - td->size;
itemptr[i].key = td->key;
itemptr[i].offset = (uint32_t)((uint8_t*)dataptr - (uint8_t*)body);
itemptr[i].size = td->size;
i++;
if (td->size > 0)
RtlCopyMemory(dataptr, td->data, td->size);
}
le2 = le2->Flink;
}
} else {
internal_node* itemptr = (internal_node*)body;
int i = 0;
le2 = t->itemlist.Flink;
while (le2 != &t->itemlist) {
tree_data* td = CONTAINING_RECORD(le2, tree_data, list_entry);
if (!td->ignore) {
itemptr[i].key = td->key;
itemptr[i].address = td->treeholder.address;
itemptr[i].generation = td->treeholder.generation;
i++;
}
le2 = le2->Flink;
}
}
crc32 = calc_crc32c(0xffffffff, (uint8_t*)&((tree_header*)data)->fs_uuid, Vcb->superblock.node_size - sizeof(((tree_header*)data)->csum));
crc32 = ~crc32;
*((uint32_t*)data) = crc32;
TRACE("setting crc32 to %08x\n", crc32);
tw = ExAllocatePoolWithTag(PagedPool, sizeof(tree_write), ALLOC_TAG);
if (!tw) {
ERR("out of memory\n");
ExFreePool(data);
Status = STATUS_INSUFFICIENT_RESOURCES;
goto end;
}
tw->address = t->new_address;
tw->length = Vcb->superblock.node_size;
tw->data = data;
tw->allocated = false;
if (IsListEmpty(&tree_writes))
InsertTailList(&tree_writes, &tw->list_entry);
else {
bool inserted = false;
le2 = tree_writes.Flink;
while (le2 != &tree_writes) {
tree_write* tw2 = CONTAINING_RECORD(le2, tree_write, list_entry);
if (tw2->address > tw->address) {
InsertHeadList(le2->Blink, &tw->list_entry);
inserted = true;
break;
}
le2 = le2->Flink;
}
if (!inserted)
InsertTailList(&tree_writes, &tw->list_entry);
}
}
le = le->Flink;
}
Status = do_tree_writes(Vcb, &tree_writes, false);
if (!NT_SUCCESS(Status)) {
ERR("do_tree_writes returned %08x\n", Status);
goto end;
}
Status = STATUS_SUCCESS;
end:
while (!IsListEmpty(&tree_writes)) {
le = RemoveHeadList(&tree_writes);
tw = CONTAINING_RECORD(le, tree_write, list_entry);
if (tw->data)
ExFreePool(tw->data);
ExFreePool(tw);
}
return Status;
}
static void update_backup_superblock(device_extension* Vcb, superblock_backup* sb, PIRP Irp) {
KEY searchkey;
traverse_ptr tp;
RtlZeroMemory(sb, sizeof(superblock_backup));
sb->root_tree_addr = Vcb->superblock.root_tree_addr;
sb->root_tree_generation = Vcb->superblock.generation;
sb->root_level = Vcb->superblock.root_level;
sb->chunk_tree_addr = Vcb->superblock.chunk_tree_addr;
sb->chunk_tree_generation = Vcb->superblock.chunk_root_generation;
sb->chunk_root_level = Vcb->superblock.chunk_root_level;
searchkey.obj_id = BTRFS_ROOT_EXTENT;
searchkey.obj_type = TYPE_ROOT_ITEM;
searchkey.offset = 0xffffffffffffffff;
if (NT_SUCCESS(find_item(Vcb, Vcb->root_root, &tp, &searchkey, false, Irp))) {
if (tp.item->key.obj_id == searchkey.obj_id && tp.item->key.obj_type == searchkey.obj_type && tp.item->size >= sizeof(ROOT_ITEM)) {
ROOT_ITEM* ri = (ROOT_ITEM*)tp.item->data;
sb->extent_tree_addr = ri->block_number;
sb->extent_tree_generation = ri->generation;
sb->extent_root_level = ri->root_level;
}
}
searchkey.obj_id = BTRFS_ROOT_FSTREE;
if (NT_SUCCESS(find_item(Vcb, Vcb->root_root, &tp, &searchkey, false, Irp))) {
if (tp.item->key.obj_id == searchkey.obj_id && tp.item->key.obj_type == searchkey.obj_type && tp.item->size >= sizeof(ROOT_ITEM)) {
ROOT_ITEM* ri = (ROOT_ITEM*)tp.item->data;
sb->fs_tree_addr = ri->block_number;
sb->fs_tree_generation = ri->generation;
sb->fs_root_level = ri->root_level;
}
}
searchkey.obj_id = BTRFS_ROOT_DEVTREE;
if (NT_SUCCESS(find_item(Vcb, Vcb->root_root, &tp, &searchkey, false, Irp))) {
if (tp.item->key.obj_id == searchkey.obj_id && tp.item->key.obj_type == searchkey.obj_type && tp.item->size >= sizeof(ROOT_ITEM)) {
ROOT_ITEM* ri = (ROOT_ITEM*)tp.item->data;
sb->dev_root_addr = ri->block_number;
sb->dev_root_generation = ri->generation;
sb->dev_root_level = ri->root_level;
}
}
searchkey.obj_id = BTRFS_ROOT_CHECKSUM;
if (NT_SUCCESS(find_item(Vcb, Vcb->root_root, &tp, &searchkey, false, Irp))) {
if (tp.item->key.obj_id == searchkey.obj_id && tp.item->key.obj_type == searchkey.obj_type && tp.item->size >= sizeof(ROOT_ITEM)) {
ROOT_ITEM* ri = (ROOT_ITEM*)tp.item->data;
sb->csum_root_addr = ri->block_number;
sb->csum_root_generation = ri->generation;
sb->csum_root_level = ri->root_level;
}
}
sb->total_bytes = Vcb->superblock.total_bytes;
sb->bytes_used = Vcb->superblock.bytes_used;
sb->num_devices = Vcb->superblock.num_devices;
}
typedef struct {
void* context;
uint8_t* buf;
PMDL mdl;
device* device;
NTSTATUS Status;
PIRP Irp;
LIST_ENTRY list_entry;
} write_superblocks_stripe;
typedef struct _write_superblocks_context {
KEVENT Event;
LIST_ENTRY stripes;
LONG left;
} write_superblocks_context;
_Function_class_(IO_COMPLETION_ROUTINE)
static NTSTATUS __stdcall write_superblock_completion(PDEVICE_OBJECT DeviceObject, PIRP Irp, PVOID conptr) {
write_superblocks_stripe* stripe = conptr;
write_superblocks_context* context = stripe->context;
UNUSED(DeviceObject);
stripe->Status = Irp->IoStatus.Status;
if (InterlockedDecrement(&context->left) == 0)
KeSetEvent(&context->Event, 0, false);
return STATUS_MORE_PROCESSING_REQUIRED;
}
static NTSTATUS write_superblock(device_extension* Vcb, device* device, write_superblocks_context* context) {
unsigned int i = 0;
// All the documentation says that the Linux driver only writes one superblock
// if it thinks a disk is an SSD, but this doesn't seem to be the case!
while (superblock_addrs[i] > 0 && device->devitem.num_bytes >= superblock_addrs[i] + sizeof(superblock)) {
ULONG sblen = (ULONG)sector_align(sizeof(superblock), Vcb->superblock.sector_size);
superblock* sb;
uint32_t crc32;
write_superblocks_stripe* stripe;
PIO_STACK_LOCATION IrpSp;
sb = ExAllocatePoolWithTag(NonPagedPool, sblen, ALLOC_TAG);
if (!sb) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(sb, &Vcb->superblock, sizeof(superblock));
if (sblen > sizeof(superblock))
RtlZeroMemory((uint8_t*)sb + sizeof(superblock), sblen - sizeof(superblock));
RtlCopyMemory(&sb->dev_item, &device->devitem, sizeof(DEV_ITEM));
sb->sb_phys_addr = superblock_addrs[i];
crc32 = ~calc_crc32c(0xffffffff, (uint8_t*)&sb->uuid, (ULONG)sizeof(superblock) - sizeof(sb->checksum));
RtlCopyMemory(&sb->checksum, &crc32, sizeof(uint32_t));
stripe = ExAllocatePoolWithTag(NonPagedPool, sizeof(write_superblocks_stripe), ALLOC_TAG);
if (!stripe) {
ERR("out of memory\n");
ExFreePool(sb);
return STATUS_INSUFFICIENT_RESOURCES;
}
stripe->buf = (uint8_t*)sb;
stripe->Irp = IoAllocateIrp(device->devobj->StackSize, false);
if (!stripe->Irp) {
ERR("IoAllocateIrp failed\n");
ExFreePool(stripe);
ExFreePool(sb);
return STATUS_INSUFFICIENT_RESOURCES;
}
IrpSp = IoGetNextIrpStackLocation(stripe->Irp);
IrpSp->MajorFunction = IRP_MJ_WRITE;
IrpSp->FileObject = device->fileobj;
if (i == 0)
IrpSp->Flags |= SL_WRITE_THROUGH;
if (device->devobj->Flags & DO_BUFFERED_IO) {
stripe->Irp->AssociatedIrp.SystemBuffer = sb;
stripe->mdl = NULL;
stripe->Irp->Flags = IRP_BUFFERED_IO;
} else if (device->devobj->Flags & DO_DIRECT_IO) {
stripe->mdl = IoAllocateMdl(sb, sblen, false, false, NULL);
if (!stripe->mdl) {
ERR("IoAllocateMdl failed\n");
IoFreeIrp(stripe->Irp);
ExFreePool(stripe);
ExFreePool(sb);
return STATUS_INSUFFICIENT_RESOURCES;
}
stripe->Irp->MdlAddress = stripe->mdl;
MmBuildMdlForNonPagedPool(stripe->mdl);
} else {
stripe->Irp->UserBuffer = sb;
stripe->mdl = NULL;
}
IrpSp->Parameters.Write.Length = sblen;
IrpSp->Parameters.Write.ByteOffset.QuadPart = superblock_addrs[i];
IoSetCompletionRoutine(stripe->Irp, write_superblock_completion, stripe, true, true, true);
stripe->context = context;
stripe->device = device;
InsertTailList(&context->stripes, &stripe->list_entry);
context->left++;
i++;
}
if (i == 0)
ERR("no superblocks written!\n");
return STATUS_SUCCESS;
}
static NTSTATUS write_superblocks(device_extension* Vcb, PIRP Irp) {
uint64_t i;
NTSTATUS Status;
LIST_ENTRY* le;
write_superblocks_context context;
TRACE("(%p)\n", Vcb);
le = Vcb->trees.Flink;
while (le != &Vcb->trees) {
tree* t = CONTAINING_RECORD(le, tree, list_entry);
if (t->write && !t->parent) {
if (t->root == Vcb->root_root) {
Vcb->superblock.root_tree_addr = t->new_address;
Vcb->superblock.root_level = t->header.level;
} else if (t->root == Vcb->chunk_root) {
Vcb->superblock.chunk_tree_addr = t->new_address;
Vcb->superblock.chunk_root_generation = t->header.generation;
Vcb->superblock.chunk_root_level = t->header.level;
}
}
le = le->Flink;
}
for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS - 1; i++) {
RtlCopyMemory(&Vcb->superblock.backup[i], &Vcb->superblock.backup[i+1], sizeof(superblock_backup));
}
update_backup_superblock(Vcb, &Vcb->superblock.backup[BTRFS_NUM_BACKUP_ROOTS - 1], Irp);
KeInitializeEvent(&context.Event, NotificationEvent, false);
InitializeListHead(&context.stripes);
context.left = 0;
le = Vcb->devices.Flink;
while (le != &Vcb->devices) {
device* dev = CONTAINING_RECORD(le, device, list_entry);
if (dev->devobj && !dev->readonly) {
Status = write_superblock(Vcb, dev, &context);
if (!NT_SUCCESS(Status)) {
ERR("write_superblock returned %08x\n", Status);
goto end;
}
}
le = le->Flink;
}
if (IsListEmpty(&context.stripes)) {
ERR("error - not writing any superblocks\n");
Status = STATUS_INTERNAL_ERROR;
goto end;
}
le = context.stripes.Flink;
while (le != &context.stripes) {
write_superblocks_stripe* stripe = CONTAINING_RECORD(le, write_superblocks_stripe, list_entry);
IoCallDriver(stripe->device->devobj, stripe->Irp);
le = le->Flink;
}
KeWaitForSingleObject(&context.Event, Executive, KernelMode, false, NULL);
le = context.stripes.Flink;
while (le != &context.stripes) {
write_superblocks_stripe* stripe = CONTAINING_RECORD(le, write_superblocks_stripe, list_entry);
if (!NT_SUCCESS(stripe->Status)) {
ERR("device %I64x returned %08x\n", stripe->device->devitem.dev_id, stripe->Status);
log_device_error(Vcb, stripe->device, BTRFS_DEV_STAT_WRITE_ERRORS);
Status = stripe->Status;
goto end;
}
le = le->Flink;
}
Status = STATUS_SUCCESS;
end:
while (!IsListEmpty(&context.stripes)) {
write_superblocks_stripe* stripe = CONTAINING_RECORD(RemoveHeadList(&context.stripes), write_superblocks_stripe, list_entry);
if (stripe->mdl) {
if (stripe->mdl->MdlFlags & MDL_PAGES_LOCKED)
MmUnlockPages(stripe->mdl);
IoFreeMdl(stripe->mdl);
}
if (stripe->Irp)
IoFreeIrp(stripe->Irp);
if (stripe->buf)
ExFreePool(stripe->buf);
ExFreePool(stripe);
}
return Status;
}
static NTSTATUS flush_changed_extent(device_extension* Vcb, chunk* c, changed_extent* ce, PIRP Irp, LIST_ENTRY* rollback) {
LIST_ENTRY *le, *le2;
NTSTATUS Status;
uint64_t old_size;
if (ce->count == 0 && ce->old_count == 0) {
while (!IsListEmpty(&ce->refs)) {
changed_extent_ref* cer = CONTAINING_RECORD(RemoveHeadList(&ce->refs), changed_extent_ref, list_entry);
ExFreePool(cer);
}
while (!IsListEmpty(&ce->old_refs)) {
changed_extent_ref* cer = CONTAINING_RECORD(RemoveHeadList(&ce->old_refs), changed_extent_ref, list_entry);
ExFreePool(cer);
}
goto end;
}
le = ce->refs.Flink;
while (le != &ce->refs) {
changed_extent_ref* cer = CONTAINING_RECORD(le, changed_extent_ref, list_entry);
uint32_t old_count = 0;
if (cer->type == TYPE_EXTENT_DATA_REF) {
le2 = ce->old_refs.Flink;
while (le2 != &ce->old_refs) {
changed_extent_ref* cer2 = CONTAINING_RECORD(le2, changed_extent_ref, list_entry);
if (cer2->type == TYPE_EXTENT_DATA_REF && cer2->edr.root == cer->edr.root && cer2->edr.objid == cer->edr.objid && cer2->edr.offset == cer->edr.offset) {
old_count = cer2->edr.count;
break;
}
le2 = le2->Flink;
}
old_size = ce->old_count > 0 ? ce->old_size : ce->size;
if (cer->edr.count > old_count) {
Status = increase_extent_refcount_data(Vcb, ce->address, old_size, cer->edr.root, cer->edr.objid, cer->edr.offset, cer->edr.count - old_count, Irp);
if (!NT_SUCCESS(Status)) {
ERR("increase_extent_refcount_data returned %08x\n", Status);
return Status;
}
}
} else if (cer->type == TYPE_SHARED_DATA_REF) {
le2 = ce->old_refs.Flink;
while (le2 != &ce->old_refs) {
changed_extent_ref* cer2 = CONTAINING_RECORD(le2, changed_extent_ref, list_entry);
if (cer2->type == TYPE_SHARED_DATA_REF && cer2->sdr.offset == cer->sdr.offset) {
RemoveEntryList(&cer2->list_entry);
ExFreePool(cer2);
break;
}
le2 = le2->Flink;
}
}
le = le->Flink;
}
le = ce->refs.Flink;
while (le != &ce->refs) {
changed_extent_ref* cer = CONTAINING_RECORD(le, changed_extent_ref, list_entry);
LIST_ENTRY* le3 = le->Flink;
uint32_t old_count = 0;
if (cer->type == TYPE_EXTENT_DATA_REF) {
le2 = ce->old_refs.Flink;
while (le2 != &ce->old_refs) {
changed_extent_ref* cer2 = CONTAINING_RECORD(le2, changed_extent_ref, list_entry);
if (cer2->type == TYPE_EXTENT_DATA_REF && cer2->edr.root == cer->edr.root && cer2->edr.objid == cer->edr.objid && cer2->edr.offset == cer->edr.offset) {
old_count = cer2->edr.count;
RemoveEntryList(&cer2->list_entry);
ExFreePool(cer2);
break;
}
le2 = le2->Flink;
}
old_size = ce->old_count > 0 ? ce->old_size : ce->size;
if (cer->edr.count < old_count) {
Status = decrease_extent_refcount_data(Vcb, ce->address, old_size, cer->edr.root, cer->edr.objid, cer->edr.offset,
old_count - cer->edr.count, ce->superseded, Irp);
if (!NT_SUCCESS(Status)) {
ERR("decrease_extent_refcount_data returned %08x\n", Status);
return Status;
}
}
if (ce->size != ce->old_size && ce->old_count > 0) {
KEY searchkey;
traverse_ptr tp;
void* data;
searchkey.obj_id = ce->address;
searchkey.obj_type = TYPE_EXTENT_ITEM;
searchkey.offset = ce->old_size;
Status = find_item(Vcb, Vcb->extent_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (keycmp(searchkey, tp.item->key)) {
ERR("could not find (%I64x,%x,%I64x) in extent tree\n", searchkey.obj_id, searchkey.obj_type, searchkey.offset);
return STATUS_INTERNAL_ERROR;
}
if (tp.item->size > 0) {
data = ExAllocatePoolWithTag(PagedPool, tp.item->size, ALLOC_TAG);
if (!data) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(data, tp.item->data, tp.item->size);
} else
data = NULL;
Status = insert_tree_item(Vcb, Vcb->extent_root, ce->address, TYPE_EXTENT_ITEM, ce->size, data, tp.item->size, NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
if (data) ExFreePool(data);
return Status;
}
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
return Status;
}
}
}
RemoveEntryList(&cer->list_entry);
ExFreePool(cer);
le = le3;
}
#ifdef DEBUG_PARANOID
if (!IsListEmpty(&ce->old_refs))
WARN("old_refs not empty\n");
#endif
end:
if (ce->count == 0 && !ce->superseded) {
c->used -= ce->size;
space_list_add(c, ce->address, ce->size, rollback);
}
RemoveEntryList(&ce->list_entry);
ExFreePool(ce);
return STATUS_SUCCESS;
}
void add_checksum_entry(device_extension* Vcb, uint64_t address, ULONG length, uint32_t* csum, PIRP Irp) {
KEY searchkey;
traverse_ptr tp, next_tp;
NTSTATUS Status;
uint64_t startaddr, endaddr;
ULONG len;
uint32_t* checksums;
RTL_BITMAP bmp;
ULONG* bmparr;
ULONG runlength, index;
TRACE("(%p, %I64x, %x, %p, %p)\n", Vcb, address, length, csum, Irp);
searchkey.obj_id = EXTENT_CSUM_ID;
searchkey.obj_type = TYPE_EXTENT_CSUM;
searchkey.offset = address;
// FIXME - create checksum_root if it doesn't exist at all
Status = find_item(Vcb, Vcb->checksum_root, &tp, &searchkey, false, Irp);
if (Status == STATUS_NOT_FOUND) { // tree is completely empty
if (csum) { // not deleted
ULONG length2 = length;
uint64_t off = address;
uint32_t* data = csum;
do {
uint16_t il = (uint16_t)min(length2, MAX_CSUM_SIZE / sizeof(uint32_t));
checksums = ExAllocatePoolWithTag(PagedPool, il * sizeof(uint32_t), ALLOC_TAG);
if (!checksums) {
ERR("out of memory\n");
return;
}
RtlCopyMemory(checksums, data, il * sizeof(uint32_t));
Status = insert_tree_item(Vcb, Vcb->checksum_root, EXTENT_CSUM_ID, TYPE_EXTENT_CSUM, off, checksums,
il * sizeof(uint32_t), NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(checksums);
return;
}
length2 -= il;
if (length2 > 0) {
off += il * Vcb->superblock.sector_size;
data += il;
}
} while (length2 > 0);
}
} else if (!NT_SUCCESS(Status)) {
ERR("find_item returned %08x\n", Status);
return;
} else {
uint32_t tplen;
// FIXME - check entry is TYPE_EXTENT_CSUM?
if (tp.item->key.offset < address && tp.item->key.offset + (tp.item->size * Vcb->superblock.sector_size / sizeof(uint32_t)) >= address)
startaddr = tp.item->key.offset;
else
startaddr = address;
searchkey.obj_id = EXTENT_CSUM_ID;
searchkey.obj_type = TYPE_EXTENT_CSUM;
searchkey.offset = address + (length * Vcb->superblock.sector_size);
Status = find_item(Vcb, Vcb->checksum_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("find_item returned %08x\n", Status);
return;
}
tplen = tp.item->size / sizeof(uint32_t);
if (tp.item->key.offset + (tplen * Vcb->superblock.sector_size) >= address + (length * Vcb->superblock.sector_size))
endaddr = tp.item->key.offset + (tplen * Vcb->superblock.sector_size);
else
endaddr = address + (length * Vcb->superblock.sector_size);
TRACE("cs starts at %I64x (%x sectors)\n", address, length);
TRACE("startaddr = %I64x\n", startaddr);
TRACE("endaddr = %I64x\n", endaddr);
len = (ULONG)((endaddr - startaddr) / Vcb->superblock.sector_size);
checksums = ExAllocatePoolWithTag(PagedPool, sizeof(uint32_t) * len, ALLOC_TAG);
if (!checksums) {
ERR("out of memory\n");
return;
}
bmparr = ExAllocatePoolWithTag(PagedPool, sizeof(ULONG) * ((len/8)+1), ALLOC_TAG);
if (!bmparr) {
ERR("out of memory\n");
ExFreePool(checksums);
return;
}
RtlInitializeBitMap(&bmp, bmparr, len);
RtlSetAllBits(&bmp);
searchkey.obj_id = EXTENT_CSUM_ID;
searchkey.obj_type = TYPE_EXTENT_CSUM;
searchkey.offset = address;
Status = find_item(Vcb, Vcb->checksum_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("find_item returned %08x\n", Status);
ExFreePool(checksums);
ExFreePool(bmparr);
return;
}
// set bit = free space, cleared bit = allocated sector
while (tp.item->key.offset < endaddr) {
if (tp.item->key.offset >= startaddr) {
if (tp.item->size > 0) {
ULONG itemlen = (ULONG)min((len - (tp.item->key.offset - startaddr) / Vcb->superblock.sector_size) * sizeof(uint32_t), tp.item->size);
RtlCopyMemory(&checksums[(tp.item->key.offset - startaddr) / Vcb->superblock.sector_size], tp.item->data, itemlen);
RtlClearBits(&bmp, (ULONG)((tp.item->key.offset - startaddr) / Vcb->superblock.sector_size), itemlen / sizeof(uint32_t));
}
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
ExFreePool(checksums);
ExFreePool(bmparr);
return;
}
}
if (find_next_item(Vcb, &tp, &next_tp, false, Irp)) {
tp = next_tp;
} else
break;
}
if (!csum) { // deleted
RtlSetBits(&bmp, (ULONG)((address - startaddr) / Vcb->superblock.sector_size), length);
} else {
RtlCopyMemory(&checksums[(address - startaddr) / Vcb->superblock.sector_size], csum, length * sizeof(uint32_t));
RtlClearBits(&bmp, (ULONG)((address - startaddr) / Vcb->superblock.sector_size), length);
}
runlength = RtlFindFirstRunClear(&bmp, &index);
while (runlength != 0) {
if (index >= len)
break;
if (index + runlength >= len) {
runlength = len - index;
if (runlength == 0)
break;
}
do {
uint16_t rl;
uint64_t off;
uint32_t* data;
if (runlength * sizeof(uint32_t) > MAX_CSUM_SIZE)
rl = MAX_CSUM_SIZE / sizeof(uint32_t);
else
rl = (uint16_t)runlength;
data = ExAllocatePoolWithTag(PagedPool, sizeof(uint32_t) * rl, ALLOC_TAG);
if (!data) {
ERR("out of memory\n");
ExFreePool(bmparr);
ExFreePool(checksums);
return;
}
RtlCopyMemory(data, &checksums[index], sizeof(uint32_t) * rl);
off = startaddr + UInt32x32To64(index, Vcb->superblock.sector_size);
Status = insert_tree_item(Vcb, Vcb->checksum_root, EXTENT_CSUM_ID, TYPE_EXTENT_CSUM, off, data, sizeof(uint32_t) * rl, NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(data);
ExFreePool(bmparr);
ExFreePool(checksums);
return;
}
runlength -= rl;
index += rl;
} while (runlength > 0);
runlength = RtlFindNextForwardRunClear(&bmp, index, &index);
}
ExFreePool(bmparr);
ExFreePool(checksums);
}
}
static NTSTATUS update_chunk_usage(device_extension* Vcb, PIRP Irp, LIST_ENTRY* rollback) {
LIST_ENTRY *le = Vcb->chunks.Flink, *le2;
chunk* c;
KEY searchkey;
traverse_ptr tp;
BLOCK_GROUP_ITEM* bgi;
NTSTATUS Status;
TRACE("(%p)\n", Vcb);
ExAcquireResourceSharedLite(&Vcb->chunk_lock, true);
while (le != &Vcb->chunks) {
c = CONTAINING_RECORD(le, chunk, list_entry);
acquire_chunk_lock(c, Vcb);
if (!c->cache_loaded && (!IsListEmpty(&c->changed_extents) || c->used != c->oldused)) {
Status = load_cache_chunk(Vcb, c, NULL);
if (!NT_SUCCESS(Status)) {
ERR("load_cache_chunk returned %08x\n", Status);
release_chunk_lock(c, Vcb);
goto end;
}
}
le2 = c->changed_extents.Flink;
while (le2 != &c->changed_extents) {
LIST_ENTRY* le3 = le2->Flink;
changed_extent* ce = CONTAINING_RECORD(le2, changed_extent, list_entry);
Status = flush_changed_extent(Vcb, c, ce, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("flush_changed_extent returned %08x\n", Status);
release_chunk_lock(c, Vcb);
goto end;
}
le2 = le3;
}
// This is usually done by update_chunks, but we have to check again in case any new chunks
// have been allocated since.
if (c->created) {
Status = create_chunk(Vcb, c, Irp);
if (!NT_SUCCESS(Status)) {
ERR("create_chunk returned %08x\n", Status);
release_chunk_lock(c, Vcb);
goto end;
}
}
if (c->old_cache) {
if (c->old_cache->dirty) {
LIST_ENTRY batchlist;
InitializeListHead(&batchlist);
Status = flush_fcb(c->old_cache, false, &batchlist, Irp);
if (!NT_SUCCESS(Status)) {
ERR("flush_fcb returned %08x\n", Status);
release_chunk_lock(c, Vcb);
clear_batch_list(Vcb, &batchlist);
goto end;
}
Status = commit_batch_list(Vcb, &batchlist, Irp);
if (!NT_SUCCESS(Status)) {
ERR("commit_batch_list returned %08x\n", Status);
release_chunk_lock(c, Vcb);
goto end;
}
}
free_fcb(c->old_cache);
if (c->old_cache->refcount == 0)
reap_fcb(c->old_cache);
c->old_cache = NULL;
}
if (c->used != c->oldused) {
#ifdef __REACTOS__
uint64_t old_phys_used, phys_used;
#endif
searchkey.obj_id = c->offset;
searchkey.obj_type = TYPE_BLOCK_GROUP_ITEM;
searchkey.offset = c->chunk_item->size;
Status = find_item(Vcb, Vcb->extent_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
release_chunk_lock(c, Vcb);
goto end;
}
if (keycmp(searchkey, tp.item->key)) {
ERR("could not find (%I64x,%x,%I64x) in extent_root\n", searchkey.obj_id, searchkey.obj_type, searchkey.offset);
Status = STATUS_INTERNAL_ERROR;
release_chunk_lock(c, Vcb);
goto end;
}
if (tp.item->size < sizeof(BLOCK_GROUP_ITEM)) {
ERR("(%I64x,%x,%I64x) was %u bytes, expected %u\n", tp.item->key.obj_id, tp.item->key.obj_type, tp.item->key.offset, tp.item->size, sizeof(BLOCK_GROUP_ITEM));
Status = STATUS_INTERNAL_ERROR;
release_chunk_lock(c, Vcb);
goto end;
}
bgi = ExAllocatePoolWithTag(PagedPool, tp.item->size, ALLOC_TAG);
if (!bgi) {
ERR("out of memory\n");
Status = STATUS_INSUFFICIENT_RESOURCES;
release_chunk_lock(c, Vcb);
goto end;
}
RtlCopyMemory(bgi, tp.item->data, tp.item->size);
bgi->used = c->used;
#ifdef DEBUG_PARANOID
if (bgi->used & 0x8000000000000000) {
ERR("refusing to write BLOCK_GROUP_ITEM with negative usage value (%I64x)", bgi->used);
int3;
}
#endif
TRACE("adjusting usage of chunk %I64x to %I64x\n", c->offset, c->used);
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
ExFreePool(bgi);
release_chunk_lock(c, Vcb);
goto end;
}
Status = insert_tree_item(Vcb, Vcb->extent_root, searchkey.obj_id, searchkey.obj_type, searchkey.offset, bgi, tp.item->size, NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(bgi);
release_chunk_lock(c, Vcb);
goto end;
}
#ifndef __REACTOS__
uint64_t old_phys_used = chunk_estimate_phys_size(Vcb, c, c->oldused);
uint64_t phys_used = chunk_estimate_phys_size(Vcb, c, c->used);
#else
old_phys_used = chunk_estimate_phys_size(Vcb, c, c->oldused);
phys_used = chunk_estimate_phys_size(Vcb, c, c->used);
#endif
if (Vcb->superblock.bytes_used + phys_used > old_phys_used)
Vcb->superblock.bytes_used += phys_used - old_phys_used;
else
Vcb->superblock.bytes_used = 0;
c->oldused = c->used;
}
release_chunk_lock(c, Vcb);
le = le->Flink;
}
Status = STATUS_SUCCESS;
end:
ExReleaseResourceLite(&Vcb->chunk_lock);
return Status;
}
static void get_first_item(tree* t, KEY* key) {
LIST_ENTRY* le;
le = t->itemlist.Flink;
while (le != &t->itemlist) {
tree_data* td = CONTAINING_RECORD(le, tree_data, list_entry);
*key = td->key;
return;
}
}
static NTSTATUS split_tree_at(device_extension* Vcb, tree* t, tree_data* newfirstitem, uint32_t numitems, uint32_t size) {
tree *nt, *pt;
tree_data* td;
tree_data* oldlastitem;
TRACE("splitting tree in %I64x at (%I64x,%x,%I64x)\n", t->root->id, newfirstitem->key.obj_id, newfirstitem->key.obj_type, newfirstitem->key.offset);
nt = ExAllocatePoolWithTag(PagedPool, sizeof(tree), ALLOC_TAG);
if (!nt) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
if (t->header.level > 0) {
nt->nonpaged = ExAllocatePoolWithTag(NonPagedPool, sizeof(tree_nonpaged), ALLOC_TAG);
if (!nt->nonpaged) {
ERR("out of memory\n");
ExFreePool(nt);
return STATUS_INSUFFICIENT_RESOURCES;
}
ExInitializeFastMutex(&nt->nonpaged->mutex);
} else
nt->nonpaged = NULL;
RtlCopyMemory(&nt->header, &t->header, sizeof(tree_header));
nt->header.address = 0;
nt->header.generation = Vcb->superblock.generation;
nt->header.num_items = t->header.num_items - numitems;
nt->header.flags = HEADER_FLAG_MIXED_BACKREF | HEADER_FLAG_WRITTEN;
nt->has_address = false;
nt->Vcb = Vcb;
nt->parent = t->parent;
#ifdef DEBUG_PARANOID
if (nt->parent && nt->parent->header.level <= nt->header.level) int3;
#endif
nt->root = t->root;
nt->new_address = 0;
nt->has_new_address = false;
nt->updated_extents = false;
nt->uniqueness_determined = true;
nt->is_unique = true;
nt->list_entry_hash.Flink = NULL;
nt->buf = NULL;
InitializeListHead(&nt->itemlist);
oldlastitem = CONTAINING_RECORD(newfirstitem->list_entry.Blink, tree_data, list_entry);
nt->itemlist.Flink = &newfirstitem->list_entry;
nt->itemlist.Blink = t->itemlist.Blink;
nt->itemlist.Flink->Blink = &nt->itemlist;
nt->itemlist.Blink->Flink = &nt->itemlist;
t->itemlist.Blink = &oldlastitem->list_entry;
t->itemlist.Blink->Flink = &t->itemlist;
nt->size = t->size - size;
t->size = size;
t->header.num_items = numitems;
nt->write = true;
InsertTailList(&Vcb->trees, &nt->list_entry);
if (nt->header.level > 0) {
LIST_ENTRY* le = nt->itemlist.Flink;
while (le != &nt->itemlist) {
tree_data* td2 = CONTAINING_RECORD(le, tree_data, list_entry);
if (td2->treeholder.tree) {
td2->treeholder.tree->parent = nt;
#ifdef DEBUG_PARANOID
if (td2->treeholder.tree->parent && td2->treeholder.tree->parent->header.level <= td2->treeholder.tree->header.level) int3;
#endif
}
le = le->Flink;
}
} else {
LIST_ENTRY* le = nt->itemlist.Flink;
while (le != &nt->itemlist) {
tree_data* td2 = CONTAINING_RECORD(le, tree_data, list_entry);
if (!td2->inserted && td2->data) {
uint8_t* data = ExAllocatePoolWithTag(PagedPool, td2->size, ALLOC_TAG);
if (!data) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(data, td2->data, td2->size);
td2->data = data;
td2->inserted = true;
}
le = le->Flink;
}
}
if (nt->parent) {
td = ExAllocateFromPagedLookasideList(&Vcb->tree_data_lookaside);
if (!td) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
td->key = newfirstitem->key;
InsertHeadList(&t->paritem->list_entry, &td->list_entry);
td->ignore = false;
td->inserted = true;
td->treeholder.tree = nt;
nt->paritem = td;
nt->parent->header.num_items++;
nt->parent->size += sizeof(internal_node);
goto end;
}
TRACE("adding new tree parent\n");
if (nt->header.level == 255) {
ERR("cannot add parent to tree at level 255\n");
return STATUS_INTERNAL_ERROR;
}
pt = ExAllocatePoolWithTag(PagedPool, sizeof(tree), ALLOC_TAG);
if (!pt) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
pt->nonpaged = ExAllocatePoolWithTag(NonPagedPool, sizeof(tree_nonpaged), ALLOC_TAG);
if (!pt->nonpaged) {
ERR("out of memory\n");
ExFreePool(pt);
return STATUS_INSUFFICIENT_RESOURCES;
}
ExInitializeFastMutex(&pt->nonpaged->mutex);
RtlCopyMemory(&pt->header, &nt->header, sizeof(tree_header));
pt->header.address = 0;
pt->header.num_items = 2;
pt->header.level = nt->header.level + 1;
pt->header.flags = HEADER_FLAG_MIXED_BACKREF | HEADER_FLAG_WRITTEN;
pt->has_address = false;
pt->Vcb = Vcb;
pt->parent = NULL;
pt->paritem = NULL;
pt->root = t->root;
pt->new_address = 0;
pt->has_new_address = false;
pt->updated_extents = false;
pt->size = pt->header.num_items * sizeof(internal_node);
pt->uniqueness_determined = true;
pt->is_unique = true;
pt->list_entry_hash.Flink = NULL;
pt->buf = NULL;
InitializeListHead(&pt->itemlist);
InsertTailList(&Vcb->trees, &pt->list_entry);
td = ExAllocateFromPagedLookasideList(&Vcb->tree_data_lookaside);
if (!td) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
get_first_item(t, &td->key);
td->ignore = false;
td->inserted = false;
td->treeholder.address = 0;
td->treeholder.generation = Vcb->superblock.generation;
td->treeholder.tree = t;
InsertTailList(&pt->itemlist, &td->list_entry);
t->paritem = td;
td = ExAllocateFromPagedLookasideList(&Vcb->tree_data_lookaside);
if (!td) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
td->key = newfirstitem->key;
td->ignore = false;
td->inserted = false;
td->treeholder.address = 0;
td->treeholder.generation = Vcb->superblock.generation;
td->treeholder.tree = nt;
InsertTailList(&pt->itemlist, &td->list_entry);
nt->paritem = td;
pt->write = true;
t->root->treeholder.tree = pt;
t->parent = pt;
nt->parent = pt;
#ifdef DEBUG_PARANOID
if (t->parent && t->parent->header.level <= t->header.level) int3;
if (nt->parent && nt->parent->header.level <= nt->header.level) int3;
#endif
end:
t->root->root_item.bytes_used += Vcb->superblock.node_size;
return STATUS_SUCCESS;
}
static NTSTATUS split_tree(device_extension* Vcb, tree* t) {
LIST_ENTRY* le;
uint32_t size, ds, numitems;
size = 0;
numitems = 0;
// FIXME - naïve implementation: maximizes number of filled trees
le = t->itemlist.Flink;
while (le != &t->itemlist) {
tree_data* td = CONTAINING_RECORD(le, tree_data, list_entry);
if (!td->ignore) {
if (t->header.level == 0)
ds = sizeof(leaf_node) + td->size;
else
ds = sizeof(internal_node);
if (numitems == 0 && ds > Vcb->superblock.node_size - sizeof(tree_header)) {
ERR("(%I64x,%x,%I64x) in tree %I64x is too large (%x > %x)\n",
td->key.obj_id, td->key.obj_type, td->key.offset, t->root->id,
ds, Vcb->superblock.node_size - sizeof(tree_header));
return STATUS_INTERNAL_ERROR;
}
// FIXME - move back if previous item was deleted item with same key
if (size + ds > Vcb->superblock.node_size - sizeof(tree_header))
return split_tree_at(Vcb, t, td, numitems, size);
size += ds;
numitems++;
}
le = le->Flink;
}
return STATUS_SUCCESS;
}
bool is_tree_unique(device_extension* Vcb, tree* t, PIRP Irp) {
KEY searchkey;
traverse_ptr tp;
NTSTATUS Status;
bool ret = false;
EXTENT_ITEM* ei;
uint8_t* type;
if (t->uniqueness_determined)
return t->is_unique;
if (t->parent && !is_tree_unique(Vcb, t->parent, Irp))
goto end;
if (t->has_address) {
searchkey.obj_id = t->header.address;
searchkey.obj_type = Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_SKINNY_METADATA ? TYPE_METADATA_ITEM : TYPE_EXTENT_ITEM;
searchkey.offset = 0xffffffffffffffff;
Status = find_item(Vcb, Vcb->extent_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
goto end;
}
if (tp.item->key.obj_id != t->header.address || (tp.item->key.obj_type != TYPE_METADATA_ITEM && tp.item->key.obj_type != TYPE_EXTENT_ITEM))
goto end;
if (tp.item->key.obj_type == TYPE_EXTENT_ITEM && tp.item->size == sizeof(EXTENT_ITEM_V0))
goto end;
if (tp.item->size < sizeof(EXTENT_ITEM))
goto end;
ei = (EXTENT_ITEM*)tp.item->data;
if (ei->refcount > 1)
goto end;
if (tp.item->key.obj_type == TYPE_EXTENT_ITEM && ei->flags & EXTENT_ITEM_TREE_BLOCK) {
EXTENT_ITEM2* ei2;
if (tp.item->size < sizeof(EXTENT_ITEM) + sizeof(EXTENT_ITEM2))
goto end;
ei2 = (EXTENT_ITEM2*)&ei[1];
type = (uint8_t*)&ei2[1];
} else
type = (uint8_t*)&ei[1];
if (type >= tp.item->data + tp.item->size || *type != TYPE_TREE_BLOCK_REF)
goto end;
}
ret = true;
end:
t->is_unique = ret;
t->uniqueness_determined = true;
return ret;
}
static NTSTATUS try_tree_amalgamate(device_extension* Vcb, tree* t, bool* done, bool* done_deletions, PIRP Irp, LIST_ENTRY* rollback) {
LIST_ENTRY* le;
tree_data* nextparitem = NULL;
NTSTATUS Status;
tree *next_tree, *par;
*done = false;
TRACE("trying to amalgamate tree in root %I64x, level %x (size %u)\n", t->root->id, t->header.level, t->size);
// FIXME - doesn't capture everything, as it doesn't ascend
le = t->paritem->list_entry.Flink;
while (le != &t->parent->itemlist) {
tree_data* td = CONTAINING_RECORD(le, tree_data, list_entry);
if (!td->ignore) {
nextparitem = td;
break;
}
le = le->Flink;
}
if (!nextparitem)
return STATUS_SUCCESS;
TRACE("nextparitem: key = %I64x,%x,%I64x\n", nextparitem->key.obj_id, nextparitem->key.obj_type, nextparitem->key.offset);
if (!nextparitem->treeholder.tree) {
Status = do_load_tree(Vcb, &nextparitem->treeholder, t->root, t->parent, nextparitem, NULL);
if (!NT_SUCCESS(Status)) {
ERR("do_load_tree returned %08x\n", Status);
return Status;
}
}
if (!is_tree_unique(Vcb, nextparitem->treeholder.tree, Irp))
return STATUS_SUCCESS;
next_tree = nextparitem->treeholder.tree;
if (!next_tree->updated_extents && next_tree->has_address) {
Status = update_tree_extents(Vcb, next_tree, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("update_tree_extents returned %08x\n", Status);
return Status;
}
}
if (t->size + next_tree->size <= Vcb->superblock.node_size - sizeof(tree_header)) {
// merge two trees into one
t->header.num_items += next_tree->header.num_items;
t->size += next_tree->size;
if (next_tree->header.level > 0) {
le = next_tree->itemlist.Flink;
while (le != &next_tree->itemlist) {
tree_data* td2 = CONTAINING_RECORD(le, tree_data, list_entry);
if (td2->treeholder.tree) {
td2->treeholder.tree->parent = t;
#ifdef DEBUG_PARANOID
if (td2->treeholder.tree->parent && td2->treeholder.tree->parent->header.level <= td2->treeholder.tree->header.level) int3;
#endif
}
td2->inserted = true;
le = le->Flink;
}
} else {
le = next_tree->itemlist.Flink;
while (le != &next_tree->itemlist) {
tree_data* td2 = CONTAINING_RECORD(le, tree_data, list_entry);
if (!td2->inserted && td2->data) {
uint8_t* data = ExAllocatePoolWithTag(PagedPool, td2->size, ALLOC_TAG);
if (!data) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(data, td2->data, td2->size);
td2->data = data;
td2->inserted = true;
}
le = le->Flink;
}
}
t->itemlist.Blink->Flink = next_tree->itemlist.Flink;
t->itemlist.Blink->Flink->Blink = t->itemlist.Blink;
t->itemlist.Blink = next_tree->itemlist.Blink;
t->itemlist.Blink->Flink = &t->itemlist;
next_tree->itemlist.Flink = next_tree->itemlist.Blink = &next_tree->itemlist;
next_tree->header.num_items = 0;
next_tree->size = 0;
if (next_tree->has_new_address) { // delete associated EXTENT_ITEM
Status = reduce_tree_extent(Vcb, next_tree->new_address, next_tree, next_tree->parent->header.tree_id, next_tree->header.level, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("reduce_tree_extent returned %08x\n", Status);
return Status;
}
} else if (next_tree->has_address) {
Status = reduce_tree_extent(Vcb, next_tree->header.address, next_tree, next_tree->parent->header.tree_id, next_tree->header.level, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("reduce_tree_extent returned %08x\n", Status);
return Status;
}
}
if (!nextparitem->ignore) {
nextparitem->ignore = true;
next_tree->parent->header.num_items--;
next_tree->parent->size -= sizeof(internal_node);
*done_deletions = true;
}
par = next_tree->parent;
while (par) {
par->write = true;
par = par->parent;
}
RemoveEntryList(&nextparitem->list_entry);
ExFreePool(next_tree->paritem);
next_tree->paritem = NULL;
next_tree->root->root_item.bytes_used -= Vcb->superblock.node_size;
free_tree(next_tree);
*done = true;
} else {
// rebalance by moving items from second tree into first
ULONG avg_size = (t->size + next_tree->size) / 2;
KEY firstitem = {0, 0, 0};
bool changed = false;
TRACE("attempting rebalance\n");
le = next_tree->itemlist.Flink;
while (le != &next_tree->itemlist && t->size < avg_size && next_tree->header.num_items > 1) {
tree_data* td = CONTAINING_RECORD(le, tree_data, list_entry);
ULONG size;
if (!td->ignore) {
if (next_tree->header.level == 0)
size = sizeof(leaf_node) + td->size;
else
size = sizeof(internal_node);
} else
size = 0;
if (t->size + size < Vcb->superblock.node_size - sizeof(tree_header)) {
RemoveEntryList(&td->list_entry);
InsertTailList(&t->itemlist, &td->list_entry);
if (next_tree->header.level > 0 && td->treeholder.tree) {
td->treeholder.tree->parent = t;
#ifdef DEBUG_PARANOID
if (td->treeholder.tree->parent && td->treeholder.tree->parent->header.level <= td->treeholder.tree->header.level) int3;
#endif
} else if (next_tree->header.level == 0 && !td->inserted && td->size > 0) {
uint8_t* data = ExAllocatePoolWithTag(PagedPool, td->size, ALLOC_TAG);
if (!data) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(data, td->data, td->size);
td->data = data;
}
td->inserted = true;
if (!td->ignore) {
next_tree->size -= size;
t->size += size;
next_tree->header.num_items--;
t->header.num_items++;
}
changed = true;
} else
break;
le = next_tree->itemlist.Flink;
}
le = next_tree->itemlist.Flink;
while (le != &next_tree->itemlist) {
tree_data* td = CONTAINING_RECORD(le, tree_data, list_entry);
if (!td->ignore) {
firstitem = td->key;
break;
}
le = le->Flink;
}
// FIXME - once ascension is working, make this work with parent's parent, etc.
if (next_tree->paritem)
next_tree->paritem->key = firstitem;
par = next_tree;
while (par) {
par->write = true;
par = par->parent;
}
if (changed)
*done = true;
}
return STATUS_SUCCESS;
}
static NTSTATUS update_extent_level(device_extension* Vcb, uint64_t address, tree* t, uint8_t level, PIRP Irp) {
KEY searchkey;
traverse_ptr tp;
NTSTATUS Status;
if (Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_SKINNY_METADATA) {
searchkey.obj_id = address;
searchkey.obj_type = TYPE_METADATA_ITEM;
searchkey.offset = t->header.level;
Status = find_item(Vcb, Vcb->extent_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (!keycmp(tp.item->key, searchkey)) {
EXTENT_ITEM_SKINNY_METADATA* eism;
if (tp.item->size > 0) {
eism = ExAllocatePoolWithTag(PagedPool, tp.item->size, ALLOC_TAG);
if (!eism) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(eism, tp.item->data, tp.item->size);
} else
eism = NULL;
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
if (eism) ExFreePool(eism);
return Status;
}
Status = insert_tree_item(Vcb, Vcb->extent_root, address, TYPE_METADATA_ITEM, level, eism, tp.item->size, NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
if (eism) ExFreePool(eism);
return Status;
}
return STATUS_SUCCESS;
}
}
searchkey.obj_id = address;
searchkey.obj_type = TYPE_EXTENT_ITEM;
searchkey.offset = 0xffffffffffffffff;
Status = find_item(Vcb, Vcb->extent_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (tp.item->key.obj_id == searchkey.obj_id && tp.item->key.obj_type == searchkey.obj_type) {
EXTENT_ITEM_TREE* eit;
if (tp.item->size < sizeof(EXTENT_ITEM_TREE)) {
ERR("(%I64x,%x,%I64x) was %u bytes, expected at least %u\n", tp.item->key.obj_id, tp.item->key.obj_type, tp.item->key.offset, tp.item->size, sizeof(EXTENT_ITEM_TREE));
return STATUS_INTERNAL_ERROR;
}
eit = ExAllocatePoolWithTag(PagedPool, tp.item->size, ALLOC_TAG);
if (!eit) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(eit, tp.item->data, tp.item->size);
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
ExFreePool(eit);
return Status;
}
eit->level = level;
Status = insert_tree_item(Vcb, Vcb->extent_root, tp.item->key.obj_id, tp.item->key.obj_type, tp.item->key.offset, eit, tp.item->size, NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(eit);
return Status;
}
return STATUS_SUCCESS;
}
ERR("could not find EXTENT_ITEM for address %I64x\n", address);
return STATUS_INTERNAL_ERROR;
}
static NTSTATUS update_tree_extents_recursive(device_extension* Vcb, tree* t, PIRP Irp, LIST_ENTRY* rollback) {
NTSTATUS Status;
if (t->parent && !t->parent->updated_extents && t->parent->has_address) {
Status = update_tree_extents_recursive(Vcb, t->parent, Irp, rollback);
if (!NT_SUCCESS(Status))
return Status;
}
Status = update_tree_extents(Vcb, t, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("update_tree_extents returned %08x\n", Status);
return Status;
}
return STATUS_SUCCESS;
}
static NTSTATUS do_splits(device_extension* Vcb, PIRP Irp, LIST_ENTRY* rollback) {
ULONG level, max_level;
uint32_t min_size;
bool empty, done_deletions = false;
NTSTATUS Status;
tree* t;
TRACE("(%p)\n", Vcb);
max_level = 0;
for (level = 0; level <= 255; level++) {
LIST_ENTRY *le, *nextle;
empty = true;
TRACE("doing level %u\n", level);
le = Vcb->trees.Flink;
while (le != &Vcb->trees) {
t = CONTAINING_RECORD(le, tree, list_entry);
nextle = le->Flink;
if (t->write && t->header.level == level) {
empty = false;
if (t->header.num_items == 0) {
if (t->parent) {
done_deletions = true;
TRACE("deleting tree in root %I64x\n", t->root->id);
t->root->root_item.bytes_used -= Vcb->superblock.node_size;
if (t->has_new_address) { // delete associated EXTENT_ITEM
Status = reduce_tree_extent(Vcb, t->new_address, t, t->parent->header.tree_id, t->header.level, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("reduce_tree_extent returned %08x\n", Status);
return Status;
}
t->has_new_address = false;
} else if (t->has_address) {
Status = reduce_tree_extent(Vcb,t->header.address, t, t->parent->header.tree_id, t->header.level, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("reduce_tree_extent returned %08x\n", Status);
return Status;
}
t->has_address = false;
}
if (!t->paritem->ignore) {
t->paritem->ignore = true;
t->parent->header.num_items--;
t->parent->size -= sizeof(internal_node);
}
RemoveEntryList(&t->paritem->list_entry);
ExFreePool(t->paritem);
t->paritem = NULL;
free_tree(t);
} else if (t->header.level != 0) {
if (t->has_new_address) {
Status = update_extent_level(Vcb, t->new_address, t, 0, Irp);
if (!NT_SUCCESS(Status)) {
ERR("update_extent_level returned %08x\n", Status);
return Status;
}
}
t->header.level = 0;
}
} else if (t->size > Vcb->superblock.node_size - sizeof(tree_header)) {
TRACE("splitting overlarge tree (%x > %x)\n", t->size, Vcb->superblock.node_size - sizeof(tree_header));
if (!t->updated_extents && t->has_address) {
Status = update_tree_extents_recursive(Vcb, t, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("update_tree_extents_recursive returned %08x\n", Status);
return Status;
}
}
Status = split_tree(Vcb, t);
if (!NT_SUCCESS(Status)) {
ERR("split_tree returned %08x\n", Status);
return Status;
}
}
}
le = nextle;
}
if (!empty) {
max_level = level;
} else {
TRACE("nothing found for level %u\n", level);
break;
}
}
min_size = (Vcb->superblock.node_size - sizeof(tree_header)) / 2;
for (level = 0; level <= max_level; level++) {
LIST_ENTRY* le;
le = Vcb->trees.Flink;
while (le != &Vcb->trees) {
t = CONTAINING_RECORD(le, tree, list_entry);
if (t->write && t->header.level == level && t->header.num_items > 0 && t->parent && t->size < min_size &&
t->root->id != BTRFS_ROOT_FREE_SPACE && is_tree_unique(Vcb, t, Irp)) {
bool done;
do {
Status = try_tree_amalgamate(Vcb, t, &done, &done_deletions, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("try_tree_amalgamate returned %08x\n", Status);
return Status;
}
} while (done && t->size < min_size);
}
le = le->Flink;
}
}
// simplify trees if top tree only has one entry
if (done_deletions) {
for (level = max_level; level > 0; level--) {
LIST_ENTRY *le, *nextle;
le = Vcb->trees.Flink;
while (le != &Vcb->trees) {
nextle = le->Flink;
t = CONTAINING_RECORD(le, tree, list_entry);
if (t->write && t->header.level == level) {
if (!t->parent && t->header.num_items == 1) {
LIST_ENTRY* le2 = t->itemlist.Flink;
tree_data* td = NULL;
tree* child_tree = NULL;
while (le2 != &t->itemlist) {
td = CONTAINING_RECORD(le2, tree_data, list_entry);
if (!td->ignore)
break;
le2 = le2->Flink;
}
TRACE("deleting top-level tree in root %I64x with one item\n", t->root->id);
if (t->has_new_address) { // delete associated EXTENT_ITEM
Status = reduce_tree_extent(Vcb, t->new_address, t, t->header.tree_id, t->header.level, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("reduce_tree_extent returned %08x\n", Status);
return Status;
}
t->has_new_address = false;
} else if (t->has_address) {
Status = reduce_tree_extent(Vcb,t->header.address, t, t->header.tree_id, t->header.level, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("reduce_tree_extent returned %08x\n", Status);
return Status;
}
t->has_address = false;
}
if (!td->treeholder.tree) { // load first item if not already loaded
KEY searchkey = {0,0,0};
traverse_ptr tp;
Status = find_item(Vcb, t->root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
}
child_tree = td->treeholder.tree;
if (child_tree) {
child_tree->parent = NULL;
child_tree->paritem = NULL;
}
t->root->root_item.bytes_used -= Vcb->superblock.node_size;
free_tree(t);
if (child_tree)
child_tree->root->treeholder.tree = child_tree;
}
}
le = nextle;
}
}
}
return STATUS_SUCCESS;
}
static NTSTATUS remove_root_extents(device_extension* Vcb, root* r, tree_holder* th, uint8_t level, tree* parent, PIRP Irp, LIST_ENTRY* rollback) {
NTSTATUS Status;
if (!th->tree) {
uint8_t* buf;
chunk* c;
buf = ExAllocatePoolWithTag(PagedPool, Vcb->superblock.node_size, ALLOC_TAG);
if (!buf) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
Status = read_data(Vcb, th->address, Vcb->superblock.node_size, NULL, true, buf, NULL,
&c, Irp, th->generation, false, NormalPagePriority);
if (!NT_SUCCESS(Status)) {
ERR("read_data returned 0x%08x\n", Status);
ExFreePool(buf);
return Status;
}
Status = load_tree(Vcb, th->address, buf, r, &th->tree);
if (!th->tree || th->tree->buf != buf)
ExFreePool(buf);
if (!NT_SUCCESS(Status)) {
ERR("load_tree(%I64x) returned %08x\n", th->address, Status);
return Status;
}
}
if (level > 0) {
LIST_ENTRY* le = th->tree->itemlist.Flink;
while (le != &th->tree->itemlist) {
tree_data* td = CONTAINING_RECORD(le, tree_data, list_entry);
if (!td->ignore) {
Status = remove_root_extents(Vcb, r, &td->treeholder, th->tree->header.level - 1, th->tree, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("remove_root_extents returned %08x\n", Status);
return Status;
}
}
le = le->Flink;
}
}
if (th->tree && !th->tree->updated_extents && th->tree->has_address) {
Status = update_tree_extents(Vcb, th->tree, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("update_tree_extents returned %08x\n", Status);
return Status;
}
}
if (!th->tree || th->tree->has_address) {
Status = reduce_tree_extent(Vcb, th->address, NULL, parent ? parent->header.tree_id : r->id, level, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("reduce_tree_extent(%I64x) returned %08x\n", th->address, Status);
return Status;
}
}
return STATUS_SUCCESS;
}
static NTSTATUS drop_root(device_extension* Vcb, root* r, PIRP Irp, LIST_ENTRY* rollback) {
NTSTATUS Status;
KEY searchkey;
traverse_ptr tp;
Status = remove_root_extents(Vcb, r, &r->treeholder, r->root_item.root_level, NULL, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("remove_root_extents returned %08x\n", Status);
return Status;
}
// remove entries in uuid root (tree 9)
if (Vcb->uuid_root) {
RtlCopyMemory(&searchkey.obj_id, &r->root_item.uuid.uuid[0], sizeof(uint64_t));
searchkey.obj_type = TYPE_SUBVOL_UUID;
RtlCopyMemory(&searchkey.offset, &r->root_item.uuid.uuid[sizeof(uint64_t)], sizeof(uint64_t));
if (searchkey.obj_id != 0 || searchkey.offset != 0) {
Status = find_item(Vcb, Vcb->uuid_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
WARN("find_item returned %08x\n", Status);
} else {
if (!keycmp(tp.item->key, searchkey)) {
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
return Status;
}
} else
WARN("could not find (%I64x,%x,%I64x) in uuid tree\n", searchkey.obj_id, searchkey.obj_type, searchkey.offset);
}
}
if (r->root_item.rtransid > 0) {
RtlCopyMemory(&searchkey.obj_id, &r->root_item.received_uuid.uuid[0], sizeof(uint64_t));
searchkey.obj_type = TYPE_SUBVOL_REC_UUID;
RtlCopyMemory(&searchkey.offset, &r->root_item.received_uuid.uuid[sizeof(uint64_t)], sizeof(uint64_t));
Status = find_item(Vcb, Vcb->uuid_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status))
WARN("find_item returned %08x\n", Status);
else {
if (!keycmp(tp.item->key, searchkey)) {
if (tp.item->size == sizeof(uint64_t)) {
uint64_t* id = (uint64_t*)tp.item->data;
if (*id == r->id) {
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
return Status;
}
}
} else if (tp.item->size > sizeof(uint64_t)) {
ULONG i;
uint64_t* ids = (uint64_t*)tp.item->data;
for (i = 0; i < tp.item->size / sizeof(uint64_t); i++) {
if (ids[i] == r->id) {
uint64_t* ne;
ne = ExAllocatePoolWithTag(PagedPool, tp.item->size - sizeof(uint64_t), ALLOC_TAG);
if (!ne) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
if (i > 0)
RtlCopyMemory(ne, ids, sizeof(uint64_t) * i);
if ((i + 1) * sizeof(uint64_t) < tp.item->size)
RtlCopyMemory(&ne[i], &ids[i + 1], tp.item->size - ((i + 1) * sizeof(uint64_t)));
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
ExFreePool(ne);
return Status;
}
Status = insert_tree_item(Vcb, Vcb->uuid_root, tp.item->key.obj_id, tp.item->key.obj_type, tp.item->key.offset,
ne, tp.item->size - sizeof(uint64_t), NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(ne);
return Status;
}
break;
}
}
}
} else
WARN("could not find (%I64x,%x,%I64x) in uuid tree\n", searchkey.obj_id, searchkey.obj_type, searchkey.offset);
}
}
}
// delete ROOT_ITEM
searchkey.obj_id = r->id;
searchkey.obj_type = TYPE_ROOT_ITEM;
searchkey.offset = 0xffffffffffffffff;
Status = find_item(Vcb, Vcb->root_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("find_item returned %08x\n", Status);
return Status;
}
if (tp.item->key.obj_id == searchkey.obj_id && tp.item->key.obj_type == searchkey.obj_type) {
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
return Status;
}
} else
WARN("could not find (%I64x,%x,%I64x) in root_root\n", searchkey.obj_id, searchkey.obj_type, searchkey.offset);
// delete items in tree cache
free_trees_root(Vcb, r);
return STATUS_SUCCESS;
}
static NTSTATUS drop_roots(device_extension* Vcb, PIRP Irp, LIST_ENTRY* rollback) {
LIST_ENTRY *le = Vcb->drop_roots.Flink, *le2;
NTSTATUS Status;
while (le != &Vcb->drop_roots) {
root* r = CONTAINING_RECORD(le, root, list_entry);
le2 = le->Flink;
Status = drop_root(Vcb, r, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("drop_root(%I64x) returned %08x\n", r->id, Status);
return Status;
}
le = le2;
}
return STATUS_SUCCESS;
}
NTSTATUS update_dev_item(device_extension* Vcb, device* device, PIRP Irp) {
KEY searchkey;
traverse_ptr tp;
DEV_ITEM* di;
NTSTATUS Status;
searchkey.obj_id = 1;
searchkey.obj_type = TYPE_DEV_ITEM;
searchkey.offset = device->devitem.dev_id;
Status = find_item(Vcb, Vcb->chunk_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (keycmp(tp.item->key, searchkey)) {
ERR("error - could not find DEV_ITEM for device %I64x\n", device->devitem.dev_id);
return STATUS_INTERNAL_ERROR;
}
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
return Status;
}
di = ExAllocatePoolWithTag(PagedPool, sizeof(DEV_ITEM), ALLOC_TAG);
if (!di) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(di, &device->devitem, sizeof(DEV_ITEM));
Status = insert_tree_item(Vcb, Vcb->chunk_root, 1, TYPE_DEV_ITEM, device->devitem.dev_id, di, sizeof(DEV_ITEM), NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(di);
return Status;
}
return STATUS_SUCCESS;
}
static void regen_bootstrap(device_extension* Vcb) {
sys_chunk* sc2;
USHORT i = 0;
LIST_ENTRY* le;
i = 0;
le = Vcb->sys_chunks.Flink;
while (le != &Vcb->sys_chunks) {
sc2 = CONTAINING_RECORD(le, sys_chunk, list_entry);
TRACE("%I64x,%x,%I64x\n", sc2->key.obj_id, sc2->key.obj_type, sc2->key.offset);
RtlCopyMemory(&Vcb->superblock.sys_chunk_array[i], &sc2->key, sizeof(KEY));
i += sizeof(KEY);
RtlCopyMemory(&Vcb->superblock.sys_chunk_array[i], sc2->data, sc2->size);
i += sc2->size;
le = le->Flink;
}
}
static NTSTATUS add_to_bootstrap(device_extension* Vcb, uint64_t obj_id, uint8_t obj_type, uint64_t offset, void* data, uint16_t size) {
sys_chunk* sc;
LIST_ENTRY* le;
if (Vcb->superblock.n + sizeof(KEY) + size > SYS_CHUNK_ARRAY_SIZE) {
ERR("error - bootstrap is full\n");
return STATUS_INTERNAL_ERROR;
}
sc = ExAllocatePoolWithTag(PagedPool, sizeof(sys_chunk), ALLOC_TAG);
if (!sc) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
sc->key.obj_id = obj_id;
sc->key.obj_type = obj_type;
sc->key.offset = offset;
sc->size = size;
sc->data = ExAllocatePoolWithTag(PagedPool, sc->size, ALLOC_TAG);
if (!sc->data) {
ERR("out of memory\n");
ExFreePool(sc);
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(sc->data, data, sc->size);
le = Vcb->sys_chunks.Flink;
while (le != &Vcb->sys_chunks) {
sys_chunk* sc2 = CONTAINING_RECORD(le, sys_chunk, list_entry);
if (keycmp(sc2->key, sc->key) == 1)
break;
le = le->Flink;
}
InsertTailList(le, &sc->list_entry);
Vcb->superblock.n += sizeof(KEY) + size;
regen_bootstrap(Vcb);
return STATUS_SUCCESS;
}
static NTSTATUS create_chunk(device_extension* Vcb, chunk* c, PIRP Irp) {
CHUNK_ITEM* ci;
CHUNK_ITEM_STRIPE* cis;
BLOCK_GROUP_ITEM* bgi;
uint16_t i, factor;
NTSTATUS Status;
ci = ExAllocatePoolWithTag(PagedPool, c->size, ALLOC_TAG);
if (!ci) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(ci, c->chunk_item, c->size);
Status = insert_tree_item(Vcb, Vcb->chunk_root, 0x100, TYPE_CHUNK_ITEM, c->offset, ci, c->size, NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item failed\n");
ExFreePool(ci);
return Status;
}
if (c->chunk_item->type & BLOCK_FLAG_SYSTEM) {
Status = add_to_bootstrap(Vcb, 0x100, TYPE_CHUNK_ITEM, c->offset, ci, c->size);
if (!NT_SUCCESS(Status)) {
ERR("add_to_bootstrap returned %08x\n", Status);
return Status;
}
}
// add BLOCK_GROUP_ITEM to tree 2
bgi = ExAllocatePoolWithTag(PagedPool, sizeof(BLOCK_GROUP_ITEM), ALLOC_TAG);
if (!bgi) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
bgi->used = c->used;
bgi->chunk_tree = 0x100;
bgi->flags = c->chunk_item->type;
Status = insert_tree_item(Vcb, Vcb->extent_root, c->offset, TYPE_BLOCK_GROUP_ITEM, c->chunk_item->size, bgi, sizeof(BLOCK_GROUP_ITEM), NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item failed\n");
ExFreePool(bgi);
return Status;
}
if (c->chunk_item->type & BLOCK_FLAG_RAID0)
factor = c->chunk_item->num_stripes;
else if (c->chunk_item->type & BLOCK_FLAG_RAID10)
factor = c->chunk_item->num_stripes / c->chunk_item->sub_stripes;
else if (c->chunk_item->type & BLOCK_FLAG_RAID5)
factor = c->chunk_item->num_stripes - 1;
else if (c->chunk_item->type & BLOCK_FLAG_RAID6)
factor = c->chunk_item->num_stripes - 2;
else // SINGLE, DUPLICATE, RAID1
factor = 1;
// add DEV_EXTENTs to tree 4
cis = (CHUNK_ITEM_STRIPE*)&c->chunk_item[1];
for (i = 0; i < c->chunk_item->num_stripes; i++) {
DEV_EXTENT* de;
de = ExAllocatePoolWithTag(PagedPool, sizeof(DEV_EXTENT), ALLOC_TAG);
if (!de) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
de->chunktree = Vcb->chunk_root->id;
de->objid = 0x100;
de->address = c->offset;
de->length = c->chunk_item->size / factor;
de->chunktree_uuid = Vcb->chunk_root->treeholder.tree->header.chunk_tree_uuid;
Status = insert_tree_item(Vcb, Vcb->dev_root, c->devices[i]->devitem.dev_id, TYPE_DEV_EXTENT, cis[i].offset, de, sizeof(DEV_EXTENT), NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(de);
return Status;
}
// FIXME - no point in calling this twice for the same device
Status = update_dev_item(Vcb, c->devices[i], Irp);
if (!NT_SUCCESS(Status)) {
ERR("update_dev_item returned %08x\n", Status);
return Status;
}
}
c->created = false;
c->oldused = c->used;
Vcb->superblock.bytes_used += chunk_estimate_phys_size(Vcb, c, c->used);
return STATUS_SUCCESS;
}
static void remove_from_bootstrap(device_extension* Vcb, uint64_t obj_id, uint8_t obj_type, uint64_t offset) {
sys_chunk* sc2;
LIST_ENTRY* le;
le = Vcb->sys_chunks.Flink;
while (le != &Vcb->sys_chunks) {
sc2 = CONTAINING_RECORD(le, sys_chunk, list_entry);
if (sc2->key.obj_id == obj_id && sc2->key.obj_type == obj_type && sc2->key.offset == offset) {
RemoveEntryList(&sc2->list_entry);
Vcb->superblock.n -= sizeof(KEY) + sc2->size;
ExFreePool(sc2->data);
ExFreePool(sc2);
regen_bootstrap(Vcb);
return;
}
le = le->Flink;
}
}
static NTSTATUS set_xattr(device_extension* Vcb, LIST_ENTRY* batchlist, root* subvol, uint64_t inode, char* name, uint16_t namelen,
uint32_t crc32, uint8_t* data, uint16_t datalen) {
NTSTATUS Status;
uint16_t xasize;
DIR_ITEM* xa;
TRACE("(%p, %I64x, %I64x, %.*s, %08x, %p, %u)\n", Vcb, subvol->id, inode, namelen, name, crc32, data, datalen);
xasize = (uint16_t)offsetof(DIR_ITEM, name[0]) + namelen + datalen;
xa = ExAllocatePoolWithTag(PagedPool, xasize, ALLOC_TAG);
if (!xa) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
xa->key.obj_id = 0;
xa->key.obj_type = 0;
xa->key.offset = 0;
xa->transid = Vcb->superblock.generation;
xa->m = datalen;
xa->n = namelen;
xa->type = BTRFS_TYPE_EA;
RtlCopyMemory(xa->name, name, namelen);
RtlCopyMemory(xa->name + namelen, data, datalen);
Status = insert_tree_item_batch(batchlist, Vcb, subvol, inode, TYPE_XATTR_ITEM, crc32, xa, xasize, Batch_SetXattr);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
ExFreePool(xa);
return Status;
}
return STATUS_SUCCESS;
}
static NTSTATUS delete_xattr(device_extension* Vcb, LIST_ENTRY* batchlist, root* subvol, uint64_t inode, char* name,
uint16_t namelen, uint32_t crc32) {
NTSTATUS Status;
uint16_t xasize;
DIR_ITEM* xa;
TRACE("(%p, %I64x, %I64x, %.*s, %08x)\n", Vcb, subvol->id, inode, namelen, name, crc32);
xasize = (uint16_t)offsetof(DIR_ITEM, name[0]) + namelen;
xa = ExAllocatePoolWithTag(PagedPool, xasize, ALLOC_TAG);
if (!xa) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
xa->key.obj_id = 0;
xa->key.obj_type = 0;
xa->key.offset = 0;
xa->transid = Vcb->superblock.generation;
xa->m = 0;
xa->n = namelen;
xa->type = BTRFS_TYPE_EA;
RtlCopyMemory(xa->name, name, namelen);
Status = insert_tree_item_batch(batchlist, Vcb, subvol, inode, TYPE_XATTR_ITEM, crc32, xa, xasize, Batch_DeleteXattr);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
ExFreePool(xa);
return Status;
}
return STATUS_SUCCESS;
}
static NTSTATUS insert_sparse_extent(fcb* fcb, LIST_ENTRY* batchlist, uint64_t start, uint64_t length) {
NTSTATUS Status;
EXTENT_DATA* ed;
EXTENT_DATA2* ed2;
TRACE("((%I64x, %I64x), %I64x, %I64x)\n", fcb->subvol->id, fcb->inode, start, length);
ed = ExAllocatePoolWithTag(PagedPool, sizeof(EXTENT_DATA) - 1 + sizeof(EXTENT_DATA2), ALLOC_TAG);
if (!ed) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
ed->generation = fcb->Vcb->superblock.generation;
ed->decoded_size = length;
ed->compression = BTRFS_COMPRESSION_NONE;
ed->encryption = BTRFS_ENCRYPTION_NONE;
ed->encoding = BTRFS_ENCODING_NONE;
ed->type = EXTENT_TYPE_REGULAR;
ed2 = (EXTENT_DATA2*)ed->data;
ed2->address = 0;
ed2->size = 0;
ed2->offset = 0;
ed2->num_bytes = length;
Status = insert_tree_item_batch(batchlist, fcb->Vcb, fcb->subvol, fcb->inode, TYPE_EXTENT_DATA, start, ed, sizeof(EXTENT_DATA) - 1 + sizeof(EXTENT_DATA2), Batch_Insert);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
ExFreePool(ed);
return Status;
}
return STATUS_SUCCESS;
}
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(suppress: 28194)
#endif
NTSTATUS insert_tree_item_batch(LIST_ENTRY* batchlist, device_extension* Vcb, root* r, uint64_t objid, uint8_t objtype, uint64_t offset,
_In_opt_ _When_(return >= 0, __drv_aliasesMem) void* data, uint16_t datalen, enum batch_operation operation) {
LIST_ENTRY* le;
batch_root* br = NULL;
batch_item* bi;
le = batchlist->Flink;
while (le != batchlist) {
batch_root* br2 = CONTAINING_RECORD(le, batch_root, list_entry);
if (br2->r == r) {
br = br2;
break;
}
le = le->Flink;
}
if (!br) {
br = ExAllocatePoolWithTag(PagedPool, sizeof(batch_root), ALLOC_TAG);
if (!br) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
br->r = r;
InitializeListHead(&br->items);
InsertTailList(batchlist, &br->list_entry);
}
bi = ExAllocateFromPagedLookasideList(&Vcb->batch_item_lookaside);
if (!bi) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
bi->key.obj_id = objid;
bi->key.obj_type = objtype;
bi->key.offset = offset;
bi->data = data;
bi->datalen = datalen;
bi->operation = operation;
le = br->items.Blink;
while (le != &br->items) {
batch_item* bi2 = CONTAINING_RECORD(le, batch_item, list_entry);
int cmp = keycmp(bi2->key, bi->key);
if (cmp == -1 || (cmp == 0 && bi->operation >= bi2->operation)) {
InsertHeadList(&bi2->list_entry, &bi->list_entry);
return STATUS_SUCCESS;
}
le = le->Blink;
}
InsertHeadList(&br->items, &bi->list_entry);
return STATUS_SUCCESS;
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
typedef struct {
uint64_t address;
uint64_t length;
uint64_t offset;
bool changed;
chunk* chunk;
uint64_t skip_start;
uint64_t skip_end;
LIST_ENTRY list_entry;
} extent_range;
static void rationalize_extents(fcb* fcb, PIRP Irp) {
LIST_ENTRY* le;
LIST_ENTRY extent_ranges;
extent_range* er;
bool changed = false, truncating = false;
uint32_t num_extents = 0;
InitializeListHead(&extent_ranges);
le = fcb->extents.Flink;
while (le != &fcb->extents) {
extent* ext = CONTAINING_RECORD(le, extent, list_entry);
if ((ext->extent_data.type == EXTENT_TYPE_REGULAR || ext->extent_data.type == EXTENT_TYPE_PREALLOC) && ext->extent_data.compression == BTRFS_COMPRESSION_NONE && ext->unique) {
EXTENT_DATA2* ed2 = (EXTENT_DATA2*)ext->extent_data.data;
if (ed2->size != 0) {
LIST_ENTRY* le2;
le2 = extent_ranges.Flink;
while (le2 != &extent_ranges) {
extent_range* er2 = CONTAINING_RECORD(le2, extent_range, list_entry);
if (er2->address == ed2->address) {
er2->skip_start = min(er2->skip_start, ed2->offset);
er2->skip_end = min(er2->skip_end, ed2->size - ed2->offset - ed2->num_bytes);
goto cont;
} else if (er2->address > ed2->address)
break;
le2 = le2->Flink;
}
er = ExAllocatePoolWithTag(PagedPool, sizeof(extent_range), ALLOC_TAG); // FIXME - should be from lookaside?
if (!er) {
ERR("out of memory\n");
goto end;
}
er->address = ed2->address;
er->length = ed2->size;
er->offset = ext->offset - ed2->offset;
er->changed = false;
er->chunk = NULL;
er->skip_start = ed2->offset;
er->skip_end = ed2->size - ed2->offset - ed2->num_bytes;
if (er->skip_start != 0 || er->skip_end != 0)
truncating = true;
InsertHeadList(le2->Blink, &er->list_entry);
num_extents++;
}
}
cont:
le = le->Flink;
}
if (num_extents == 0 || (num_extents == 1 && !truncating))
goto end;
le = extent_ranges.Flink;
while (le != &extent_ranges) {
er = CONTAINING_RECORD(le, extent_range, list_entry);
if (!er->chunk) {
LIST_ENTRY* le2;
er->chunk = get_chunk_from_address(fcb->Vcb, er->address);
if (!er->chunk) {
ERR("get_chunk_from_address(%I64x) failed\n", er->address);
goto end;
}
le2 = le->Flink;
while (le2 != &extent_ranges) {
extent_range* er2 = CONTAINING_RECORD(le2, extent_range, list_entry);
if (!er2->chunk && er2->address >= er->chunk->offset && er2->address < er->chunk->offset + er->chunk->chunk_item->size)
er2->chunk = er->chunk;
le2 = le2->Flink;
}
}
le = le->Flink;
}
if (truncating) {
// truncate beginning or end of extent if unused
le = extent_ranges.Flink;
while (le != &extent_ranges) {
er = CONTAINING_RECORD(le, extent_range, list_entry);
if (er->skip_start > 0) {
LIST_ENTRY* le2 = fcb->extents.Flink;
while (le2 != &fcb->extents) {
extent* ext = CONTAINING_RECORD(le2, extent, list_entry);
if ((ext->extent_data.type == EXTENT_TYPE_REGULAR || ext->extent_data.type == EXTENT_TYPE_PREALLOC) && ext->extent_data.compression == BTRFS_COMPRESSION_NONE && ext->unique) {
EXTENT_DATA2* ed2 = (EXTENT_DATA2*)ext->extent_data.data;
if (ed2->size != 0 && ed2->address == er->address) {
NTSTATUS Status;
Status = update_changed_extent_ref(fcb->Vcb, er->chunk, ed2->address, ed2->size, fcb->subvol->id, fcb->inode, ext->offset - ed2->offset,
-1, fcb->inode_item.flags & BTRFS_INODE_NODATASUM, true, Irp);
if (!NT_SUCCESS(Status)) {
ERR("update_changed_extent_ref returned %08x\n", Status);
goto end;
}
ext->extent_data.decoded_size -= er->skip_start;
ed2->size -= er->skip_start;
ed2->address += er->skip_start;
ed2->offset -= er->skip_start;
add_changed_extent_ref(er->chunk, ed2->address, ed2->size, fcb->subvol->id, fcb->inode, ext->offset - ed2->offset,
1, fcb->inode_item.flags & BTRFS_INODE_NODATASUM);
}
}
le2 = le2->Flink;
}
if (!(fcb->inode_item.flags & BTRFS_INODE_NODATASUM))
add_checksum_entry(fcb->Vcb, er->address, (ULONG)(er->skip_start / fcb->Vcb->superblock.sector_size), NULL, NULL);
acquire_chunk_lock(er->chunk, fcb->Vcb);
if (!er->chunk->cache_loaded) {
NTSTATUS Status = load_cache_chunk(fcb->Vcb, er->chunk, NULL);
if (!NT_SUCCESS(Status)) {
ERR("load_cache_chunk returned %08x\n", Status);
release_chunk_lock(er->chunk, fcb->Vcb);
goto end;
}
}
er->chunk->used -= er->skip_start;
space_list_add(er->chunk, er->address, er->skip_start, NULL);
release_chunk_lock(er->chunk, fcb->Vcb);
er->address += er->skip_start;
er->length -= er->skip_start;
}
if (er->skip_end > 0) {
LIST_ENTRY* le2 = fcb->extents.Flink;
while (le2 != &fcb->extents) {
extent* ext = CONTAINING_RECORD(le2, extent, list_entry);
if ((ext->extent_data.type == EXTENT_TYPE_REGULAR || ext->extent_data.type == EXTENT_TYPE_PREALLOC) && ext->extent_data.compression == BTRFS_COMPRESSION_NONE && ext->unique) {
EXTENT_DATA2* ed2 = (EXTENT_DATA2*)ext->extent_data.data;
if (ed2->size != 0 && ed2->address == er->address) {
NTSTATUS Status;
Status = update_changed_extent_ref(fcb->Vcb, er->chunk, ed2->address, ed2->size, fcb->subvol->id, fcb->inode, ext->offset - ed2->offset,
-1, fcb->inode_item.flags & BTRFS_INODE_NODATASUM, true, Irp);
if (!NT_SUCCESS(Status)) {
ERR("update_changed_extent_ref returned %08x\n", Status);
goto end;
}
ext->extent_data.decoded_size -= er->skip_end;
ed2->size -= er->skip_end;
add_changed_extent_ref(er->chunk, ed2->address, ed2->size, fcb->subvol->id, fcb->inode, ext->offset - ed2->offset,
1, fcb->inode_item.flags & BTRFS_INODE_NODATASUM);
}
}
le2 = le2->Flink;
}
if (!(fcb->inode_item.flags & BTRFS_INODE_NODATASUM))
add_checksum_entry(fcb->Vcb, er->address + er->length - er->skip_end, (ULONG)(er->skip_end / fcb->Vcb->superblock.sector_size), NULL, NULL);
acquire_chunk_lock(er->chunk, fcb->Vcb);
if (!er->chunk->cache_loaded) {
NTSTATUS Status = load_cache_chunk(fcb->Vcb, er->chunk, NULL);
if (!NT_SUCCESS(Status)) {
ERR("load_cache_chunk returned %08x\n", Status);
release_chunk_lock(er->chunk, fcb->Vcb);
goto end;
}
}
er->chunk->used -= er->skip_end;
space_list_add(er->chunk, er->address + er->length - er->skip_end, er->skip_end, NULL);
release_chunk_lock(er->chunk, fcb->Vcb);
er->length -= er->skip_end;
}
le = le->Flink;
}
}
if (num_extents < 2)
goto end;
// merge together adjacent extents
le = extent_ranges.Flink;
while (le != &extent_ranges) {
er = CONTAINING_RECORD(le, extent_range, list_entry);
if (le->Flink != &extent_ranges && er->length < MAX_EXTENT_SIZE) {
extent_range* er2 = CONTAINING_RECORD(le->Flink, extent_range, list_entry);
if (er->chunk == er2->chunk) {
if (er2->address == er->address + er->length && er2->offset >= er->offset + er->length) {
if (er->length + er2->length <= MAX_EXTENT_SIZE) {
er->length += er2->length;
er->changed = true;
RemoveEntryList(&er2->list_entry);
ExFreePool(er2);
changed = true;
continue;
}
}
}
}
le = le->Flink;
}
if (!changed)
goto end;
le = fcb->extents.Flink;
while (le != &fcb->extents) {
extent* ext = CONTAINING_RECORD(le, extent, list_entry);
if ((ext->extent_data.type == EXTENT_TYPE_REGULAR || ext->extent_data.type == EXTENT_TYPE_PREALLOC) && ext->extent_data.compression == BTRFS_COMPRESSION_NONE && ext->unique) {
EXTENT_DATA2* ed2 = (EXTENT_DATA2*)ext->extent_data.data;
if (ed2->size != 0) {
LIST_ENTRY* le2;
le2 = extent_ranges.Flink;
while (le2 != &extent_ranges) {
extent_range* er2 = CONTAINING_RECORD(le2, extent_range, list_entry);
if (ed2->address >= er2->address && ed2->address + ed2->size <= er2->address + er2->length && er2->changed) {
NTSTATUS Status;
Status = update_changed_extent_ref(fcb->Vcb, er2->chunk, ed2->address, ed2->size, fcb->subvol->id, fcb->inode, ext->offset - ed2->offset,
-1, fcb->inode_item.flags & BTRFS_INODE_NODATASUM, true, Irp);
if (!NT_SUCCESS(Status)) {
ERR("update_changed_extent_ref returned %08x\n", Status);
goto end;
}
ed2->offset += ed2->address - er2->address;
ed2->address = er2->address;
ed2->size = er2->length;
ext->extent_data.decoded_size = ed2->size;
add_changed_extent_ref(er2->chunk, ed2->address, ed2->size, fcb->subvol->id, fcb->inode, ext->offset - ed2->offset,
1, fcb->inode_item.flags & BTRFS_INODE_NODATASUM);
break;
}
le2 = le2->Flink;
}
}
}
le = le->Flink;
}
end:
while (!IsListEmpty(&extent_ranges)) {
le = RemoveHeadList(&extent_ranges);
er = CONTAINING_RECORD(le, extent_range, list_entry);
ExFreePool(er);
}
}
NTSTATUS flush_fcb(fcb* fcb, bool cache, LIST_ENTRY* batchlist, PIRP Irp) {
traverse_ptr tp;
KEY searchkey;
NTSTATUS Status;
INODE_ITEM* ii;
uint64_t ii_offset;
#ifdef DEBUG_PARANOID
uint64_t old_size = 0;
bool extents_changed;
#endif
if (fcb->ads) {
if (fcb->deleted) {
Status = delete_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, fcb->adsxattr.Buffer, fcb->adsxattr.Length, fcb->adshash);
if (!NT_SUCCESS(Status)) {
ERR("delete_xattr returned %08x\n", Status);
goto end;
}
} else {
Status = set_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, fcb->adsxattr.Buffer, fcb->adsxattr.Length,
fcb->adshash, (uint8_t*)fcb->adsdata.Buffer, fcb->adsdata.Length);
if (!NT_SUCCESS(Status)) {
ERR("set_xattr returned %08x\n", Status);
goto end;
}
}
Status = STATUS_SUCCESS;
goto end;
}
if (fcb->deleted) {
Status = insert_tree_item_batch(batchlist, fcb->Vcb, fcb->subvol, fcb->inode, TYPE_INODE_ITEM, 0xffffffffffffffff, NULL, 0, Batch_DeleteInode);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
goto end;
}
if (fcb->marked_as_orphan) {
Status = insert_tree_item_batch(batchlist, fcb->Vcb, fcb->subvol, BTRFS_ORPHAN_INODE_OBJID, TYPE_ORPHAN_INODE,
fcb->inode, NULL, 0, Batch_Delete);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
goto end;
}
}
Status = STATUS_SUCCESS;
goto end;
}
#ifdef DEBUG_PARANOID
extents_changed = fcb->extents_changed;
#endif
if (fcb->extents_changed) {
LIST_ENTRY* le;
bool prealloc = false, extents_inline = false;
uint64_t last_end;
// delete ignored extent items
le = fcb->extents.Flink;
while (le != &fcb->extents) {
LIST_ENTRY* le2 = le->Flink;
extent* ext = CONTAINING_RECORD(le, extent, list_entry);
if (ext->ignore) {
RemoveEntryList(&ext->list_entry);
if (ext->csum)
ExFreePool(ext->csum);
ExFreePool(ext);
}
le = le2;
}
le = fcb->extents.Flink;
while (le != &fcb->extents) {
extent* ext = CONTAINING_RECORD(le, extent, list_entry);
if (ext->inserted && ext->csum && ext->extent_data.type == EXTENT_TYPE_REGULAR) {
EXTENT_DATA2* ed2 = (EXTENT_DATA2*)ext->extent_data.data;
if (ed2->size > 0) { // not sparse
if (ext->extent_data.compression == BTRFS_COMPRESSION_NONE)
add_checksum_entry(fcb->Vcb, ed2->address + ed2->offset, (ULONG)(ed2->num_bytes / fcb->Vcb->superblock.sector_size), ext->csum, Irp);
else
add_checksum_entry(fcb->Vcb, ed2->address, (ULONG)(ed2->size / fcb->Vcb->superblock.sector_size), ext->csum, Irp);
}
}
le = le->Flink;
}
if (!IsListEmpty(&fcb->extents)) {
rationalize_extents(fcb, Irp);
// merge together adjacent EXTENT_DATAs pointing to same extent
le = fcb->extents.Flink;
while (le != &fcb->extents) {
LIST_ENTRY* le2 = le->Flink;
extent* ext = CONTAINING_RECORD(le, extent, list_entry);
if ((ext->extent_data.type == EXTENT_TYPE_REGULAR || ext->extent_data.type == EXTENT_TYPE_PREALLOC) && le->Flink != &fcb->extents) {
extent* nextext = CONTAINING_RECORD(le->Flink, extent, list_entry);
if (ext->extent_data.type == nextext->extent_data.type) {
EXTENT_DATA2* ed2 = (EXTENT_DATA2*)ext->extent_data.data;
EXTENT_DATA2* ned2 = (EXTENT_DATA2*)nextext->extent_data.data;
if (ed2->size != 0 && ed2->address == ned2->address && ed2->size == ned2->size &&
nextext->offset == ext->offset + ed2->num_bytes && ned2->offset == ed2->offset + ed2->num_bytes) {
chunk* c;
if (ext->extent_data.compression == BTRFS_COMPRESSION_NONE && ext->csum) {
ULONG len = (ULONG)((ed2->num_bytes + ned2->num_bytes) / fcb->Vcb->superblock.sector_size);
uint32_t* csum;
csum = ExAllocatePoolWithTag(NonPagedPool, len * sizeof(uint32_t), ALLOC_TAG);
if (!csum) {
ERR("out of memory\n");
Status = STATUS_INSUFFICIENT_RESOURCES;
goto end;
}
RtlCopyMemory(csum, ext->csum, (ULONG)(ed2->num_bytes * sizeof(uint32_t) / fcb->Vcb->superblock.sector_size));
RtlCopyMemory(&csum[ed2->num_bytes / fcb->Vcb->superblock.sector_size], nextext->csum,
(ULONG)(ned2->num_bytes * sizeof(uint32_t) / fcb->Vcb->superblock.sector_size));
ExFreePool(ext->csum);
ext->csum = csum;
}
ext->extent_data.generation = fcb->Vcb->superblock.generation;
ed2->num_bytes += ned2->num_bytes;
RemoveEntryList(&nextext->list_entry);
if (nextext->csum)
ExFreePool(nextext->csum);
ExFreePool(nextext);
c = get_chunk_from_address(fcb->Vcb, ed2->address);
if (!c) {
ERR("get_chunk_from_address(%I64x) failed\n", ed2->address);
} else {
Status = update_changed_extent_ref(fcb->Vcb, c, ed2->address, ed2->size, fcb->subvol->id, fcb->inode, ext->offset - ed2->offset, -1,
fcb->inode_item.flags & BTRFS_INODE_NODATASUM, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("update_changed_extent_ref returned %08x\n", Status);
goto end;
}
}
le2 = le;
}
}
}
le = le2;
}
}
if (!fcb->created) {
// delete existing EXTENT_DATA items
Status = insert_tree_item_batch(batchlist, fcb->Vcb, fcb->subvol, fcb->inode, TYPE_EXTENT_DATA, 0, NULL, 0, Batch_DeleteExtentData);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
goto end;
}
}
// add new EXTENT_DATAs
last_end = 0;
le = fcb->extents.Flink;
while (le != &fcb->extents) {
extent* ext = CONTAINING_RECORD(le, extent, list_entry);
EXTENT_DATA* ed;
ext->inserted = false;
if (!(fcb->Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_NO_HOLES) && ext->offset > last_end) {
Status = insert_sparse_extent(fcb, batchlist, last_end, ext->offset - last_end);
if (!NT_SUCCESS(Status)) {
ERR("insert_sparse_extent returned %08x\n", Status);
goto end;
}
}
ed = ExAllocatePoolWithTag(PagedPool, ext->datalen, ALLOC_TAG);
if (!ed) {
ERR("out of memory\n");
Status = STATUS_INSUFFICIENT_RESOURCES;
goto end;
}
RtlCopyMemory(ed, &ext->extent_data, ext->datalen);
Status = insert_tree_item_batch(batchlist, fcb->Vcb, fcb->subvol, fcb->inode, TYPE_EXTENT_DATA, ext->offset,
ed, ext->datalen, Batch_Insert);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
goto end;
}
if (ed->type == EXTENT_TYPE_PREALLOC)
prealloc = true;
if (ed->type == EXTENT_TYPE_INLINE)
extents_inline = true;
if (!(fcb->Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_NO_HOLES)) {
if (ed->type == EXTENT_TYPE_INLINE)
last_end = ext->offset + ed->decoded_size;
else {
EXTENT_DATA2* ed2 = (EXTENT_DATA2*)ed->data;
last_end = ext->offset + ed2->num_bytes;
}
}
le = le->Flink;
}
if (!(fcb->Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_NO_HOLES) && !extents_inline &&
sector_align(fcb->inode_item.st_size, fcb->Vcb->superblock.sector_size) > last_end) {
Status = insert_sparse_extent(fcb, batchlist, last_end, sector_align(fcb->inode_item.st_size, fcb->Vcb->superblock.sector_size) - last_end);
if (!NT_SUCCESS(Status)) {
ERR("insert_sparse_extent returned %08x\n", Status);
goto end;
}
}
// update prealloc flag in INODE_ITEM
if (!prealloc)
fcb->inode_item.flags &= ~BTRFS_INODE_PREALLOC;
else
fcb->inode_item.flags |= BTRFS_INODE_PREALLOC;
fcb->inode_item_changed = true;
fcb->extents_changed = false;
}
if ((!fcb->created && fcb->inode_item_changed) || cache) {
searchkey.obj_id = fcb->inode;
searchkey.obj_type = TYPE_INODE_ITEM;
searchkey.offset = 0xffffffffffffffff;
Status = find_item(fcb->Vcb, fcb->subvol, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
goto end;
}
if (tp.item->key.obj_id != searchkey.obj_id || tp.item->key.obj_type != searchkey.obj_type) {
if (cache) {
ii = ExAllocatePoolWithTag(PagedPool, sizeof(INODE_ITEM), ALLOC_TAG);
if (!ii) {
ERR("out of memory\n");
Status = STATUS_INSUFFICIENT_RESOURCES;
goto end;
}
RtlCopyMemory(ii, &fcb->inode_item, sizeof(INODE_ITEM));
Status = insert_tree_item(fcb->Vcb, fcb->subvol, fcb->inode, TYPE_INODE_ITEM, 0, ii, sizeof(INODE_ITEM), NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
goto end;
}
ii_offset = 0;
} else {
ERR("could not find INODE_ITEM for inode %I64x in subvol %I64x\n", fcb->inode, fcb->subvol->id);
Status = STATUS_INTERNAL_ERROR;
goto end;
}
} else {
#ifdef DEBUG_PARANOID
INODE_ITEM* ii2 = (INODE_ITEM*)tp.item->data;
old_size = ii2->st_size;
#endif
ii_offset = tp.item->key.offset;
}
if (!cache) {
Status = delete_tree_item(fcb->Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
goto end;
}
} else {
searchkey.obj_id = fcb->inode;
searchkey.obj_type = TYPE_INODE_ITEM;
searchkey.offset = ii_offset;
Status = find_item(fcb->Vcb, fcb->subvol, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
goto end;
}
if (keycmp(tp.item->key, searchkey)) {
ERR("could not find INODE_ITEM for inode %I64x in subvol %I64x\n", fcb->inode, fcb->subvol->id);
Status = STATUS_INTERNAL_ERROR;
goto end;
} else
RtlCopyMemory(tp.item->data, &fcb->inode_item, min(tp.item->size, sizeof(INODE_ITEM)));
}
#ifdef DEBUG_PARANOID
if (!extents_changed && fcb->type != BTRFS_TYPE_DIRECTORY && old_size != fcb->inode_item.st_size) {
ERR("error - size has changed but extents not marked as changed\n");
int3;
}
#endif
} else
ii_offset = 0;
fcb->created = false;
if (!cache && fcb->inode_item_changed) {
ii = ExAllocatePoolWithTag(PagedPool, sizeof(INODE_ITEM), ALLOC_TAG);
if (!ii) {
ERR("out of memory\n");
Status = STATUS_INSUFFICIENT_RESOURCES;
goto end;
}
RtlCopyMemory(ii, &fcb->inode_item, sizeof(INODE_ITEM));
Status = insert_tree_item_batch(batchlist, fcb->Vcb, fcb->subvol, fcb->inode, TYPE_INODE_ITEM, ii_offset, ii, sizeof(INODE_ITEM),
Batch_Insert);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
goto end;
}
fcb->inode_item_changed = false;
}
if (fcb->sd_dirty) {
if (!fcb->sd_deleted) {
Status = set_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, EA_NTACL, sizeof(EA_NTACL) - 1,
EA_NTACL_HASH, (uint8_t*)fcb->sd, (uint16_t)RtlLengthSecurityDescriptor(fcb->sd));
if (!NT_SUCCESS(Status)) {
ERR("set_xattr returned %08x\n", Status);
goto end;
}
} else {
Status = delete_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, EA_NTACL, sizeof(EA_NTACL) - 1, EA_NTACL_HASH);
if (!NT_SUCCESS(Status)) {
ERR("delete_xattr returned %08x\n", Status);
goto end;
}
}
fcb->sd_deleted = false;
fcb->sd_dirty = false;
}
if (fcb->atts_changed) {
if (!fcb->atts_deleted) {
uint8_t val[16], *val2;
ULONG atts = fcb->atts;
TRACE("inserting new DOSATTRIB xattr\n");
if (fcb->inode == SUBVOL_ROOT_INODE)
atts &= ~FILE_ATTRIBUTE_READONLY;
val2 = &val[sizeof(val) - 1];
do {
uint8_t c = atts % 16;
*val2 = c <= 9 ? (c + '0') : (c - 0xa + 'a');
val2--;
atts >>= 4;
} while (atts != 0);
*val2 = 'x';
val2--;
*val2 = '0';
Status = set_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, EA_DOSATTRIB, sizeof(EA_DOSATTRIB) - 1,
EA_DOSATTRIB_HASH, val2, (uint16_t)(val + sizeof(val) - val2));
if (!NT_SUCCESS(Status)) {
ERR("set_xattr returned %08x\n", Status);
goto end;
}
} else {
Status = delete_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, EA_DOSATTRIB, sizeof(EA_DOSATTRIB) - 1, EA_DOSATTRIB_HASH);
if (!NT_SUCCESS(Status)) {
ERR("delete_xattr returned %08x\n", Status);
goto end;
}
}
fcb->atts_changed = false;
fcb->atts_deleted = false;
}
if (fcb->reparse_xattr_changed) {
if (fcb->reparse_xattr.Buffer && fcb->reparse_xattr.Length > 0) {
Status = set_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, EA_REPARSE, sizeof(EA_REPARSE) - 1,
EA_REPARSE_HASH, (uint8_t*)fcb->reparse_xattr.Buffer, (uint16_t)fcb->reparse_xattr.Length);
if (!NT_SUCCESS(Status)) {
ERR("set_xattr returned %08x\n", Status);
goto end;
}
} else {
Status = delete_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, EA_REPARSE, sizeof(EA_REPARSE) - 1, EA_REPARSE_HASH);
if (!NT_SUCCESS(Status)) {
ERR("delete_xattr returned %08x\n", Status);
goto end;
}
}
fcb->reparse_xattr_changed = false;
}
if (fcb->ea_changed) {
if (fcb->ea_xattr.Buffer && fcb->ea_xattr.Length > 0) {
Status = set_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, EA_EA, sizeof(EA_EA) - 1,
EA_EA_HASH, (uint8_t*)fcb->ea_xattr.Buffer, (uint16_t)fcb->ea_xattr.Length);
if (!NT_SUCCESS(Status)) {
ERR("set_xattr returned %08x\n", Status);
goto end;
}
} else {
Status = delete_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, EA_EA, sizeof(EA_EA) - 1, EA_EA_HASH);
if (!NT_SUCCESS(Status)) {
ERR("delete_xattr returned %08x\n", Status);
goto end;
}
}
fcb->ea_changed = false;
}
if (fcb->prop_compression_changed) {
if (fcb->prop_compression == PropCompression_None) {
Status = delete_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, EA_PROP_COMPRESSION, sizeof(EA_PROP_COMPRESSION) - 1, EA_PROP_COMPRESSION_HASH);
if (!NT_SUCCESS(Status)) {
ERR("delete_xattr returned %08x\n", Status);
goto end;
}
} else if (fcb->prop_compression == PropCompression_Zlib) {
static const char zlib[] = "zlib";
Status = set_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, EA_PROP_COMPRESSION, sizeof(EA_PROP_COMPRESSION) - 1,
EA_PROP_COMPRESSION_HASH, (uint8_t*)zlib, sizeof(zlib) - 1);
if (!NT_SUCCESS(Status)) {
ERR("set_xattr returned %08x\n", Status);
goto end;
}
} else if (fcb->prop_compression == PropCompression_LZO) {
static const char lzo[] = "lzo";
Status = set_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, EA_PROP_COMPRESSION, sizeof(EA_PROP_COMPRESSION) - 1,
EA_PROP_COMPRESSION_HASH, (uint8_t*)lzo, sizeof(lzo) - 1);
if (!NT_SUCCESS(Status)) {
ERR("set_xattr returned %08x\n", Status);
goto end;
}
} else if (fcb->prop_compression == PropCompression_ZSTD) {
static const char zstd[] = "zstd";
Status = set_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, EA_PROP_COMPRESSION, sizeof(EA_PROP_COMPRESSION) - 1,
EA_PROP_COMPRESSION_HASH, (uint8_t*)zstd, sizeof(zstd) - 1);
if (!NT_SUCCESS(Status)) {
ERR("set_xattr returned %08x\n", Status);
goto end;
}
}
fcb->prop_compression_changed = false;
}
if (fcb->xattrs_changed) {
LIST_ENTRY* le;
le = fcb->xattrs.Flink;
while (le != &fcb->xattrs) {
xattr* xa = CONTAINING_RECORD(le, xattr, list_entry);
LIST_ENTRY* le2 = le->Flink;
if (xa->dirty) {
uint32_t hash = calc_crc32c(0xfffffffe, (uint8_t*)xa->data, xa->namelen);
if (xa->valuelen == 0) {
Status = delete_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, xa->data, xa->namelen, hash);
if (!NT_SUCCESS(Status)) {
ERR("delete_xattr returned %08x\n", Status);
goto end;
}
RemoveEntryList(&xa->list_entry);
ExFreePool(xa);
} else {
Status = set_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, xa->data, xa->namelen,
hash, (uint8_t*)&xa->data[xa->namelen], xa->valuelen);
if (!NT_SUCCESS(Status)) {
ERR("set_xattr returned %08x\n", Status);
goto end;
}
xa->dirty = false;
}
}
le = le2;
}
fcb->xattrs_changed = false;
}
if ((fcb->case_sensitive_set && !fcb->case_sensitive)) {
Status = delete_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, EA_CASE_SENSITIVE,
sizeof(EA_CASE_SENSITIVE) - 1, EA_CASE_SENSITIVE_HASH);
if (!NT_SUCCESS(Status)) {
ERR("delete_xattr returned %08x\n", Status);
goto end;
}
fcb->case_sensitive_set = false;
} else if ((!fcb->case_sensitive_set && fcb->case_sensitive)) {
Status = set_xattr(fcb->Vcb, batchlist, fcb->subvol, fcb->inode, EA_CASE_SENSITIVE,
sizeof(EA_CASE_SENSITIVE) - 1, EA_CASE_SENSITIVE_HASH, (uint8_t*)"1", 1);
if (!NT_SUCCESS(Status)) {
ERR("set_xattr returned %08x\n", Status);
goto end;
}
fcb->case_sensitive_set = true;
}
if (fcb->inode_item.st_nlink == 0 && !fcb->marked_as_orphan) { // mark as orphan
Status = insert_tree_item_batch(batchlist, fcb->Vcb, fcb->subvol, BTRFS_ORPHAN_INODE_OBJID, TYPE_ORPHAN_INODE,
fcb->inode, NULL, 0, Batch_Insert);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
goto end;
}
fcb->marked_as_orphan = true;
}
Status = STATUS_SUCCESS;
end:
if (fcb->dirty) {
bool lock = false;
fcb->dirty = false;
if (!ExIsResourceAcquiredExclusiveLite(&fcb->Vcb->dirty_fcbs_lock)) {
ExAcquireResourceExclusiveLite(&fcb->Vcb->dirty_fcbs_lock, true);
lock = true;
}
RemoveEntryList(&fcb->list_entry_dirty);
if (lock)
ExReleaseResourceLite(&fcb->Vcb->dirty_fcbs_lock);
}
return Status;
}
void add_trim_entry_avoid_sb(device_extension* Vcb, device* dev, uint64_t address, uint64_t size) {
int i;
ULONG sblen = (ULONG)sector_align(sizeof(superblock), Vcb->superblock.sector_size);
i = 0;
while (superblock_addrs[i] != 0) {
if (superblock_addrs[i] + sblen >= address && superblock_addrs[i] < address + size) {
if (superblock_addrs[i] > address)
add_trim_entry(dev, address, superblock_addrs[i] - address);
if (size <= superblock_addrs[i] + sblen - address)
return;
size -= superblock_addrs[i] + sblen - address;
address = superblock_addrs[i] + sblen;
} else if (superblock_addrs[i] > address + size)
break;
i++;
}
add_trim_entry(dev, address, size);
}
static NTSTATUS drop_chunk(device_extension* Vcb, chunk* c, LIST_ENTRY* batchlist, PIRP Irp, LIST_ENTRY* rollback) {
NTSTATUS Status;
KEY searchkey;
traverse_ptr tp;
uint64_t i, factor;
#ifdef __REACTOS__
uint64_t phys_used;
#endif
CHUNK_ITEM_STRIPE* cis = (CHUNK_ITEM_STRIPE*)&c->chunk_item[1];;
TRACE("dropping chunk %I64x\n", c->offset);
if (c->chunk_item->type & BLOCK_FLAG_RAID0)
factor = c->chunk_item->num_stripes;
else if (c->chunk_item->type & BLOCK_FLAG_RAID10)
factor = c->chunk_item->num_stripes / c->chunk_item->sub_stripes;
else if (c->chunk_item->type & BLOCK_FLAG_RAID5)
factor = c->chunk_item->num_stripes - 1;
else if (c->chunk_item->type & BLOCK_FLAG_RAID6)
factor = c->chunk_item->num_stripes - 2;
else // SINGLE, DUPLICATE, RAID1
factor = 1;
// do TRIM
if (Vcb->trim && !Vcb->options.no_trim) {
uint64_t len = c->chunk_item->size / factor;
for (i = 0; i < c->chunk_item->num_stripes; i++) {
if (c->devices[i] && c->devices[i]->devobj && !c->devices[i]->readonly && c->devices[i]->trim)
add_trim_entry_avoid_sb(Vcb, c->devices[i], cis[i].offset, len);
}
}
if (!c->cache) {
Status = load_stored_free_space_cache(Vcb, c, true, Irp);
if (!NT_SUCCESS(Status) && Status != STATUS_NOT_FOUND)
WARN("load_stored_free_space_cache returned %08x\n", Status);
}
// remove free space cache
if (c->cache) {
c->cache->deleted = true;
Status = excise_extents(Vcb, c->cache, 0, c->cache->inode_item.st_size, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("excise_extents returned %08x\n", Status);
return Status;
}
Status = flush_fcb(c->cache, true, batchlist, Irp);
free_fcb(c->cache);
if (c->cache->refcount == 0)
reap_fcb(c->cache);
if (!NT_SUCCESS(Status)) {
ERR("flush_fcb returned %08x\n", Status);
return Status;
}
searchkey.obj_id = FREE_SPACE_CACHE_ID;
searchkey.obj_type = 0;
searchkey.offset = c->offset;
Status = find_item(Vcb, Vcb->root_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (!keycmp(tp.item->key, searchkey)) {
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
return Status;
}
}
}
if (Vcb->space_root) {
Status = insert_tree_item_batch(batchlist, Vcb, Vcb->space_root, c->offset, TYPE_FREE_SPACE_INFO, c->chunk_item->size,
NULL, 0, Batch_DeleteFreeSpace);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
return Status;
}
}
for (i = 0; i < c->chunk_item->num_stripes; i++) {
if (!c->created) {
// remove DEV_EXTENTs from tree 4
searchkey.obj_id = cis[i].dev_id;
searchkey.obj_type = TYPE_DEV_EXTENT;
searchkey.offset = cis[i].offset;
Status = find_item(Vcb, Vcb->dev_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (!keycmp(tp.item->key, searchkey)) {
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
return Status;
}
if (tp.item->size >= sizeof(DEV_EXTENT)) {
DEV_EXTENT* de = (DEV_EXTENT*)tp.item->data;
c->devices[i]->devitem.bytes_used -= de->length;
if (Vcb->balance.thread && Vcb->balance.shrinking && Vcb->balance.opts[0].devid == c->devices[i]->devitem.dev_id) {
if (cis[i].offset < Vcb->balance.opts[0].drange_start && cis[i].offset + de->length > Vcb->balance.opts[0].drange_start)
space_list_add2(&c->devices[i]->space, NULL, cis[i].offset, Vcb->balance.opts[0].drange_start - cis[i].offset, NULL, rollback);
} else
space_list_add2(&c->devices[i]->space, NULL, cis[i].offset, de->length, NULL, rollback);
}
} else
WARN("could not find (%I64x,%x,%I64x) in dev tree\n", searchkey.obj_id, searchkey.obj_type, searchkey.offset);
} else {
uint64_t len = c->chunk_item->size / factor;
c->devices[i]->devitem.bytes_used -= len;
if (Vcb->balance.thread && Vcb->balance.shrinking && Vcb->balance.opts[0].devid == c->devices[i]->devitem.dev_id) {
if (cis[i].offset < Vcb->balance.opts[0].drange_start && cis[i].offset + len > Vcb->balance.opts[0].drange_start)
space_list_add2(&c->devices[i]->space, NULL, cis[i].offset, Vcb->balance.opts[0].drange_start - cis[i].offset, NULL, rollback);
} else
space_list_add2(&c->devices[i]->space, NULL, cis[i].offset, len, NULL, rollback);
}
}
// modify DEV_ITEMs in chunk tree
for (i = 0; i < c->chunk_item->num_stripes; i++) {
if (c->devices[i]) {
uint64_t j;
DEV_ITEM* di;
searchkey.obj_id = 1;
searchkey.obj_type = TYPE_DEV_ITEM;
searchkey.offset = c->devices[i]->devitem.dev_id;
Status = find_item(Vcb, Vcb->chunk_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (!keycmp(tp.item->key, searchkey)) {
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
return Status;
}
di = ExAllocatePoolWithTag(PagedPool, sizeof(DEV_ITEM), ALLOC_TAG);
if (!di) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(di, &c->devices[i]->devitem, sizeof(DEV_ITEM));
Status = insert_tree_item(Vcb, Vcb->chunk_root, 1, TYPE_DEV_ITEM, c->devices[i]->devitem.dev_id, di, sizeof(DEV_ITEM), NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
return Status;
}
}
for (j = i + 1; j < c->chunk_item->num_stripes; j++) {
if (c->devices[j] == c->devices[i])
c->devices[j] = NULL;
}
}
}
if (!c->created) {
// remove CHUNK_ITEM from chunk tree
searchkey.obj_id = 0x100;
searchkey.obj_type = TYPE_CHUNK_ITEM;
searchkey.offset = c->offset;
Status = find_item(Vcb, Vcb->chunk_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (!keycmp(tp.item->key, searchkey)) {
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
return Status;
}
} else
WARN("could not find CHUNK_ITEM for chunk %I64x\n", c->offset);
// remove BLOCK_GROUP_ITEM from extent tree
searchkey.obj_id = c->offset;
searchkey.obj_type = TYPE_BLOCK_GROUP_ITEM;
searchkey.offset = 0xffffffffffffffff;
Status = find_item(Vcb, Vcb->extent_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (tp.item->key.obj_id == searchkey.obj_id && tp.item->key.obj_type == searchkey.obj_type) {
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
return Status;
}
} else
WARN("could not find BLOCK_GROUP_ITEM for chunk %I64x\n", c->offset);
}
if (c->chunk_item->type & BLOCK_FLAG_SYSTEM)
remove_from_bootstrap(Vcb, 0x100, TYPE_CHUNK_ITEM, c->offset);
RemoveEntryList(&c->list_entry);
// clear raid56 incompat flag if dropping last RAID5/6 chunk
if (c->chunk_item->type & BLOCK_FLAG_RAID5 || c->chunk_item->type & BLOCK_FLAG_RAID6) {
LIST_ENTRY* le;
bool clear_flag = true;
le = Vcb->chunks.Flink;
while (le != &Vcb->chunks) {
chunk* c2 = CONTAINING_RECORD(le, chunk, list_entry);
if (c2->chunk_item->type & BLOCK_FLAG_RAID5 || c2->chunk_item->type & BLOCK_FLAG_RAID6) {
clear_flag = false;
break;
}
le = le->Flink;
}
if (clear_flag)
Vcb->superblock.incompat_flags &= ~BTRFS_INCOMPAT_FLAGS_RAID56;
}
#ifndef __REACTOS__
uint64_t phys_used = chunk_estimate_phys_size(Vcb, c, c->oldused);
#else
phys_used = chunk_estimate_phys_size(Vcb, c, c->oldused);
#endif
if (phys_used < Vcb->superblock.bytes_used)
Vcb->superblock.bytes_used -= phys_used;
else
Vcb->superblock.bytes_used = 0;
ExFreePool(c->chunk_item);
ExFreePool(c->devices);
while (!IsListEmpty(&c->space)) {
space* s = CONTAINING_RECORD(c->space.Flink, space, list_entry);
RemoveEntryList(&s->list_entry);
ExFreePool(s);
}
while (!IsListEmpty(&c->deleting)) {
space* s = CONTAINING_RECORD(c->deleting.Flink, space, list_entry);
RemoveEntryList(&s->list_entry);
ExFreePool(s);
}
release_chunk_lock(c, Vcb);
ExDeleteResourceLite(&c->partial_stripes_lock);
ExDeleteResourceLite(&c->range_locks_lock);
ExDeleteResourceLite(&c->lock);
ExDeleteResourceLite(&c->changed_extents_lock);
ExFreePool(c);
return STATUS_SUCCESS;
}
static NTSTATUS partial_stripe_read(device_extension* Vcb, chunk* c, partial_stripe* ps, uint64_t startoff, uint16_t parity, ULONG offset, ULONG len) {
NTSTATUS Status;
ULONG sl = (ULONG)(c->chunk_item->stripe_length / Vcb->superblock.sector_size);
CHUNK_ITEM_STRIPE* cis = (CHUNK_ITEM_STRIPE*)&c->chunk_item[1];
while (len > 0) {
ULONG readlen = min(offset + len, offset + (sl - (offset % sl))) - offset;
uint16_t stripe;
stripe = (parity + (offset / sl) + 1) % c->chunk_item->num_stripes;
if (c->devices[stripe]->devobj) {
Status = sync_read_phys(c->devices[stripe]->devobj, c->devices[stripe]->fileobj, cis[stripe].offset + startoff + ((offset % sl) * Vcb->superblock.sector_size),
readlen * Vcb->superblock.sector_size, ps->data + (offset * Vcb->superblock.sector_size), false);
if (!NT_SUCCESS(Status)) {
ERR("sync_read_phys returned %08x\n", Status);
return Status;
}
} else if (c->chunk_item->type & BLOCK_FLAG_RAID5) {
uint16_t i;
uint8_t* scratch;
scratch = ExAllocatePoolWithTag(NonPagedPool, readlen * Vcb->superblock.sector_size, ALLOC_TAG);
if (!scratch) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
for (i = 0; i < c->chunk_item->num_stripes; i++) {
if (i != stripe) {
if (!c->devices[i]->devobj) {
ExFreePool(scratch);
return STATUS_UNEXPECTED_IO_ERROR;
}
if (i == 0 || (stripe == 0 && i == 1)) {
Status = sync_read_phys(c->devices[i]->devobj, c->devices[i]->fileobj, cis[i].offset + startoff + ((offset % sl) * Vcb->superblock.sector_size),
readlen * Vcb->superblock.sector_size, ps->data + (offset * Vcb->superblock.sector_size), false);
if (!NT_SUCCESS(Status)) {
ERR("sync_read_phys returned %08x\n", Status);
ExFreePool(scratch);
return Status;
}
} else {
Status = sync_read_phys(c->devices[i]->devobj, c->devices[i]->fileobj, cis[i].offset + startoff + ((offset % sl) * Vcb->superblock.sector_size),
readlen * Vcb->superblock.sector_size, scratch, false);
if (!NT_SUCCESS(Status)) {
ERR("sync_read_phys returned %08x\n", Status);
ExFreePool(scratch);
return Status;
}
do_xor(ps->data + (offset * Vcb->superblock.sector_size), scratch, readlen * Vcb->superblock.sector_size);
}
}
}
ExFreePool(scratch);
} else {
uint8_t* scratch;
uint16_t k, i, logstripe, error_stripe, num_errors = 0;
scratch = ExAllocatePoolWithTag(NonPagedPool, (c->chunk_item->num_stripes + 2) * readlen * Vcb->superblock.sector_size, ALLOC_TAG);
if (!scratch) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
i = (parity + 1) % c->chunk_item->num_stripes;
for (k = 0; k < c->chunk_item->num_stripes; k++) {
if (i != stripe) {
if (c->devices[i]->devobj) {
Status = sync_read_phys(c->devices[i]->devobj, c->devices[i]->fileobj, cis[i].offset + startoff + ((offset % sl) * Vcb->superblock.sector_size),
readlen * Vcb->superblock.sector_size, scratch + (k * readlen * Vcb->superblock.sector_size), false);
if (!NT_SUCCESS(Status)) {
ERR("sync_read_phys returned %08x\n", Status);
num_errors++;
error_stripe = k;
}
} else {
num_errors++;
error_stripe = k;
}
if (num_errors > 1) {
ExFreePool(scratch);
return STATUS_UNEXPECTED_IO_ERROR;
}
} else
logstripe = k;
i = (i + 1) % c->chunk_item->num_stripes;
}
if (num_errors == 0 || error_stripe == c->chunk_item->num_stripes - 1) {
for (k = 0; k < c->chunk_item->num_stripes - 1; k++) {
if (k != logstripe) {
if (k == 0 || (k == 1 && logstripe == 0)) {
RtlCopyMemory(ps->data + (offset * Vcb->superblock.sector_size), scratch + (k * readlen * Vcb->superblock.sector_size),
readlen * Vcb->superblock.sector_size);
} else {
do_xor(ps->data + (offset * Vcb->superblock.sector_size), scratch + (k * readlen * Vcb->superblock.sector_size),
readlen * Vcb->superblock.sector_size);
}
}
}
} else {
raid6_recover2(scratch, c->chunk_item->num_stripes, readlen * Vcb->superblock.sector_size, logstripe,
error_stripe, scratch + (c->chunk_item->num_stripes * readlen * Vcb->superblock.sector_size));
RtlCopyMemory(ps->data + (offset * Vcb->superblock.sector_size), scratch + (c->chunk_item->num_stripes * readlen * Vcb->superblock.sector_size),
readlen * Vcb->superblock.sector_size);
}
ExFreePool(scratch);
}
offset += readlen;
len -= readlen;
}
return STATUS_SUCCESS;
}
NTSTATUS flush_partial_stripe(device_extension* Vcb, chunk* c, partial_stripe* ps) {
NTSTATUS Status;
uint16_t parity2, stripe, startoffstripe;
uint8_t* data;
uint64_t startoff;
ULONG runlength, index, last1;
CHUNK_ITEM_STRIPE* cis = (CHUNK_ITEM_STRIPE*)&c->chunk_item[1];
LIST_ENTRY* le;
uint16_t k, num_data_stripes = c->chunk_item->num_stripes - (c->chunk_item->type & BLOCK_FLAG_RAID5 ? 1 : 2);
uint64_t ps_length = num_data_stripes * c->chunk_item->stripe_length;
ULONG stripe_length = (ULONG)c->chunk_item->stripe_length;
// FIXME - do writes asynchronously?
get_raid0_offset(ps->address - c->offset, stripe_length, num_data_stripes, &startoff, &startoffstripe);
parity2 = (((ps->address - c->offset) / ps_length) + c->chunk_item->num_stripes - 1) % c->chunk_item->num_stripes;
// read data (or reconstruct if degraded)
runlength = RtlFindFirstRunClear(&ps->bmp, &index);
last1 = 0;
while (runlength != 0) {
if (index >= ps->bmplen)
break;
if (index + runlength >= ps->bmplen) {
runlength = ps->bmplen - index;
if (runlength == 0)
break;
}
if (index > last1) {
Status = partial_stripe_read(Vcb, c, ps, startoff, parity2, last1, index - last1);
if (!NT_SUCCESS(Status)) {
ERR("partial_stripe_read returned %08x\n", Status);
return Status;
}
}
last1 = index + runlength;
runlength = RtlFindNextForwardRunClear(&ps->bmp, index + runlength, &index);
}
if (last1 < ps_length / Vcb->superblock.sector_size) {
Status = partial_stripe_read(Vcb, c, ps, startoff, parity2, last1, (ULONG)((ps_length / Vcb->superblock.sector_size) - last1));
if (!NT_SUCCESS(Status)) {
ERR("partial_stripe_read returned %08x\n", Status);
return Status;
}
}
// set unallocated data to 0
le = c->space.Flink;
while (le != &c->space) {
space* s = CONTAINING_RECORD(le, space, list_entry);
if (s->address + s->size > ps->address && s->address < ps->address + ps_length) {
uint64_t start = max(ps->address, s->address);
uint64_t end = min(ps->address + ps_length, s->address + s->size);
RtlZeroMemory(ps->data + start - ps->address, (ULONG)(end - start));
} else if (s->address >= ps->address + ps_length)
break;
le = le->Flink;
}
le = c->deleting.Flink;
while (le != &c->deleting) {
space* s = CONTAINING_RECORD(le, space, list_entry);
if (s->address + s->size > ps->address && s->address < ps->address + ps_length) {
uint64_t start = max(ps->address, s->address);
uint64_t end = min(ps->address + ps_length, s->address + s->size);
RtlZeroMemory(ps->data + start - ps->address, (ULONG)(end - start));
} else if (s->address >= ps->address + ps_length)
break;
le = le->Flink;
}
stripe = (parity2 + 1) % c->chunk_item->num_stripes;
data = ps->data;
for (k = 0; k < num_data_stripes; k++) {
if (c->devices[stripe]->devobj) {
Status = write_data_phys(c->devices[stripe]->devobj, c->devices[stripe]->fileobj, cis[stripe].offset + startoff, data, stripe_length);
if (!NT_SUCCESS(Status)) {
ERR("write_data_phys returned %08x\n", Status);
return Status;
}
}
data += stripe_length;
stripe = (stripe + 1) % c->chunk_item->num_stripes;
}
// write parity
if (c->chunk_item->type & BLOCK_FLAG_RAID5) {
if (c->devices[parity2]->devobj) {
uint16_t i;
for (i = 1; i < c->chunk_item->num_stripes - 1; i++) {
do_xor(ps->data, ps->data + (i * stripe_length), stripe_length);
}
Status = write_data_phys(c->devices[parity2]->devobj, c->devices[parity2]->fileobj, cis[parity2].offset + startoff, ps->data, stripe_length);
if (!NT_SUCCESS(Status)) {
ERR("write_data_phys returned %08x\n", Status);
return Status;
}
}
} else {
uint16_t parity1 = (parity2 + c->chunk_item->num_stripes - 1) % c->chunk_item->num_stripes;
if (c->devices[parity1]->devobj || c->devices[parity2]->devobj) {
uint8_t* scratch;
uint16_t i;
scratch = ExAllocatePoolWithTag(NonPagedPool, stripe_length * 2, ALLOC_TAG);
if (!scratch) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
i = c->chunk_item->num_stripes - 3;
while (true) {
if (i == c->chunk_item->num_stripes - 3) {
RtlCopyMemory(scratch, ps->data + (i * stripe_length), stripe_length);
RtlCopyMemory(scratch + stripe_length, ps->data + (i * stripe_length), stripe_length);
} else {
do_xor(scratch, ps->data + (i * stripe_length), stripe_length);
galois_double(scratch + stripe_length, stripe_length);
do_xor(scratch + stripe_length, ps->data + (i * stripe_length), stripe_length);
}
if (i == 0)
break;
i--;
}
if (c->devices[parity1]->devobj) {
Status = write_data_phys(c->devices[parity1]->devobj, c->devices[parity1]->fileobj, cis[parity1].offset + startoff, scratch, stripe_length);
if (!NT_SUCCESS(Status)) {
ERR("write_data_phys returned %08x\n", Status);
ExFreePool(scratch);
return Status;
}
}
if (c->devices[parity2]->devobj) {
Status = write_data_phys(c->devices[parity2]->devobj, c->devices[parity2]->fileobj, cis[parity2].offset + startoff,
scratch + stripe_length, stripe_length);
if (!NT_SUCCESS(Status)) {
ERR("write_data_phys returned %08x\n", Status);
ExFreePool(scratch);
return Status;
}
}
ExFreePool(scratch);
}
}
return STATUS_SUCCESS;
}
static NTSTATUS update_chunks(device_extension* Vcb, LIST_ENTRY* batchlist, PIRP Irp, LIST_ENTRY* rollback) {
LIST_ENTRY *le, *le2;
NTSTATUS Status;
uint64_t used_minus_cache;
ExAcquireResourceExclusiveLite(&Vcb->chunk_lock, true);
// FIXME - do tree chunks before data chunks
le = Vcb->chunks.Flink;
while (le != &Vcb->chunks) {
chunk* c = CONTAINING_RECORD(le, chunk, list_entry);
le2 = le->Flink;
if (c->changed) {
acquire_chunk_lock(c, Vcb);
// flush partial stripes
if (!Vcb->readonly && (c->chunk_item->type & BLOCK_FLAG_RAID5 || c->chunk_item->type & BLOCK_FLAG_RAID6)) {
ExAcquireResourceExclusiveLite(&c->partial_stripes_lock, true);
while (!IsListEmpty(&c->partial_stripes)) {
partial_stripe* ps = CONTAINING_RECORD(RemoveHeadList(&c->partial_stripes), partial_stripe, list_entry);
Status = flush_partial_stripe(Vcb, c, ps);
if (ps->bmparr)
ExFreePool(ps->bmparr);
ExFreePool(ps);
if (!NT_SUCCESS(Status)) {
ERR("flush_partial_stripe returned %08x\n", Status);
ExReleaseResourceLite(&c->partial_stripes_lock);
release_chunk_lock(c, Vcb);
ExReleaseResourceLite(&Vcb->chunk_lock);
return Status;
}
}
ExReleaseResourceLite(&c->partial_stripes_lock);
}
if (c->list_entry_balance.Flink) {
release_chunk_lock(c, Vcb);
le = le2;
continue;
}
if (c->space_changed || c->created) {
bool created = c->created;
used_minus_cache = c->used;
// subtract self-hosted cache
if (used_minus_cache > 0 && c->chunk_item->type & BLOCK_FLAG_DATA && c->cache && c->cache->inode_item.st_size == c->used) {
LIST_ENTRY* le3;
le3 = c->cache->extents.Flink;
while (le3 != &c->cache->extents) {
extent* ext = CONTAINING_RECORD(le3, extent, list_entry);
EXTENT_DATA* ed = &ext->extent_data;
if (!ext->ignore) {
if (ed->type == EXTENT_TYPE_REGULAR || ed->type == EXTENT_TYPE_PREALLOC) {
EXTENT_DATA2* ed2 = (EXTENT_DATA2*)ed->data;
if (ed2->size != 0 && ed2->address >= c->offset && ed2->address + ed2->size <= c->offset + c->chunk_item->size)
used_minus_cache -= ed2->size;
}
}
le3 = le3->Flink;
}
}
if (used_minus_cache == 0) {
Status = drop_chunk(Vcb, c, batchlist, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("drop_chunk returned %08x\n", Status);
release_chunk_lock(c, Vcb);
ExReleaseResourceLite(&Vcb->chunk_lock);
return Status;
}
// c is now freed, so avoid releasing non-existent lock
le = le2;
continue;
} else if (c->created) {
Status = create_chunk(Vcb, c, Irp);
if (!NT_SUCCESS(Status)) {
ERR("create_chunk returned %08x\n", Status);
release_chunk_lock(c, Vcb);
ExReleaseResourceLite(&Vcb->chunk_lock);
return Status;
}
}
if (used_minus_cache > 0 || created)
release_chunk_lock(c, Vcb);
} else
release_chunk_lock(c, Vcb);
}
le = le2;
}
ExReleaseResourceLite(&Vcb->chunk_lock);
return STATUS_SUCCESS;
}
static NTSTATUS delete_root_ref(device_extension* Vcb, uint64_t subvolid, uint64_t parsubvolid, uint64_t parinode, PANSI_STRING utf8, PIRP Irp) {
KEY searchkey;
traverse_ptr tp;
NTSTATUS Status;
searchkey.obj_id = parsubvolid;
searchkey.obj_type = TYPE_ROOT_REF;
searchkey.offset = subvolid;
Status = find_item(Vcb, Vcb->root_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (!keycmp(searchkey, tp.item->key)) {
if (tp.item->size < sizeof(ROOT_REF)) {
ERR("(%I64x,%x,%I64x) was %u bytes, expected at least %u\n", tp.item->key.obj_id, tp.item->key.obj_type, tp.item->key.offset, tp.item->size, sizeof(ROOT_REF));
return STATUS_INTERNAL_ERROR;
} else {
ROOT_REF* rr;
ULONG len;
rr = (ROOT_REF*)tp.item->data;
len = tp.item->size;
do {
uint16_t itemlen;
if (len < sizeof(ROOT_REF) || len < offsetof(ROOT_REF, name[0]) + rr->n) {
ERR("(%I64x,%x,%I64x) was truncated\n", tp.item->key.obj_id, tp.item->key.obj_type, tp.item->key.offset);
break;
}
itemlen = (uint16_t)offsetof(ROOT_REF, name[0]) + rr->n;
if (rr->dir == parinode && rr->n == utf8->Length && RtlCompareMemory(rr->name, utf8->Buffer, rr->n) == rr->n) {
uint16_t newlen = tp.item->size - itemlen;
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
return Status;
}
if (newlen == 0) {
TRACE("deleting (%I64x,%x,%I64x)\n", tp.item->key.obj_id, tp.item->key.obj_type, tp.item->key.offset);
} else {
uint8_t *newrr = ExAllocatePoolWithTag(PagedPool, newlen, ALLOC_TAG), *rroff;
if (!newrr) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
TRACE("modifying (%I64x,%x,%I64x)\n", tp.item->key.obj_id, tp.item->key.obj_type, tp.item->key.offset);
if ((uint8_t*)rr > tp.item->data) {
RtlCopyMemory(newrr, tp.item->data, (uint8_t*)rr - tp.item->data);
rroff = newrr + ((uint8_t*)rr - tp.item->data);
} else {
rroff = newrr;
}
if ((uint8_t*)&rr->name[rr->n] < tp.item->data + tp.item->size)
RtlCopyMemory(rroff, &rr->name[rr->n], tp.item->size - ((uint8_t*)&rr->name[rr->n] - tp.item->data));
Status = insert_tree_item(Vcb, Vcb->root_root, tp.item->key.obj_id, tp.item->key.obj_type, tp.item->key.offset, newrr, newlen, NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(newrr);
return Status;
}
}
break;
}
if (len > itemlen) {
len -= itemlen;
rr = (ROOT_REF*)&rr->name[rr->n];
} else
break;
} while (len > 0);
}
} else {
WARN("could not find ROOT_REF entry for subvol %I64x in %I64x\n", searchkey.offset, searchkey.obj_id);
return STATUS_NOT_FOUND;
}
return STATUS_SUCCESS;
}
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(suppress: 28194)
#endif
static NTSTATUS add_root_ref(_In_ device_extension* Vcb, _In_ uint64_t subvolid, _In_ uint64_t parsubvolid, _In_ __drv_aliasesMem ROOT_REF* rr, _In_opt_ PIRP Irp) {
KEY searchkey;
traverse_ptr tp;
NTSTATUS Status;
searchkey.obj_id = parsubvolid;
searchkey.obj_type = TYPE_ROOT_REF;
searchkey.offset = subvolid;
Status = find_item(Vcb, Vcb->root_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (!keycmp(searchkey, tp.item->key)) {
uint16_t rrsize = tp.item->size + (uint16_t)offsetof(ROOT_REF, name[0]) + rr->n;
uint8_t* rr2;
rr2 = ExAllocatePoolWithTag(PagedPool, rrsize, ALLOC_TAG);
if (!rr2) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
if (tp.item->size > 0)
RtlCopyMemory(rr2, tp.item->data, tp.item->size);
RtlCopyMemory(rr2 + tp.item->size, rr, offsetof(ROOT_REF, name[0]) + rr->n);
ExFreePool(rr);
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
ExFreePool(rr2);
return Status;
}
Status = insert_tree_item(Vcb, Vcb->root_root, searchkey.obj_id, searchkey.obj_type, searchkey.offset, rr2, rrsize, NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(rr2);
return Status;
}
} else {
Status = insert_tree_item(Vcb, Vcb->root_root, searchkey.obj_id, searchkey.obj_type, searchkey.offset, rr, (uint16_t)offsetof(ROOT_REF, name[0]) + rr->n, NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(rr);
return Status;
}
}
return STATUS_SUCCESS;
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
static NTSTATUS update_root_backref(device_extension* Vcb, uint64_t subvolid, uint64_t parsubvolid, PIRP Irp) {
KEY searchkey;
traverse_ptr tp;
uint8_t* data;
uint16_t datalen;
NTSTATUS Status;
searchkey.obj_id = parsubvolid;
searchkey.obj_type = TYPE_ROOT_REF;
searchkey.offset = subvolid;
Status = find_item(Vcb, Vcb->root_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (!keycmp(tp.item->key, searchkey) && tp.item->size > 0) {
datalen = tp.item->size;
data = ExAllocatePoolWithTag(PagedPool, datalen, ALLOC_TAG);
if (!data) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(data, tp.item->data, datalen);
} else {
datalen = 0;
data = NULL;
}
searchkey.obj_id = subvolid;
searchkey.obj_type = TYPE_ROOT_BACKREF;
searchkey.offset = parsubvolid;
Status = find_item(Vcb, Vcb->root_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
if (datalen > 0)
ExFreePool(data);
return Status;
}
if (!keycmp(tp.item->key, searchkey)) {
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
if (datalen > 0)
ExFreePool(data);
return Status;
}
}
if (datalen > 0) {
Status = insert_tree_item(Vcb, Vcb->root_root, subvolid, TYPE_ROOT_BACKREF, parsubvolid, data, datalen, NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(data);
return Status;
}
}
return STATUS_SUCCESS;
}
static NTSTATUS add_root_item_to_cache(device_extension* Vcb, uint64_t root, PIRP Irp) {
KEY searchkey;
traverse_ptr tp;
NTSTATUS Status;
searchkey.obj_id = root;
searchkey.obj_type = TYPE_ROOT_ITEM;
searchkey.offset = 0xffffffffffffffff;
Status = find_item(Vcb, Vcb->root_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (tp.item->key.obj_id != searchkey.obj_id || tp.item->key.obj_type != searchkey.obj_type) {
ERR("could not find ROOT_ITEM for tree %I64x\n", searchkey.obj_id);
return STATUS_INTERNAL_ERROR;
}
if (tp.item->size < sizeof(ROOT_ITEM)) { // if not full length, create new entry with new bits zeroed
ROOT_ITEM* ri = ExAllocatePoolWithTag(PagedPool, sizeof(ROOT_ITEM), ALLOC_TAG);
if (!ri) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
if (tp.item->size > 0)
RtlCopyMemory(ri, tp.item->data, tp.item->size);
RtlZeroMemory(((uint8_t*)ri) + tp.item->size, sizeof(ROOT_ITEM) - tp.item->size);
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
ExFreePool(ri);
return Status;
}
Status = insert_tree_item(Vcb, Vcb->root_root, searchkey.obj_id, searchkey.obj_type, tp.item->key.offset, ri, sizeof(ROOT_ITEM), NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(ri);
return Status;
}
} else {
tp.tree->write = true;
}
return STATUS_SUCCESS;
}
static NTSTATUS flush_fileref(file_ref* fileref, LIST_ENTRY* batchlist, PIRP Irp) {
NTSTATUS Status;
// if fileref created and then immediately deleted, do nothing
if (fileref->created && fileref->deleted) {
fileref->dirty = false;
return STATUS_SUCCESS;
}
if (fileref->fcb->ads) {
fileref->dirty = false;
return STATUS_SUCCESS;
}
if (fileref->created) {
uint16_t disize;
DIR_ITEM *di, *di2;
uint32_t crc32;
crc32 = calc_crc32c(0xfffffffe, (uint8_t*)fileref->dc->utf8.Buffer, fileref->dc->utf8.Length);
disize = (uint16_t)(offsetof(DIR_ITEM, name[0]) + fileref->dc->utf8.Length);
di = ExAllocatePoolWithTag(PagedPool, disize, ALLOC_TAG);
if (!di) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
if (fileref->parent->fcb->subvol == fileref->fcb->subvol) {
di->key.obj_id = fileref->fcb->inode;
di->key.obj_type = TYPE_INODE_ITEM;
di->key.offset = 0;
} else { // subvolume
di->key.obj_id = fileref->fcb->subvol->id;
di->key.obj_type = TYPE_ROOT_ITEM;
di->key.offset = 0xffffffffffffffff;
}
di->transid = fileref->fcb->Vcb->superblock.generation;
di->m = 0;
di->n = (uint16_t)fileref->dc->utf8.Length;
di->type = fileref->fcb->type;
RtlCopyMemory(di->name, fileref->dc->utf8.Buffer, fileref->dc->utf8.Length);
di2 = ExAllocatePoolWithTag(PagedPool, disize, ALLOC_TAG);
if (!di2) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(di2, di, disize);
Status = insert_tree_item_batch(batchlist, fileref->fcb->Vcb, fileref->parent->fcb->subvol, fileref->parent->fcb->inode, TYPE_DIR_INDEX,
fileref->dc->index, di, disize, Batch_Insert);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
return Status;
}
Status = insert_tree_item_batch(batchlist, fileref->fcb->Vcb, fileref->parent->fcb->subvol, fileref->parent->fcb->inode, TYPE_DIR_ITEM, crc32,
di2, disize, Batch_DirItem);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
return Status;
}
if (fileref->parent->fcb->subvol == fileref->fcb->subvol) {
INODE_REF* ir;
ir = ExAllocatePoolWithTag(PagedPool, sizeof(INODE_REF) - 1 + fileref->dc->utf8.Length, ALLOC_TAG);
if (!ir) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
ir->index = fileref->dc->index;
ir->n = fileref->dc->utf8.Length;
RtlCopyMemory(ir->name, fileref->dc->utf8.Buffer, ir->n);
Status = insert_tree_item_batch(batchlist, fileref->fcb->Vcb, fileref->fcb->subvol, fileref->fcb->inode, TYPE_INODE_REF, fileref->parent->fcb->inode,
ir, sizeof(INODE_REF) - 1 + ir->n, Batch_InodeRef);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
return Status;
}
} else if (fileref->fcb != fileref->fcb->Vcb->dummy_fcb) {
ULONG rrlen;
ROOT_REF* rr;
rrlen = sizeof(ROOT_REF) - 1 + fileref->dc->utf8.Length;
rr = ExAllocatePoolWithTag(PagedPool, rrlen, ALLOC_TAG);
if (!rr) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
rr->dir = fileref->parent->fcb->inode;
rr->index = fileref->dc->index;
rr->n = fileref->dc->utf8.Length;
RtlCopyMemory(rr->name, fileref->dc->utf8.Buffer, fileref->dc->utf8.Length);
Status = add_root_ref(fileref->fcb->Vcb, fileref->fcb->subvol->id, fileref->parent->fcb->subvol->id, rr, Irp);
if (!NT_SUCCESS(Status)) {
ERR("add_root_ref returned %08x\n", Status);
return Status;
}
Status = update_root_backref(fileref->fcb->Vcb, fileref->fcb->subvol->id, fileref->parent->fcb->subvol->id, Irp);
if (!NT_SUCCESS(Status)) {
ERR("update_root_backref returned %08x\n", Status);
return Status;
}
}
fileref->created = false;
} else if (fileref->deleted) {
uint32_t crc32;
ANSI_STRING* name;
DIR_ITEM* di;
name = &fileref->oldutf8;
crc32 = calc_crc32c(0xfffffffe, (uint8_t*)name->Buffer, name->Length);
di = ExAllocatePoolWithTag(PagedPool, sizeof(DIR_ITEM) - 1 + name->Length, ALLOC_TAG);
if (!di) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
di->m = 0;
di->n = name->Length;
RtlCopyMemory(di->name, name->Buffer, name->Length);
// delete DIR_ITEM (0x54)
Status = insert_tree_item_batch(batchlist, fileref->fcb->Vcb, fileref->parent->fcb->subvol, fileref->parent->fcb->inode, TYPE_DIR_ITEM,
crc32, di, sizeof(DIR_ITEM) - 1 + name->Length, Batch_DeleteDirItem);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
return Status;
}
if (fileref->parent->fcb->subvol == fileref->fcb->subvol) {
INODE_REF* ir;
// delete INODE_REF (0xc)
ir = ExAllocatePoolWithTag(PagedPool, sizeof(INODE_REF) - 1 + name->Length, ALLOC_TAG);
if (!ir) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
ir->index = fileref->oldindex;
ir->n = name->Length;
RtlCopyMemory(ir->name, name->Buffer, name->Length);
Status = insert_tree_item_batch(batchlist, fileref->fcb->Vcb, fileref->parent->fcb->subvol, fileref->fcb->inode, TYPE_INODE_REF,
fileref->parent->fcb->inode, ir, sizeof(INODE_REF) - 1 + name->Length, Batch_DeleteInodeRef);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
return Status;
}
} else if (fileref->fcb != fileref->fcb->Vcb->dummy_fcb) { // subvolume
Status = delete_root_ref(fileref->fcb->Vcb, fileref->fcb->subvol->id, fileref->parent->fcb->subvol->id, fileref->parent->fcb->inode, name, Irp);
if (!NT_SUCCESS(Status)) {
ERR("delete_root_ref returned %08x\n", Status);
return Status;
}
Status = update_root_backref(fileref->fcb->Vcb, fileref->fcb->subvol->id, fileref->parent->fcb->subvol->id, Irp);
if (!NT_SUCCESS(Status)) {
ERR("update_root_backref returned %08x\n", Status);
return Status;
}
}
// delete DIR_INDEX (0x60)
Status = insert_tree_item_batch(batchlist, fileref->fcb->Vcb, fileref->parent->fcb->subvol, fileref->parent->fcb->inode, TYPE_DIR_INDEX,
fileref->oldindex, NULL, 0, Batch_Delete);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
return Status;
}
if (fileref->oldutf8.Buffer) {
ExFreePool(fileref->oldutf8.Buffer);
fileref->oldutf8.Buffer = NULL;
}
} else { // rename or change type
PANSI_STRING oldutf8 = fileref->oldutf8.Buffer ? &fileref->oldutf8 : &fileref->dc->utf8;
uint32_t crc32, oldcrc32;
uint16_t disize;
DIR_ITEM *olddi, *di, *di2;
crc32 = calc_crc32c(0xfffffffe, (uint8_t*)fileref->dc->utf8.Buffer, fileref->dc->utf8.Length);
if (!fileref->oldutf8.Buffer)
oldcrc32 = crc32;
else
oldcrc32 = calc_crc32c(0xfffffffe, (uint8_t*)fileref->oldutf8.Buffer, fileref->oldutf8.Length);
olddi = ExAllocatePoolWithTag(PagedPool, sizeof(DIR_ITEM) - 1 + oldutf8->Length, ALLOC_TAG);
if (!olddi) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
olddi->m = 0;
olddi->n = (uint16_t)oldutf8->Length;
RtlCopyMemory(olddi->name, oldutf8->Buffer, oldutf8->Length);
// delete DIR_ITEM (0x54)
Status = insert_tree_item_batch(batchlist, fileref->fcb->Vcb, fileref->parent->fcb->subvol, fileref->parent->fcb->inode, TYPE_DIR_ITEM,
oldcrc32, olddi, sizeof(DIR_ITEM) - 1 + oldutf8->Length, Batch_DeleteDirItem);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
ExFreePool(olddi);
return Status;
}
// add DIR_ITEM (0x54)
disize = (uint16_t)(offsetof(DIR_ITEM, name[0]) + fileref->dc->utf8.Length);
di = ExAllocatePoolWithTag(PagedPool, disize, ALLOC_TAG);
if (!di) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
di2 = ExAllocatePoolWithTag(PagedPool, disize, ALLOC_TAG);
if (!di2) {
ERR("out of memory\n");
ExFreePool(di);
return STATUS_INSUFFICIENT_RESOURCES;
}
if (fileref->dc)
di->key = fileref->dc->key;
else if (fileref->parent->fcb->subvol == fileref->fcb->subvol) {
di->key.obj_id = fileref->fcb->inode;
di->key.obj_type = TYPE_INODE_ITEM;
di->key.offset = 0;
} else { // subvolume
di->key.obj_id = fileref->fcb->subvol->id;
di->key.obj_type = TYPE_ROOT_ITEM;
di->key.offset = 0xffffffffffffffff;
}
di->transid = fileref->fcb->Vcb->superblock.generation;
di->m = 0;
di->n = (uint16_t)fileref->dc->utf8.Length;
di->type = fileref->fcb->type;
RtlCopyMemory(di->name, fileref->dc->utf8.Buffer, fileref->dc->utf8.Length);
RtlCopyMemory(di2, di, disize);
Status = insert_tree_item_batch(batchlist, fileref->fcb->Vcb, fileref->parent->fcb->subvol, fileref->parent->fcb->inode, TYPE_DIR_ITEM, crc32,
di, disize, Batch_DirItem);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
ExFreePool(di2);
ExFreePool(di);
return Status;
}
if (fileref->parent->fcb->subvol == fileref->fcb->subvol) {
INODE_REF *ir, *ir2;
// delete INODE_REF (0xc)
ir = ExAllocatePoolWithTag(PagedPool, sizeof(INODE_REF) - 1 + oldutf8->Length, ALLOC_TAG);
if (!ir) {
ERR("out of memory\n");
ExFreePool(di2);
return STATUS_INSUFFICIENT_RESOURCES;
}
ir->index = fileref->dc->index;
ir->n = oldutf8->Length;
RtlCopyMemory(ir->name, oldutf8->Buffer, ir->n);
Status = insert_tree_item_batch(batchlist, fileref->fcb->Vcb, fileref->fcb->subvol, fileref->fcb->inode, TYPE_INODE_REF, fileref->parent->fcb->inode,
ir, sizeof(INODE_REF) - 1 + ir->n, Batch_DeleteInodeRef);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
ExFreePool(ir);
ExFreePool(di2);
return Status;
}
// add INODE_REF (0xc)
ir2 = ExAllocatePoolWithTag(PagedPool, sizeof(INODE_REF) - 1 + fileref->dc->utf8.Length, ALLOC_TAG);
if (!ir2) {
ERR("out of memory\n");
ExFreePool(di2);
return STATUS_INSUFFICIENT_RESOURCES;
}
ir2->index = fileref->dc->index;
ir2->n = fileref->dc->utf8.Length;
RtlCopyMemory(ir2->name, fileref->dc->utf8.Buffer, ir2->n);
Status = insert_tree_item_batch(batchlist, fileref->fcb->Vcb, fileref->fcb->subvol, fileref->fcb->inode, TYPE_INODE_REF, fileref->parent->fcb->inode,
ir2, sizeof(INODE_REF) - 1 + ir2->n, Batch_InodeRef);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
ExFreePool(ir2);
ExFreePool(di2);
return Status;
}
} else if (fileref->fcb != fileref->fcb->Vcb->dummy_fcb) { // subvolume
ULONG rrlen;
ROOT_REF* rr;
Status = delete_root_ref(fileref->fcb->Vcb, fileref->fcb->subvol->id, fileref->parent->fcb->subvol->id, fileref->parent->fcb->inode, oldutf8, Irp);
if (!NT_SUCCESS(Status)) {
ERR("delete_root_ref returned %08x\n", Status);
ExFreePool(di2);
return Status;
}
rrlen = sizeof(ROOT_REF) - 1 + fileref->dc->utf8.Length;
rr = ExAllocatePoolWithTag(PagedPool, rrlen, ALLOC_TAG);
if (!rr) {
ERR("out of memory\n");
ExFreePool(di2);
return STATUS_INSUFFICIENT_RESOURCES;
}
rr->dir = fileref->parent->fcb->inode;
rr->index = fileref->dc->index;
rr->n = fileref->dc->utf8.Length;
RtlCopyMemory(rr->name, fileref->dc->utf8.Buffer, fileref->dc->utf8.Length);
Status = add_root_ref(fileref->fcb->Vcb, fileref->fcb->subvol->id, fileref->parent->fcb->subvol->id, rr, Irp);
if (!NT_SUCCESS(Status)) {
ERR("add_root_ref returned %08x\n", Status);
ExFreePool(di2);
return Status;
}
Status = update_root_backref(fileref->fcb->Vcb, fileref->fcb->subvol->id, fileref->parent->fcb->subvol->id, Irp);
if (!NT_SUCCESS(Status)) {
ERR("update_root_backref returned %08x\n", Status);
ExFreePool(di2);
return Status;
}
}
// delete DIR_INDEX (0x60)
Status = insert_tree_item_batch(batchlist, fileref->fcb->Vcb, fileref->parent->fcb->subvol, fileref->parent->fcb->inode, TYPE_DIR_INDEX,
fileref->dc->index, NULL, 0, Batch_Delete);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
ExFreePool(di2);
return Status;
}
// add DIR_INDEX (0x60)
Status = insert_tree_item_batch(batchlist, fileref->fcb->Vcb, fileref->parent->fcb->subvol, fileref->parent->fcb->inode, TYPE_DIR_INDEX,
fileref->dc->index, di2, disize, Batch_Insert);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item_batch returned %08x\n", Status);
ExFreePool(di2);
return Status;
}
if (fileref->oldutf8.Buffer) {
ExFreePool(fileref->oldutf8.Buffer);
fileref->oldutf8.Buffer = NULL;
}
}
fileref->dirty = false;
return STATUS_SUCCESS;
}
static void flush_disk_caches(device_extension* Vcb) {
LIST_ENTRY* le;
ioctl_context context;
ULONG num;
#ifdef __REACTOS__
unsigned int i;
#endif
context.left = 0;
le = Vcb->devices.Flink;
while (le != &Vcb->devices) {
device* dev = CONTAINING_RECORD(le, device, list_entry);
if (dev->devobj && !dev->readonly && dev->can_flush)
context.left++;
le = le->Flink;
}
if (context.left == 0)
return;
num = 0;
KeInitializeEvent(&context.Event, NotificationEvent, false);
context.stripes = ExAllocatePoolWithTag(NonPagedPool, sizeof(ioctl_context_stripe) * context.left, ALLOC_TAG);
if (!context.stripes) {
ERR("out of memory\n");
return;
}
RtlZeroMemory(context.stripes, sizeof(ioctl_context_stripe) * context.left);
le = Vcb->devices.Flink;
while (le != &Vcb->devices) {
device* dev = CONTAINING_RECORD(le, device, list_entry);
if (dev->devobj && !dev->readonly && dev->can_flush) {
PIO_STACK_LOCATION IrpSp;
ioctl_context_stripe* stripe = &context.stripes[num];
RtlZeroMemory(&stripe->apte, sizeof(ATA_PASS_THROUGH_EX));
stripe->apte.Length = sizeof(ATA_PASS_THROUGH_EX);
stripe->apte.TimeOutValue = 5;
stripe->apte.CurrentTaskFile[6] = IDE_COMMAND_FLUSH_CACHE;
stripe->Irp = IoAllocateIrp(dev->devobj->StackSize, false);
if (!stripe->Irp) {
ERR("IoAllocateIrp failed\n");
goto nextdev;
}
IrpSp = IoGetNextIrpStackLocation(stripe->Irp);
IrpSp->MajorFunction = IRP_MJ_DEVICE_CONTROL;
IrpSp->FileObject = dev->fileobj;
IrpSp->Parameters.DeviceIoControl.IoControlCode = IOCTL_ATA_PASS_THROUGH;
IrpSp->Parameters.DeviceIoControl.InputBufferLength = sizeof(ATA_PASS_THROUGH_EX);
IrpSp->Parameters.DeviceIoControl.OutputBufferLength = sizeof(ATA_PASS_THROUGH_EX);
stripe->Irp->AssociatedIrp.SystemBuffer = &stripe->apte;
stripe->Irp->Flags |= IRP_BUFFERED_IO | IRP_INPUT_OPERATION;
stripe->Irp->UserBuffer = &stripe->apte;
stripe->Irp->UserIosb = &stripe->iosb;
IoSetCompletionRoutine(stripe->Irp, ioctl_completion, &context, true, true, true);
IoCallDriver(dev->devobj, stripe->Irp);
nextdev:
num++;
}
le = le->Flink;
}
KeWaitForSingleObject(&context.Event, Executive, KernelMode, false, NULL);
#ifndef __REACTOS__
for (unsigned int i = 0; i < num; i++) {
#else
for (i = 0; i < num; i++) {
#endif
if (context.stripes[i].Irp)
IoFreeIrp(context.stripes[i].Irp);
}
ExFreePool(context.stripes);
}
static NTSTATUS flush_changed_dev_stats(device_extension* Vcb, device* dev, PIRP Irp) {
NTSTATUS Status;
KEY searchkey;
traverse_ptr tp;
uint16_t statslen;
uint64_t* stats;
searchkey.obj_id = 0;
searchkey.obj_type = TYPE_DEV_STATS;
searchkey.offset = dev->devitem.dev_id;
Status = find_item(Vcb, Vcb->dev_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("find_item returned %08x\n", Status);
return Status;
}
if (!keycmp(tp.item->key, searchkey)) {
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
return Status;
}
}
statslen = sizeof(uint64_t) * 5;
stats = ExAllocatePoolWithTag(PagedPool, statslen, ALLOC_TAG);
if (!stats) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(stats, dev->stats, statslen);
Status = insert_tree_item(Vcb, Vcb->dev_root, 0, TYPE_DEV_STATS, dev->devitem.dev_id, stats, statslen, NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(stats);
return Status;
}
return STATUS_SUCCESS;
}
static NTSTATUS flush_subvol(device_extension* Vcb, root* r, PIRP Irp) {
NTSTATUS Status;
if (r != Vcb->root_root && r != Vcb->chunk_root) {
KEY searchkey;
traverse_ptr tp;
ROOT_ITEM* ri;
searchkey.obj_id = r->id;
searchkey.obj_type = TYPE_ROOT_ITEM;
searchkey.offset = 0xffffffffffffffff;
Status = find_item(Vcb, Vcb->root_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
if (tp.item->key.obj_id != searchkey.obj_id || tp.item->key.obj_type != searchkey.obj_type) {
ERR("could not find ROOT_ITEM for tree %I64x\n", searchkey.obj_id);
return STATUS_INTERNAL_ERROR;
}
ri = ExAllocatePoolWithTag(PagedPool, sizeof(ROOT_ITEM), ALLOC_TAG);
if (!ri) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(ri, &r->root_item, sizeof(ROOT_ITEM));
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
return Status;
}
Status = insert_tree_item(Vcb, Vcb->root_root, tp.item->key.obj_id, tp.item->key.obj_type, tp.item->key.offset, ri, sizeof(ROOT_ITEM), NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
return Status;
}
}
if (r->received) {
KEY searchkey;
traverse_ptr tp;
if (!Vcb->uuid_root) {
root* uuid_root;
TRACE("uuid root doesn't exist, creating it\n");
Status = create_root(Vcb, BTRFS_ROOT_UUID, &uuid_root, false, 0, Irp);
if (!NT_SUCCESS(Status)) {
ERR("create_root returned %08x\n", Status);
return Status;
}
Vcb->uuid_root = uuid_root;
}
RtlCopyMemory(&searchkey.obj_id, &r->root_item.received_uuid, sizeof(uint64_t));
searchkey.obj_type = TYPE_SUBVOL_REC_UUID;
RtlCopyMemory(&searchkey.offset, &r->root_item.received_uuid.uuid[sizeof(uint64_t)], sizeof(uint64_t));
Status = find_item(Vcb, Vcb->uuid_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("find_item returned %08x\n", Status);
return Status;
}
if (!keycmp(tp.item->key, searchkey)) {
if (tp.item->size + sizeof(uint64_t) <= Vcb->superblock.node_size - sizeof(tree_header) - sizeof(leaf_node)) {
uint64_t* ids;
ids = ExAllocatePoolWithTag(PagedPool, tp.item->size + sizeof(uint64_t), ALLOC_TAG);
if (!ids) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(ids, tp.item->data, tp.item->size);
RtlCopyMemory((uint8_t*)ids + tp.item->size, &r->id, sizeof(uint64_t));
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
ExFreePool(ids);
return Status;
}
Status = insert_tree_item(Vcb, Vcb->uuid_root, searchkey.obj_id, searchkey.obj_type, searchkey.offset, ids, tp.item->size + sizeof(uint64_t), NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(ids);
return Status;
}
}
} else {
uint64_t* root_num;
root_num = ExAllocatePoolWithTag(PagedPool, sizeof(uint64_t), ALLOC_TAG);
if (!root_num) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
*root_num = r->id;
Status = insert_tree_item(Vcb, Vcb->uuid_root, searchkey.obj_id, searchkey.obj_type, searchkey.offset, root_num, sizeof(uint64_t), NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("insert_tree_item returned %08x\n", Status);
ExFreePool(root_num);
return Status;
}
}
r->received = false;
}
r->dirty = false;
return STATUS_SUCCESS;
}
static NTSTATUS test_not_full(device_extension* Vcb) {
uint64_t reserve, could_alloc, free_space;
LIST_ENTRY* le;
// This function ensures we drop into readonly mode if we're about to leave very little
// space for metadata - this is similar to the "global reserve" of the Linux driver.
// Otherwise we might completely fill our space, at which point due to COW we can't
// delete anything in order to fix this.
reserve = Vcb->extent_root->root_item.bytes_used;
reserve += Vcb->root_root->root_item.bytes_used;
if (Vcb->checksum_root) reserve += Vcb->checksum_root->root_item.bytes_used;
reserve = max(reserve, 0x1000000); // 16 M
reserve = min(reserve, 0x20000000); // 512 M
// Find out how much space would be available for new metadata chunks
could_alloc = 0;
if (Vcb->metadata_flags & BLOCK_FLAG_RAID5) {
uint64_t s1 = 0, s2 = 0, s3 = 0;
le = Vcb->devices.Flink;
while (le != &Vcb->devices) {
device* dev = CONTAINING_RECORD(le, device, list_entry);
if (!dev->readonly) {
uint64_t space = dev->devitem.num_bytes - dev->devitem.bytes_used;
if (space >= s1) {
s3 = s2;
s2 = s1;
s1 = space;
} else if (space >= s2) {
s3 = s2;
s2 = space;
} else if (space >= s3)
s3 = space;
}
le = le->Flink;
}
could_alloc = s3 * 2;
} else if (Vcb->metadata_flags & (BLOCK_FLAG_RAID10 | BLOCK_FLAG_RAID6)) {
uint64_t s1 = 0, s2 = 0, s3 = 0, s4 = 0;
le = Vcb->devices.Flink;
while (le != &Vcb->devices) {
device* dev = CONTAINING_RECORD(le, device, list_entry);
if (!dev->readonly) {
uint64_t space = dev->devitem.num_bytes - dev->devitem.bytes_used;
if (space >= s1) {
s4 = s3;
s3 = s2;
s2 = s1;
s1 = space;
} else if (space >= s2) {
s4 = s3;
s3 = s2;
s2 = space;
} else if (space >= s3) {
s4 = s3;
s3 = space;
} else if (space >= s4)
s4 = space;
}
le = le->Flink;
}
could_alloc = s4 * 2;
} else if (Vcb->metadata_flags & (BLOCK_FLAG_RAID0 | BLOCK_FLAG_RAID1)) {
uint64_t s1 = 0, s2 = 0;
le = Vcb->devices.Flink;
while (le != &Vcb->devices) {
device* dev = CONTAINING_RECORD(le, device, list_entry);
if (!dev->readonly) {
uint64_t space = dev->devitem.num_bytes - dev->devitem.bytes_used;
if (space >= s1) {
s2 = s1;
s1 = space;
} else if (space >= s2)
s2 = space;
}
le = le->Flink;
}
if (Vcb->metadata_flags & BLOCK_FLAG_RAID1)
could_alloc = s2;
else // RAID0
could_alloc = s2 * 2;
} else if (Vcb->metadata_flags & BLOCK_FLAG_DUPLICATE) {
le = Vcb->devices.Flink;
while (le != &Vcb->devices) {
device* dev = CONTAINING_RECORD(le, device, list_entry);
if (!dev->readonly) {
uint64_t space = (dev->devitem.num_bytes - dev->devitem.bytes_used) / 2;
could_alloc = max(could_alloc, space);
}
le = le->Flink;
}
} else { // SINGLE
le = Vcb->devices.Flink;
while (le != &Vcb->devices) {
device* dev = CONTAINING_RECORD(le, device, list_entry);
if (!dev->readonly) {
uint64_t space = dev->devitem.num_bytes - dev->devitem.bytes_used;
could_alloc = max(could_alloc, space);
}
le = le->Flink;
}
}
if (could_alloc >= reserve)
return STATUS_SUCCESS;
free_space = 0;
le = Vcb->chunks.Flink;
while (le != &Vcb->chunks) {
chunk* c = CONTAINING_RECORD(le, chunk, list_entry);
if (!c->reloc && !c->readonly && c->chunk_item->type & BLOCK_FLAG_METADATA) {
free_space += c->chunk_item->size - c->used;
if (free_space + could_alloc >= reserve)
return STATUS_SUCCESS;
}
le = le->Flink;
}
return STATUS_DISK_FULL;
}
static NTSTATUS check_for_orphans_root(device_extension* Vcb, root* r, PIRP Irp) {
NTSTATUS Status;
KEY searchkey;
traverse_ptr tp;
LIST_ENTRY rollback;
TRACE("(%p, %p)\n", Vcb, r);
InitializeListHead(&rollback);
searchkey.obj_id = BTRFS_ORPHAN_INODE_OBJID;
searchkey.obj_type = TYPE_ORPHAN_INODE;
searchkey.offset = 0;
Status = find_item(Vcb, r, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("find_item returned %08x\n", Status);
return Status;
}
do {
traverse_ptr next_tp;
if (tp.item->key.obj_id > searchkey.obj_id || (tp.item->key.obj_id == searchkey.obj_id && tp.item->key.obj_type > searchkey.obj_type))
break;
if (tp.item->key.obj_id == searchkey.obj_id && tp.item->key.obj_type == searchkey.obj_type) {
fcb* fcb;
TRACE("removing orphaned inode %I64x\n", tp.item->key.offset);
Status = open_fcb(Vcb, r, tp.item->key.offset, 0, NULL, false, NULL, &fcb, PagedPool, Irp);
if (!NT_SUCCESS(Status))
ERR("open_fcb returned %08x\n", Status);
else {
if (fcb->inode_item.st_nlink == 0) {
if (fcb->type != BTRFS_TYPE_DIRECTORY && fcb->inode_item.st_size > 0) {
Status = excise_extents(Vcb, fcb, 0, sector_align(fcb->inode_item.st_size, Vcb->superblock.sector_size), Irp, &rollback);
if (!NT_SUCCESS(Status)) {
ERR("excise_extents returned %08x\n", Status);
goto end;
}
}
fcb->deleted = true;
mark_fcb_dirty(fcb);
}
free_fcb(fcb);
Status = delete_tree_item(Vcb, &tp);
if (!NT_SUCCESS(Status)) {
ERR("delete_tree_item returned %08x\n", Status);
goto end;
}
}
}
if (find_next_item(Vcb, &tp, &next_tp, false, Irp))
tp = next_tp;
else
break;
} while (true);
Status = STATUS_SUCCESS;
clear_rollback(&rollback);
end:
do_rollback(Vcb, &rollback);
return Status;
}
static NTSTATUS check_for_orphans(device_extension* Vcb, PIRP Irp) {
NTSTATUS Status;
LIST_ENTRY* le;
if (IsListEmpty(&Vcb->dirty_filerefs))
return STATUS_SUCCESS;
le = Vcb->dirty_filerefs.Flink;
while (le != &Vcb->dirty_filerefs) {
file_ref* fr = CONTAINING_RECORD(le, file_ref, list_entry_dirty);
if (!fr->fcb->subvol->checked_for_orphans) {
Status = check_for_orphans_root(Vcb, fr->fcb->subvol, Irp);
if (!NT_SUCCESS(Status)) {
ERR("check_for_orphans_root returned %08x\n", Status);
return Status;
}
fr->fcb->subvol->checked_for_orphans = true;
}
le = le->Flink;
}
return STATUS_SUCCESS;
}
static NTSTATUS do_write2(device_extension* Vcb, PIRP Irp, LIST_ENTRY* rollback) {
NTSTATUS Status;
LIST_ENTRY *le, batchlist;
bool cache_changed = false;
volume_device_extension* vde;
bool no_cache = false;
#ifdef DEBUG_FLUSH_TIMES
uint64_t filerefs = 0, fcbs = 0;
LARGE_INTEGER freq, time1, time2;
#endif
#ifdef DEBUG_WRITE_LOOPS
UINT loops = 0;
#endif
TRACE("(%p)\n", Vcb);
InitializeListHead(&batchlist);
#ifdef DEBUG_FLUSH_TIMES
time1 = KeQueryPerformanceCounter(&freq);
#endif
Status = check_for_orphans(Vcb, Irp);
if (!NT_SUCCESS(Status)) {
ERR("check_for_orphans returned %08x\n", Status);
return Status;
}
ExAcquireResourceExclusiveLite(&Vcb->dirty_filerefs_lock, true);
while (!IsListEmpty(&Vcb->dirty_filerefs)) {
file_ref* fr = CONTAINING_RECORD(RemoveHeadList(&Vcb->dirty_filerefs), file_ref, list_entry_dirty);
flush_fileref(fr, &batchlist, Irp);
free_fileref(fr);
#ifdef DEBUG_FLUSH_TIMES
filerefs++;
#endif
}
ExReleaseResourceLite(&Vcb->dirty_filerefs_lock);
Status = commit_batch_list(Vcb, &batchlist, Irp);
if (!NT_SUCCESS(Status)) {
ERR("commit_batch_list returned %08x\n", Status);
return Status;
}
#ifdef DEBUG_FLUSH_TIMES
time2 = KeQueryPerformanceCounter(NULL);
ERR("flushed %I64u filerefs in %I64u (freq = %I64u)\n", filerefs, time2.QuadPart - time1.QuadPart, freq.QuadPart);
time1 = KeQueryPerformanceCounter(&freq);
#endif
// We process deleted streams first, so we don't run over our xattr
// limit unless we absolutely have to.
// We also process deleted normal files, to avoid any problems
// caused by inode collisions.
ExAcquireResourceExclusiveLite(&Vcb->dirty_fcbs_lock, true);
le = Vcb->dirty_fcbs.Flink;
while (le != &Vcb->dirty_fcbs) {
fcb* fcb = CONTAINING_RECORD(le, struct _fcb, list_entry_dirty);
LIST_ENTRY* le2 = le->Flink;
if (fcb->deleted) {
ExAcquireResourceExclusiveLite(fcb->Header.Resource, true);
Status = flush_fcb(fcb, false, &batchlist, Irp);
ExReleaseResourceLite(fcb->Header.Resource);
free_fcb(fcb);
if (!NT_SUCCESS(Status)) {
ERR("flush_fcb returned %08x\n", Status);
clear_batch_list(Vcb, &batchlist);
ExReleaseResourceLite(&Vcb->dirty_fcbs_lock);
return Status;
}
#ifdef DEBUG_FLUSH_TIMES
fcbs++;
#endif
}
le = le2;
}
Status = commit_batch_list(Vcb, &batchlist, Irp);
if (!NT_SUCCESS(Status)) {
ERR("commit_batch_list returned %08x\n", Status);
ExReleaseResourceLite(&Vcb->dirty_fcbs_lock);
return Status;
}
le = Vcb->dirty_fcbs.Flink;
while (le != &Vcb->dirty_fcbs) {
fcb* fcb = CONTAINING_RECORD(le, struct _fcb, list_entry_dirty);
LIST_ENTRY* le2 = le->Flink;
if (fcb->subvol != Vcb->root_root) {
ExAcquireResourceExclusiveLite(fcb->Header.Resource, true);
Status = flush_fcb(fcb, false, &batchlist, Irp);
ExReleaseResourceLite(fcb->Header.Resource);
free_fcb(fcb);
if (!NT_SUCCESS(Status)) {
ERR("flush_fcb returned %08x\n", Status);
ExReleaseResourceLite(&Vcb->dirty_fcbs_lock);
return Status;
}
#ifdef DEBUG_FLUSH_TIMES
fcbs++;
#endif
}
le = le2;
}
ExReleaseResourceLite(&Vcb->dirty_fcbs_lock);
Status = commit_batch_list(Vcb, &batchlist, Irp);
if (!NT_SUCCESS(Status)) {
ERR("commit_batch_list returned %08x\n", Status);
return Status;
}
#ifdef DEBUG_FLUSH_TIMES
time2 = KeQueryPerformanceCounter(NULL);
ERR("flushed %I64u fcbs in %I64u (freq = %I64u)\n", filerefs, time2.QuadPart - time1.QuadPart, freq.QuadPart);
#endif
// no need to get dirty_subvols_lock here, as we have tree_lock exclusively
while (!IsListEmpty(&Vcb->dirty_subvols)) {
root* r = CONTAINING_RECORD(RemoveHeadList(&Vcb->dirty_subvols), root, list_entry_dirty);
Status = flush_subvol(Vcb, r, Irp);
if (!NT_SUCCESS(Status)) {
ERR("flush_subvol returned %08x\n", Status);
return Status;
}
}
if (!IsListEmpty(&Vcb->drop_roots)) {
Status = drop_roots(Vcb, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("drop_roots returned %08x\n", Status);
return Status;
}
}
Status = update_chunks(Vcb, &batchlist, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("update_chunks returned %08x\n", Status);
return Status;
}
Status = commit_batch_list(Vcb, &batchlist, Irp);
// If only changing superblock, e.g. changing label, we still need to rewrite
// the root tree so the generations match, otherwise you won't be able to mount on Linux.
if (!Vcb->root_root->treeholder.tree || !Vcb->root_root->treeholder.tree->write) {
KEY searchkey;
traverse_ptr tp;
searchkey.obj_id = 0;
searchkey.obj_type = 0;
searchkey.offset = 0;
Status = find_item(Vcb, Vcb->root_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
return Status;
}
Vcb->root_root->treeholder.tree->write = true;
}
// make sure we always update the extent tree
Status = add_root_item_to_cache(Vcb, BTRFS_ROOT_EXTENT, Irp);
if (!NT_SUCCESS(Status)) {
ERR("add_root_item_to_cache returned %08x\n", Status);
return Status;
}
if (Vcb->stats_changed) {
le = Vcb->devices.Flink;
while (le != &Vcb->devices) {
device* dev = CONTAINING_RECORD(le, device, list_entry);
if (dev->stats_changed) {
Status = flush_changed_dev_stats(Vcb, dev, Irp);
if (!NT_SUCCESS(Status)) {
ERR("flush_changed_dev_stats returned %08x\n", Status);
return Status;
}
dev->stats_changed = false;
}
le = le->Flink;
}
Vcb->stats_changed = false;
}
do {
Status = add_parents(Vcb, Irp);
if (!NT_SUCCESS(Status)) {
ERR("add_parents returned %08x\n", Status);
goto end;
}
Status = allocate_tree_extents(Vcb, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("allocate_tree_extents returned %08x\n", Status);
goto end;
}
Status = do_splits(Vcb, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("do_splits returned %08x\n", Status);
goto end;
}
Status = update_chunk_usage(Vcb, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("update_chunk_usage returned %08x\n", Status);
goto end;
}
if (!(Vcb->superblock.compat_ro_flags & BTRFS_COMPAT_RO_FLAGS_FREE_SPACE_CACHE)) {
if (!no_cache) {
Status = allocate_cache(Vcb, &cache_changed, Irp, rollback);
if (!NT_SUCCESS(Status)) {
WARN("allocate_cache returned %08x\n", Status);
no_cache = true;
cache_changed = false;
}
}
} else {
Status = update_chunk_caches_tree(Vcb, Irp);
if (!NT_SUCCESS(Status)) {
ERR("update_chunk_caches_tree returned %08x\n", Status);
goto end;
}
}
#ifdef DEBUG_WRITE_LOOPS
loops++;
if (cache_changed)
ERR("cache has changed, looping again\n");
#endif
} while (cache_changed || !trees_consistent(Vcb));
#ifdef DEBUG_WRITE_LOOPS
ERR("%u loops\n", loops);
#endif
TRACE("trees consistent\n");
Status = update_root_root(Vcb, no_cache, Irp, rollback);
if (!NT_SUCCESS(Status)) {
ERR("update_root_root returned %08x\n", Status);
goto end;
}
Status = write_trees(Vcb, Irp);
if (!NT_SUCCESS(Status)) {
ERR("write_trees returned %08x\n", Status);
goto end;
}
Status = test_not_full(Vcb);
if (!NT_SUCCESS(Status)) {
ERR("test_not_full returned %08x\n", Status);
goto end;
}
#ifdef DEBUG_PARANOID
le = Vcb->trees.Flink;
while (le != &Vcb->trees) {
tree* t = CONTAINING_RECORD(le, tree, list_entry);
KEY searchkey;
traverse_ptr tp;
searchkey.obj_id = t->header.address;
searchkey.obj_type = TYPE_METADATA_ITEM;
searchkey.offset = 0xffffffffffffffff;
Status = find_item(Vcb, Vcb->extent_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
goto end;
}
if (tp.item->key.obj_id != searchkey.obj_id || tp.item->key.obj_type != searchkey.obj_type) {
searchkey.obj_id = t->header.address;
searchkey.obj_type = TYPE_EXTENT_ITEM;
searchkey.offset = 0xffffffffffffffff;
Status = find_item(Vcb, Vcb->extent_root, &tp, &searchkey, false, Irp);
if (!NT_SUCCESS(Status)) {
ERR("error - find_item returned %08x\n", Status);
goto end;
}
if (tp.item->key.obj_id != searchkey.obj_id || tp.item->key.obj_type != searchkey.obj_type) {
ERR("error - could not find entry in extent tree for tree at %I64x\n", t->header.address);
Status = STATUS_INTERNAL_ERROR;
goto end;
}
}
le = le->Flink;
}
#endif
Vcb->superblock.cache_generation = Vcb->superblock.generation;
if (!Vcb->options.no_barrier)
flush_disk_caches(Vcb);
Status = write_superblocks(Vcb, Irp);
if (!NT_SUCCESS(Status)) {
ERR("write_superblocks returned %08x\n", Status);
goto end;
}
vde = Vcb->vde;
if (vde) {
pdo_device_extension* pdode = vde->pdode;
ExAcquireResourceSharedLite(&pdode->child_lock, true);
le = pdode->children.Flink;
while (le != &pdode->children) {
volume_child* vc = CONTAINING_RECORD(le, volume_child, list_entry);
vc->generation = Vcb->superblock.generation;
le = le->Flink;
}
ExReleaseResourceLite(&pdode->child_lock);
}
clean_space_cache(Vcb);
le = Vcb->chunks.Flink;
while (le != &Vcb->chunks) {
chunk* c = CONTAINING_RECORD(le, chunk, list_entry);
c->changed = false;
c->space_changed = false;
le = le->Flink;
}
Vcb->superblock.generation++;
Status = STATUS_SUCCESS;
le = Vcb->trees.Flink;
while (le != &Vcb->trees) {
tree* t = CONTAINING_RECORD(le, tree, list_entry);
t->write = false;
le = le->Flink;
}
Vcb->need_write = false;
while (!IsListEmpty(&Vcb->drop_roots)) {
root* r = CONTAINING_RECORD(RemoveHeadList(&Vcb->drop_roots), root, list_entry);
ExDeleteResourceLite(&r->nonpaged->load_tree_lock);
ExFreePool(r->nonpaged);
ExFreePool(r);
}
end:
TRACE("do_write returning %08x\n", Status);
return Status;
}
NTSTATUS do_write(device_extension* Vcb, PIRP Irp) {
LIST_ENTRY rollback;
NTSTATUS Status;
InitializeListHead(&rollback);
Status = do_write2(Vcb, Irp, &rollback);
if (!NT_SUCCESS(Status)) {
ERR("do_write2 returned %08x, dropping into readonly mode\n", Status);
Vcb->readonly = true;
FsRtlNotifyVolumeEvent(Vcb->root_file, FSRTL_VOLUME_FORCED_CLOSED);
do_rollback(Vcb, &rollback);
} else
clear_rollback(&rollback);
return Status;
}
static void do_flush(device_extension* Vcb) {
NTSTATUS Status;
ExAcquireResourceExclusiveLite(&Vcb->tree_lock, true);
if (Vcb->need_write && !Vcb->readonly)
Status = do_write(Vcb, NULL);
else
Status = STATUS_SUCCESS;
free_trees(Vcb);
if (!NT_SUCCESS(Status))
ERR("do_write returned %08x\n", Status);
ExReleaseResourceLite(&Vcb->tree_lock);
}
_Function_class_(KSTART_ROUTINE)
void __stdcall flush_thread(void* context) {
DEVICE_OBJECT* devobj = context;
device_extension* Vcb = devobj->DeviceExtension;
LARGE_INTEGER due_time;
ObReferenceObject(devobj);
KeInitializeTimer(&Vcb->flush_thread_timer);
due_time.QuadPart = (uint64_t)Vcb->options.flush_interval * -10000000;
KeSetTimer(&Vcb->flush_thread_timer, due_time, NULL);
while (true) {
KeWaitForSingleObject(&Vcb->flush_thread_timer, Executive, KernelMode, false, NULL);
if (!(devobj->Vpb->Flags & VPB_MOUNTED) || Vcb->removing)
break;
if (!Vcb->locked)
do_flush(Vcb);
KeSetTimer(&Vcb->flush_thread_timer, due_time, NULL);
}
ObDereferenceObject(devobj);
KeCancelTimer(&Vcb->flush_thread_timer);
KeSetEvent(&Vcb->flush_thread_finished, 0, false);
PsTerminateSystemThread(STATUS_SUCCESS);
}