reactos/ntoskrnl/mm/ARM3/pagfault.c
2023-09-27 17:31:42 +00:00

2762 lines
91 KiB
C

/*
* PROJECT: ReactOS Kernel
* LICENSE: BSD - See COPYING.ARM in the top level directory
* FILE: ntoskrnl/mm/ARM3/pagfault.c
* PURPOSE: ARM Memory Manager Page Fault Handling
* PROGRAMMERS: ReactOS Portable Systems Group
*/
/* INCLUDES *******************************************************************/
#include <ntoskrnl.h>
#define NDEBUG
#include <debug.h>
#define MODULE_INVOLVED_IN_ARM3
#include <mm/ARM3/miarm.h>
VOID
NTAPI
MmRebalanceMemoryConsumersAndWait(VOID);
/* GLOBALS ********************************************************************/
#define HYDRA_PROCESS (PEPROCESS)1
#if MI_TRACE_PFNS
BOOLEAN UserPdeFault = FALSE;
#endif
/* PRIVATE FUNCTIONS **********************************************************/
static
NTSTATUS
NTAPI
MiCheckForUserStackOverflow(IN PVOID Address,
IN PVOID TrapInformation)
{
PETHREAD CurrentThread = PsGetCurrentThread();
PTEB Teb = CurrentThread->Tcb.Teb;
PVOID StackBase, DeallocationStack, NextStackAddress;
SIZE_T GuaranteedSize;
NTSTATUS Status;
/* Do we own the address space lock? */
if (CurrentThread->AddressSpaceOwner == 1)
{
/* This isn't valid */
DPRINT1("Process owns address space lock\n");
ASSERT(KeAreAllApcsDisabled() == TRUE);
return STATUS_GUARD_PAGE_VIOLATION;
}
/* Are we attached? */
if (KeIsAttachedProcess())
{
/* This isn't valid */
DPRINT1("Process is attached\n");
return STATUS_GUARD_PAGE_VIOLATION;
}
/* Read the current settings */
StackBase = Teb->NtTib.StackBase;
DeallocationStack = Teb->DeallocationStack;
GuaranteedSize = Teb->GuaranteedStackBytes;
DPRINT("Handling guard page fault with Stacks Addresses 0x%p and 0x%p, guarantee: %lx\n",
StackBase, DeallocationStack, GuaranteedSize);
/* Guarantees make this code harder, for now, assume there aren't any */
ASSERT(GuaranteedSize == 0);
/* So allocate only the minimum guard page size */
GuaranteedSize = PAGE_SIZE;
/* Does this faulting stack address actually exist in the stack? */
if ((Address >= StackBase) || (Address < DeallocationStack))
{
/* That's odd... */
DPRINT1("Faulting address outside of stack bounds. Address=%p, StackBase=%p, DeallocationStack=%p\n",
Address, StackBase, DeallocationStack);
return STATUS_GUARD_PAGE_VIOLATION;
}
/* This is where the stack will start now */
NextStackAddress = (PVOID)((ULONG_PTR)PAGE_ALIGN(Address) - GuaranteedSize);
/* Do we have at least one page between here and the end of the stack? */
if (((ULONG_PTR)NextStackAddress - PAGE_SIZE) <= (ULONG_PTR)DeallocationStack)
{
/* We don't -- Trying to make this guard page valid now */
DPRINT1("Close to our death...\n");
/* Calculate the next memory address */
NextStackAddress = (PVOID)((ULONG_PTR)PAGE_ALIGN(DeallocationStack) + GuaranteedSize);
/* Allocate the memory */
Status = ZwAllocateVirtualMemory(NtCurrentProcess(),
&NextStackAddress,
0,
&GuaranteedSize,
MEM_COMMIT,
PAGE_READWRITE);
if (NT_SUCCESS(Status))
{
/* Success! */
Teb->NtTib.StackLimit = NextStackAddress;
}
else
{
DPRINT1("Failed to allocate memory\n");
}
return STATUS_STACK_OVERFLOW;
}
/* Don't handle this flag yet */
ASSERT((PsGetCurrentProcess()->Peb->NtGlobalFlag & FLG_DISABLE_STACK_EXTENSION) == 0);
/* Update the stack limit */
Teb->NtTib.StackLimit = (PVOID)((ULONG_PTR)NextStackAddress + GuaranteedSize);
/* Now move the guard page to the next page */
Status = ZwAllocateVirtualMemory(NtCurrentProcess(),
&NextStackAddress,
0,
&GuaranteedSize,
MEM_COMMIT,
PAGE_READWRITE | PAGE_GUARD);
if ((NT_SUCCESS(Status) || (Status == STATUS_ALREADY_COMMITTED)))
{
/* We did it! */
DPRINT("Guard page handled successfully for %p\n", Address);
return STATUS_PAGE_FAULT_GUARD_PAGE;
}
/* Fail, we couldn't move the guard page */
DPRINT1("Guard page failure: %lx\n", Status);
ASSERT(FALSE);
return STATUS_STACK_OVERFLOW;
}
FORCEINLINE
BOOLEAN
MiIsAccessAllowed(
_In_ ULONG ProtectionMask,
_In_ BOOLEAN Write,
_In_ BOOLEAN Execute)
{
#define _BYTE_MASK(Bit0, Bit1, Bit2, Bit3, Bit4, Bit5, Bit6, Bit7) \
(Bit0) | ((Bit1) << 1) | ((Bit2) << 2) | ((Bit3) << 3) | \
((Bit4) << 4) | ((Bit5) << 5) | ((Bit6) << 6) | ((Bit7) << 7)
static const UCHAR AccessAllowedMask[2][2] =
{
{ // Protect 0 1 2 3 4 5 6 7
_BYTE_MASK(0, 1, 1, 1, 1, 1, 1, 1), // READ
_BYTE_MASK(0, 0, 1, 1, 0, 0, 1, 1), // EXECUTE READ
},
{
_BYTE_MASK(0, 0, 0, 0, 1, 1, 1, 1), // WRITE
_BYTE_MASK(0, 0, 0, 0, 0, 0, 1, 1), // EXECUTE WRITE
}
};
/* We want only the lower access bits */
ProtectionMask &= MM_PROTECT_ACCESS;
/* Look it up in the table */
return (AccessAllowedMask[Write != 0][Execute != 0] >> ProtectionMask) & 1;
}
static
NTSTATUS
NTAPI
MiAccessCheck(IN PMMPTE PointerPte,
IN BOOLEAN StoreInstruction,
IN KPROCESSOR_MODE PreviousMode,
IN ULONG_PTR ProtectionMask,
IN PVOID TrapFrame,
IN BOOLEAN LockHeld)
{
MMPTE TempPte;
/* Check for invalid user-mode access */
if ((PreviousMode == UserMode) && (PointerPte > MiHighestUserPte))
{
return STATUS_ACCESS_VIOLATION;
}
/* Capture the PTE -- is it valid? */
TempPte = *PointerPte;
if (TempPte.u.Hard.Valid)
{
/* Was someone trying to write to it? */
if (StoreInstruction)
{
/* Is it writable?*/
if (MI_IS_PAGE_WRITEABLE(&TempPte) ||
MI_IS_PAGE_COPY_ON_WRITE(&TempPte))
{
/* Then there's nothing to worry about */
return STATUS_SUCCESS;
}
/* Oops! This isn't allowed */
return STATUS_ACCESS_VIOLATION;
}
/* Someone was trying to read from a valid PTE, that's fine too */
return STATUS_SUCCESS;
}
/* Check if the protection on the page allows what is being attempted */
if (!MiIsAccessAllowed(ProtectionMask, StoreInstruction, FALSE))
{
return STATUS_ACCESS_VIOLATION;
}
/* Check if this is a guard page */
if ((ProtectionMask & MM_PROTECT_SPECIAL) == MM_GUARDPAGE)
{
ASSERT(ProtectionMask != MM_DECOMMIT);
/* Attached processes can't expand their stack */
if (KeIsAttachedProcess()) return STATUS_ACCESS_VIOLATION;
/* No support for prototype PTEs yet */
ASSERT(TempPte.u.Soft.Prototype == 0);
/* Remove the guard page bit, and return a guard page violation */
TempPte.u.Soft.Protection = ProtectionMask & ~MM_GUARDPAGE;
ASSERT(TempPte.u.Long != 0);
MI_WRITE_INVALID_PTE(PointerPte, TempPte);
return STATUS_GUARD_PAGE_VIOLATION;
}
/* Nothing to do */
return STATUS_SUCCESS;
}
static
PMMPTE
NTAPI
MiCheckVirtualAddress(IN PVOID VirtualAddress,
OUT PULONG ProtectCode,
OUT PMMVAD *ProtoVad)
{
PMMVAD Vad;
PMMPTE PointerPte;
/* No prototype/section support for now */
*ProtoVad = NULL;
/* User or kernel fault? */
if (VirtualAddress <= MM_HIGHEST_USER_ADDRESS)
{
/* Special case for shared data */
if (PAGE_ALIGN(VirtualAddress) == (PVOID)MM_SHARED_USER_DATA_VA)
{
/* It's a read-only page */
*ProtectCode = MM_READONLY;
return MmSharedUserDataPte;
}
/* Find the VAD, it might not exist if the address is bogus */
Vad = MiLocateAddress(VirtualAddress);
if (!Vad)
{
/* Bogus virtual address */
*ProtectCode = MM_NOACCESS;
return NULL;
}
/* ReactOS does not handle physical memory VADs yet */
ASSERT(Vad->u.VadFlags.VadType != VadDevicePhysicalMemory);
/* Check if it's a section, or just an allocation */
if (Vad->u.VadFlags.PrivateMemory)
{
/* ReactOS does not handle AWE VADs yet */
ASSERT(Vad->u.VadFlags.VadType != VadAwe);
/* This must be a TEB/PEB VAD */
if (Vad->u.VadFlags.MemCommit)
{
/* It's committed, so return the VAD protection */
*ProtectCode = (ULONG)Vad->u.VadFlags.Protection;
}
else
{
/* It has not yet been committed, so return no access */
*ProtectCode = MM_NOACCESS;
}
/* In both cases, return no PTE */
return NULL;
}
else
{
/* ReactOS does not supoprt these VADs yet */
ASSERT(Vad->u.VadFlags.VadType != VadImageMap);
ASSERT(Vad->u2.VadFlags2.ExtendableFile == 0);
/* Return the proto VAD */
*ProtoVad = Vad;
/* Get the prototype PTE for this page */
PointerPte = (((ULONG_PTR)VirtualAddress >> PAGE_SHIFT) - Vad->StartingVpn) + Vad->FirstPrototypePte;
ASSERT(PointerPte != NULL);
ASSERT(PointerPte <= Vad->LastContiguousPte);
/* Return the Prototype PTE and the protection for the page mapping */
*ProtectCode = (ULONG)Vad->u.VadFlags.Protection;
return PointerPte;
}
}
else if (MI_IS_PAGE_TABLE_ADDRESS(VirtualAddress))
{
/* This should never happen, as these addresses are handled by the double-maping */
if (((PMMPTE)VirtualAddress >= MiAddressToPte(MmPagedPoolStart)) &&
((PMMPTE)VirtualAddress <= MmPagedPoolInfo.LastPteForPagedPool))
{
/* Fail such access */
*ProtectCode = MM_NOACCESS;
return NULL;
}
/* Return full access rights */
*ProtectCode = MM_EXECUTE_READWRITE;
return NULL;
}
else if (MI_IS_SESSION_ADDRESS(VirtualAddress))
{
/* ReactOS does not have an image list yet, so bail out to failure case */
ASSERT(IsListEmpty(&MmSessionSpace->ImageList));
}
/* Default case -- failure */
*ProtectCode = MM_NOACCESS;
return NULL;
}
#if (_MI_PAGING_LEVELS == 2)
static
NTSTATUS
FASTCALL
MiCheckPdeForSessionSpace(IN PVOID Address)
{
MMPTE TempPde;
PMMPDE PointerPde;
PVOID SessionAddress;
ULONG Index;
/* Is this a session PTE? */
if (MI_IS_SESSION_PTE(Address))
{
/* Make sure the PDE for session space is valid */
PointerPde = MiAddressToPde(MmSessionSpace);
if (!PointerPde->u.Hard.Valid)
{
/* This means there's no valid session, bail out */
DbgPrint("MiCheckPdeForSessionSpace: No current session for PTE %p\n",
Address);
DbgBreakPoint();
return STATUS_ACCESS_VIOLATION;
}
/* Now get the session-specific page table for this address */
SessionAddress = MiPteToAddress(Address);
PointerPde = MiAddressToPte(Address);
if (PointerPde->u.Hard.Valid) return STATUS_WAIT_1;
/* It's not valid, so find it in the page table array */
Index = ((ULONG_PTR)SessionAddress - (ULONG_PTR)MmSessionBase) >> 22;
TempPde.u.Long = MmSessionSpace->PageTables[Index].u.Long;
if (TempPde.u.Hard.Valid)
{
/* The copy is valid, so swap it in */
InterlockedExchange((PLONG)PointerPde, TempPde.u.Long);
return STATUS_WAIT_1;
}
/* We don't seem to have allocated a page table for this address yet? */
DbgPrint("MiCheckPdeForSessionSpace: No Session PDE for PTE %p, %p\n",
PointerPde->u.Long, SessionAddress);
DbgBreakPoint();
return STATUS_ACCESS_VIOLATION;
}
/* Is the address also a session address? If not, we're done */
if (!MI_IS_SESSION_ADDRESS(Address)) return STATUS_SUCCESS;
/* It is, so again get the PDE for session space */
PointerPde = MiAddressToPde(MmSessionSpace);
if (!PointerPde->u.Hard.Valid)
{
/* This means there's no valid session, bail out */
DbgPrint("MiCheckPdeForSessionSpace: No current session for VA %p\n",
Address);
DbgBreakPoint();
return STATUS_ACCESS_VIOLATION;
}
/* Now get the PDE for the address itself */
PointerPde = MiAddressToPde(Address);
if (!PointerPde->u.Hard.Valid)
{
/* Do the swap, we should be good to go */
Index = ((ULONG_PTR)Address - (ULONG_PTR)MmSessionBase) >> 22;
PointerPde->u.Long = MmSessionSpace->PageTables[Index].u.Long;
if (PointerPde->u.Hard.Valid) return STATUS_WAIT_1;
/* We had not allocated a page table for this session address yet, fail! */
DbgPrint("MiCheckPdeForSessionSpace: No Session PDE for VA %p, %p\n",
PointerPde->u.Long, Address);
DbgBreakPoint();
return STATUS_ACCESS_VIOLATION;
}
/* It's valid, so there's nothing to do */
return STATUS_SUCCESS;
}
NTSTATUS
FASTCALL
MiCheckPdeForPagedPool(IN PVOID Address)
{
PMMPDE PointerPde;
NTSTATUS Status = STATUS_SUCCESS;
/* Check session PDE */
if (MI_IS_SESSION_ADDRESS(Address)) return MiCheckPdeForSessionSpace(Address);
if (MI_IS_SESSION_PTE(Address)) return MiCheckPdeForSessionSpace(Address);
//
// Check if this is a fault while trying to access the page table itself
//
if (MI_IS_SYSTEM_PAGE_TABLE_ADDRESS(Address))
{
//
// Send a hint to the page fault handler that this is only a valid fault
// if we already detected this was access within the page table range
//
PointerPde = (PMMPDE)MiAddressToPte(Address);
Status = STATUS_WAIT_1;
}
else if (Address < MmSystemRangeStart)
{
//
// This is totally illegal
//
return STATUS_ACCESS_VIOLATION;
}
else
{
//
// Get the PDE for the address
//
PointerPde = MiAddressToPde(Address);
}
//
// Check if it's not valid
//
if (PointerPde->u.Hard.Valid == 0)
{
//
// Copy it from our double-mapped system page directory
//
InterlockedExchangePte(PointerPde,
MmSystemPagePtes[((ULONG_PTR)PointerPde & (SYSTEM_PD_SIZE - 1)) / sizeof(MMPTE)].u.Long);
}
//
// Return status
//
return Status;
}
#else
NTSTATUS
FASTCALL
MiCheckPdeForPagedPool(IN PVOID Address)
{
return STATUS_ACCESS_VIOLATION;
}
#endif
VOID
NTAPI
MiZeroPfn(IN PFN_NUMBER PageFrameNumber)
{
PMMPTE ZeroPte;
MMPTE TempPte;
PMMPFN Pfn1;
PVOID ZeroAddress;
/* Get the PFN for this page */
Pfn1 = MiGetPfnEntry(PageFrameNumber);
ASSERT(Pfn1);
/* Grab a system PTE we can use to zero the page */
ZeroPte = MiReserveSystemPtes(1, SystemPteSpace);
ASSERT(ZeroPte);
/* Initialize the PTE for it */
TempPte = ValidKernelPte;
TempPte.u.Hard.PageFrameNumber = PageFrameNumber;
/* Setup caching */
if (Pfn1->u3.e1.CacheAttribute == MiWriteCombined)
{
/* Write combining, no caching */
MI_PAGE_DISABLE_CACHE(&TempPte);
MI_PAGE_WRITE_COMBINED(&TempPte);
}
else if (Pfn1->u3.e1.CacheAttribute == MiNonCached)
{
/* Write through, no caching */
MI_PAGE_DISABLE_CACHE(&TempPte);
MI_PAGE_WRITE_THROUGH(&TempPte);
}
/* Make the system PTE valid with our PFN */
MI_WRITE_VALID_PTE(ZeroPte, TempPte);
/* Get the address it maps to, and zero it out */
ZeroAddress = MiPteToAddress(ZeroPte);
KeZeroPages(ZeroAddress, PAGE_SIZE);
/* Now get rid of it */
MiReleaseSystemPtes(ZeroPte, 1, SystemPteSpace);
}
VOID
NTAPI
MiCopyPfn(
_In_ PFN_NUMBER DestPage,
_In_ PFN_NUMBER SrcPage)
{
PMMPTE SysPtes;
MMPTE TempPte;
PMMPFN DestPfn, SrcPfn;
PVOID DestAddress;
const VOID* SrcAddress;
/* Get the PFNs */
DestPfn = MiGetPfnEntry(DestPage);
ASSERT(DestPfn);
SrcPfn = MiGetPfnEntry(SrcPage);
ASSERT(SrcPfn);
/* Grab 2 system PTEs */
SysPtes = MiReserveSystemPtes(2, SystemPteSpace);
ASSERT(SysPtes);
/* Initialize the destination PTE */
TempPte = ValidKernelPte;
TempPte.u.Hard.PageFrameNumber = DestPage;
/* Setup caching */
if (DestPfn->u3.e1.CacheAttribute == MiWriteCombined)
{
/* Write combining, no caching */
MI_PAGE_DISABLE_CACHE(&TempPte);
MI_PAGE_WRITE_COMBINED(&TempPte);
}
else if (DestPfn->u3.e1.CacheAttribute == MiNonCached)
{
/* Write through, no caching */
MI_PAGE_DISABLE_CACHE(&TempPte);
MI_PAGE_WRITE_THROUGH(&TempPte);
}
/* Make the system PTE valid with our PFN */
MI_WRITE_VALID_PTE(&SysPtes[0], TempPte);
/* Initialize the source PTE */
TempPte = ValidKernelPte;
TempPte.u.Hard.PageFrameNumber = SrcPage;
/* Setup caching */
if (SrcPfn->u3.e1.CacheAttribute == MiNonCached)
{
MI_PAGE_DISABLE_CACHE(&TempPte);
}
/* Make the system PTE valid with our PFN */
MI_WRITE_VALID_PTE(&SysPtes[1], TempPte);
/* Get the addresses and perform the copy */
DestAddress = MiPteToAddress(&SysPtes[0]);
SrcAddress = MiPteToAddress(&SysPtes[1]);
RtlCopyMemory(DestAddress, SrcAddress, PAGE_SIZE);
/* Now get rid of it */
MiReleaseSystemPtes(SysPtes, 2, SystemPteSpace);
}
static
NTSTATUS
NTAPI
MiResolveDemandZeroFault(IN PVOID Address,
IN PMMPTE PointerPte,
IN ULONG Protection,
IN PEPROCESS Process,
IN KIRQL OldIrql)
{
PFN_NUMBER PageFrameNumber = 0;
MMPTE TempPte;
BOOLEAN NeedZero = FALSE, HaveLock = FALSE;
ULONG Color;
PMMPFN Pfn1;
DPRINT("ARM3 Demand Zero Page Fault Handler for address: %p in process: %p\n",
Address,
Process);
/* Must currently only be called by paging path */
if ((Process > HYDRA_PROCESS) && (OldIrql == MM_NOIRQL))
{
/* Sanity check */
ASSERT(MI_IS_PAGE_TABLE_ADDRESS(PointerPte));
/* No forking yet */
ASSERT(Process->ForkInProgress == NULL);
/* Get process color */
Color = MI_GET_NEXT_PROCESS_COLOR(Process);
ASSERT(Color != 0xFFFFFFFF);
/* We'll need a zero page */
NeedZero = TRUE;
}
else
{
/* Check if we need a zero page */
NeedZero = (OldIrql != MM_NOIRQL);
/* Session-backed image views must be zeroed */
if ((Process == HYDRA_PROCESS) &&
((MI_IS_SESSION_IMAGE_ADDRESS(Address)) ||
((Address >= MiSessionViewStart) && (Address < MiSessionSpaceWs))))
{
NeedZero = TRUE;
}
/* Hardcode unknown color */
Color = 0xFFFFFFFF;
}
/* Check if the PFN database should be acquired */
if (OldIrql == MM_NOIRQL)
{
/* Acquire it and remember we should release it after */
OldIrql = MiAcquirePfnLock();
HaveLock = TRUE;
}
/* We either manually locked the PFN DB, or already came with it locked */
MI_ASSERT_PFN_LOCK_HELD();
ASSERT(PointerPte->u.Hard.Valid == 0);
/* Assert we have enough pages */
//ASSERT(MmAvailablePages >= 32);
#if MI_TRACE_PFNS
if (UserPdeFault) MI_SET_USAGE(MI_USAGE_PAGE_TABLE);
if (!UserPdeFault) MI_SET_USAGE(MI_USAGE_DEMAND_ZERO);
#endif
if (Process == HYDRA_PROCESS) MI_SET_PROCESS2("Hydra");
else if (Process) MI_SET_PROCESS2(Process->ImageFileName);
else MI_SET_PROCESS2("Kernel Demand 0");
/* Do we need a zero page? */
if (Color != 0xFFFFFFFF)
{
/* Try to get one, if we couldn't grab a free page and zero it */
PageFrameNumber = MiRemoveZeroPageSafe(Color);
if (!PageFrameNumber)
{
/* We'll need a free page and zero it manually */
PageFrameNumber = MiRemoveAnyPage(Color);
NeedZero = TRUE;
}
else
{
/* Page guaranteed to be zero-filled */
NeedZero = FALSE;
}
}
else
{
/* Get a color, and see if we should grab a zero or non-zero page */
Color = MI_GET_NEXT_COLOR();
if (!NeedZero)
{
/* Process or system doesn't want a zero page, grab anything */
PageFrameNumber = MiRemoveAnyPage(Color);
}
else
{
/* System wants a zero page, obtain one */
PageFrameNumber = MiRemoveZeroPage(Color);
/* No need to zero-fill it */
NeedZero = FALSE;
}
}
if (PageFrameNumber == 0)
{
MiReleasePfnLock(OldIrql);
return STATUS_NO_MEMORY;
}
/* Initialize it */
MiInitializePfn(PageFrameNumber, PointerPte, TRUE);
/* Increment demand zero faults */
KeGetCurrentPrcb()->MmDemandZeroCount++;
/* Do we have the lock? */
if (HaveLock)
{
/* Release it */
MiReleasePfnLock(OldIrql);
/* Update performance counters */
if (Process > HYDRA_PROCESS) Process->NumberOfPrivatePages++;
}
/* Zero the page if need be */
if (NeedZero) MiZeroPfn(PageFrameNumber);
/* Fault on user PDE, or fault on user PTE? */
if (PointerPte <= MiHighestUserPte)
{
/* User fault, build a user PTE */
MI_MAKE_HARDWARE_PTE_USER(&TempPte,
PointerPte,
Protection,
PageFrameNumber);
}
else
{
/* This is a user-mode PDE, create a kernel PTE for it */
MI_MAKE_HARDWARE_PTE(&TempPte,
PointerPte,
Protection,
PageFrameNumber);
}
/* Set it dirty if it's a writable page */
if (MI_IS_PAGE_WRITEABLE(&TempPte)) MI_MAKE_DIRTY_PAGE(&TempPte);
/* Write it */
MI_WRITE_VALID_PTE(PointerPte, TempPte);
/* Did we manually acquire the lock */
if (HaveLock)
{
/* Get the PFN entry */
Pfn1 = MI_PFN_ELEMENT(PageFrameNumber);
/* Windows does these sanity checks */
ASSERT(Pfn1->u1.Event == 0);
ASSERT(Pfn1->u3.e1.PrototypePte == 0);
}
//
// It's all good now
//
DPRINT("Demand zero page has now been paged in\n");
return STATUS_PAGE_FAULT_DEMAND_ZERO;
}
static
NTSTATUS
NTAPI
MiCompleteProtoPteFault(IN BOOLEAN StoreInstruction,
IN PVOID Address,
IN PMMPTE PointerPte,
IN PMMPTE PointerProtoPte,
IN KIRQL OldIrql,
IN PMMPFN* LockedProtoPfn)
{
MMPTE TempPte;
PMMPTE OriginalPte, PageTablePte;
ULONG_PTR Protection;
PFN_NUMBER PageFrameIndex;
PMMPFN Pfn1, Pfn2;
BOOLEAN OriginalProtection, DirtyPage;
/* Must be called with an valid prototype PTE, with the PFN lock held */
MI_ASSERT_PFN_LOCK_HELD();
ASSERT(PointerProtoPte->u.Hard.Valid == 1);
/* Get the page */
PageFrameIndex = PFN_FROM_PTE(PointerProtoPte);
/* Get the PFN entry and set it as a prototype PTE */
Pfn1 = MiGetPfnEntry(PageFrameIndex);
Pfn1->u3.e1.PrototypePte = 1;
/* Increment the share count for the page table */
PageTablePte = MiAddressToPte(PointerPte);
Pfn2 = MiGetPfnEntry(PageTablePte->u.Hard.PageFrameNumber);
Pfn2->u2.ShareCount++;
/* Check where we should be getting the protection information from */
if (PointerPte->u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED)
{
/* Get the protection from the PTE, there's no real Proto PTE data */
Protection = PointerPte->u.Soft.Protection;
/* Remember that we did not use the proto protection */
OriginalProtection = FALSE;
}
else
{
/* Get the protection from the original PTE link */
OriginalPte = &Pfn1->OriginalPte;
Protection = OriginalPte->u.Soft.Protection;
/* Remember that we used the original protection */
OriginalProtection = TRUE;
/* Check if this was a write on a read only proto */
if ((StoreInstruction) && !(Protection & MM_READWRITE))
{
/* Clear the flag */
StoreInstruction = 0;
}
}
/* Check if this was a write on a non-COW page */
DirtyPage = FALSE;
if ((StoreInstruction) && ((Protection & MM_WRITECOPY) != MM_WRITECOPY))
{
/* Then the page should be marked dirty */
DirtyPage = TRUE;
/* ReactOS check */
ASSERT(Pfn1->OriginalPte.u.Soft.Prototype != 0);
}
/* Did we get a locked incoming PFN? */
if (*LockedProtoPfn)
{
/* Drop a reference */
ASSERT((*LockedProtoPfn)->u3.e2.ReferenceCount >= 1);
MiDereferencePfnAndDropLockCount(*LockedProtoPfn);
*LockedProtoPfn = NULL;
}
/* Release the PFN lock */
MiReleasePfnLock(OldIrql);
/* Remove special/caching bits */
Protection &= ~MM_PROTECT_SPECIAL;
/* Setup caching */
if (Pfn1->u3.e1.CacheAttribute == MiWriteCombined)
{
/* Write combining, no caching */
MI_PAGE_DISABLE_CACHE(&TempPte);
MI_PAGE_WRITE_COMBINED(&TempPte);
}
else if (Pfn1->u3.e1.CacheAttribute == MiNonCached)
{
/* Write through, no caching */
MI_PAGE_DISABLE_CACHE(&TempPte);
MI_PAGE_WRITE_THROUGH(&TempPte);
}
/* Check if this is a kernel or user address */
if (Address < MmSystemRangeStart)
{
/* Build the user PTE */
MI_MAKE_HARDWARE_PTE_USER(&TempPte, PointerPte, Protection, PageFrameIndex);
}
else
{
/* Build the kernel PTE */
MI_MAKE_HARDWARE_PTE(&TempPte, PointerPte, Protection, PageFrameIndex);
}
/* Set the dirty flag if needed */
if (DirtyPage) MI_MAKE_DIRTY_PAGE(&TempPte);
/* Write the PTE */
MI_WRITE_VALID_PTE(PointerPte, TempPte);
/* Reset the protection if needed */
if (OriginalProtection) Protection = MM_ZERO_ACCESS;
/* Return success */
ASSERT(PointerPte == MiAddressToPte(Address));
return STATUS_SUCCESS;
}
static
NTSTATUS
NTAPI
MiResolvePageFileFault(_In_ BOOLEAN StoreInstruction,
_In_ PVOID FaultingAddress,
_In_ PMMPTE PointerPte,
_In_ PEPROCESS CurrentProcess,
_Inout_ KIRQL *OldIrql)
{
ULONG Color;
PFN_NUMBER Page;
NTSTATUS Status;
MMPTE TempPte = *PointerPte;
PMMPFN Pfn1;
ULONG PageFileIndex = TempPte.u.Soft.PageFileLow;
ULONG_PTR PageFileOffset = TempPte.u.Soft.PageFileHigh;
ULONG Protection = TempPte.u.Soft.Protection;
/* Things we don't support yet */
ASSERT(CurrentProcess > HYDRA_PROCESS);
ASSERT(*OldIrql != MM_NOIRQL);
MI_SET_USAGE(MI_USAGE_PAGE_FILE);
MI_SET_PROCESS(CurrentProcess);
/* We must hold the PFN lock */
MI_ASSERT_PFN_LOCK_HELD();
/* Some sanity checks */
ASSERT(TempPte.u.Hard.Valid == 0);
ASSERT(TempPte.u.Soft.PageFileHigh != 0);
ASSERT(TempPte.u.Soft.PageFileHigh != MI_PTE_LOOKUP_NEEDED);
/* Get any page, it will be overwritten */
Color = MI_GET_NEXT_PROCESS_COLOR(CurrentProcess);
Page = MiRemoveAnyPage(Color);
if (Page == 0)
{
return STATUS_NO_MEMORY;
}
/* Initialize this PFN */
MiInitializePfn(Page, PointerPte, StoreInstruction);
/* Sets the PFN as being in IO operation */
Pfn1 = MI_PFN_ELEMENT(Page);
ASSERT(Pfn1->u1.Event == NULL);
ASSERT(Pfn1->u3.e1.ReadInProgress == 0);
ASSERT(Pfn1->u3.e1.WriteInProgress == 0);
Pfn1->u3.e1.ReadInProgress = 1;
/* We must write the PTE now as the PFN lock will be released while performing the IO operation */
MI_MAKE_TRANSITION_PTE(&TempPte, Page, Protection);
MI_WRITE_INVALID_PTE(PointerPte, TempPte);
/* Release the PFN lock while we proceed */
MiReleasePfnLock(*OldIrql);
/* Do the paging IO */
Status = MiReadPageFile(Page, PageFileIndex, PageFileOffset);
/* Lock the PFN database again */
*OldIrql = MiAcquirePfnLock();
/* Nobody should have changed that while we were not looking */
ASSERT(Pfn1->u3.e1.ReadInProgress == 1);
ASSERT(Pfn1->u3.e1.WriteInProgress == 0);
if (!NT_SUCCESS(Status))
{
/* Malheur! */
ASSERT(FALSE);
Pfn1->u4.InPageError = 1;
Pfn1->u1.ReadStatus = Status;
}
/* And the PTE can finally be valid */
MI_MAKE_HARDWARE_PTE(&TempPte, PointerPte, Protection, Page);
MI_WRITE_VALID_PTE(PointerPte, TempPte);
Pfn1->u3.e1.ReadInProgress = 0;
/* Did someone start to wait on us while we proceeded ? */
if (Pfn1->u1.Event)
{
/* Tell them we're done */
KeSetEvent(Pfn1->u1.Event, IO_NO_INCREMENT, FALSE);
}
return Status;
}
static
NTSTATUS
NTAPI
MiResolveTransitionFault(IN BOOLEAN StoreInstruction,
IN PVOID FaultingAddress,
IN PMMPTE PointerPte,
IN PEPROCESS CurrentProcess,
IN KIRQL OldIrql,
OUT PKEVENT **InPageBlock)
{
PFN_NUMBER PageFrameIndex;
PMMPFN Pfn1;
MMPTE TempPte;
PMMPTE PointerToPteForProtoPage;
DPRINT("Transition fault on 0x%p with PTE 0x%p in process %s\n",
FaultingAddress, PointerPte, CurrentProcess->ImageFileName);
/* Windowss does this check */
ASSERT(*InPageBlock == NULL);
/* ARM3 doesn't support this path */
ASSERT(OldIrql != MM_NOIRQL);
/* Capture the PTE and make sure it's in transition format */
TempPte = *PointerPte;
ASSERT((TempPte.u.Soft.Valid == 0) &&
(TempPte.u.Soft.Prototype == 0) &&
(TempPte.u.Soft.Transition == 1));
/* Get the PFN and the PFN entry */
PageFrameIndex = TempPte.u.Trans.PageFrameNumber;
DPRINT("Transition PFN: %lx\n", PageFrameIndex);
Pfn1 = MiGetPfnEntry(PageFrameIndex);
/* One more transition fault! */
InterlockedIncrement(&KeGetCurrentPrcb()->MmTransitionCount);
/* This is from ARM3 -- Windows normally handles this here */
ASSERT(Pfn1->u4.InPageError == 0);
/* See if we should wait before terminating the fault */
if ((Pfn1->u3.e1.ReadInProgress == 1)
|| ((Pfn1->u3.e1.WriteInProgress == 1) && StoreInstruction))
{
DPRINT1("The page is currently in a page transition !\n");
*InPageBlock = &Pfn1->u1.Event;
if (PointerPte == Pfn1->PteAddress)
{
DPRINT1("And this if for this particular PTE.\n");
/* The PTE will be made valid by the thread serving the fault */
return STATUS_SUCCESS; // FIXME: Maybe something more descriptive
}
}
/* Windows checks there's some free pages and this isn't an in-page error */
ASSERT(MmAvailablePages > 0);
ASSERT(Pfn1->u4.InPageError == 0);
/* ReactOS checks for this */
ASSERT(MmAvailablePages > 32);
/* Was this a transition page in the valid list, or free/zero list? */
if (Pfn1->u3.e1.PageLocation == ActiveAndValid)
{
/* All Windows does here is a bunch of sanity checks */
DPRINT("Transition in active list\n");
ASSERT((Pfn1->PteAddress >= MiAddressToPte(MmPagedPoolStart)) &&
(Pfn1->PteAddress <= MiAddressToPte(MmPagedPoolEnd)));
ASSERT(Pfn1->u2.ShareCount != 0);
ASSERT(Pfn1->u3.e2.ReferenceCount != 0);
}
else
{
/* Otherwise, the page is removed from its list */
DPRINT("Transition page in free/zero list\n");
MiUnlinkPageFromList(Pfn1);
MiReferenceUnusedPageAndBumpLockCount(Pfn1);
}
/* At this point, there should no longer be any in-page errors */
ASSERT(Pfn1->u4.InPageError == 0);
/* Check if this was a PFN with no more share references */
if (Pfn1->u2.ShareCount == 0) MiDropLockCount(Pfn1);
/* Bump the share count and make the page valid */
Pfn1->u2.ShareCount++;
Pfn1->u3.e1.PageLocation = ActiveAndValid;
/* Prototype PTEs are in paged pool, which itself might be in transition */
if (FaultingAddress >= MmSystemRangeStart)
{
/* Check if this is a paged pool PTE in transition state */
PointerToPteForProtoPage = MiAddressToPte(PointerPte);
TempPte = *PointerToPteForProtoPage;
if ((TempPte.u.Hard.Valid == 0) && (TempPte.u.Soft.Transition == 1))
{
/* This isn't yet supported */
DPRINT1("Double transition fault not yet supported\n");
ASSERT(FALSE);
}
}
/* Build the final PTE */
ASSERT(PointerPte->u.Hard.Valid == 0);
ASSERT(PointerPte->u.Trans.Prototype == 0);
ASSERT(PointerPte->u.Trans.Transition == 1);
TempPte.u.Long = (PointerPte->u.Long & ~0xFFF) |
(MmProtectToPteMask[PointerPte->u.Trans.Protection]) |
MiDetermineUserGlobalPteMask(PointerPte);
/* Is the PTE writeable? */
if ((Pfn1->u3.e1.Modified) &&
MI_IS_PAGE_WRITEABLE(&TempPte) &&
!MI_IS_PAGE_COPY_ON_WRITE(&TempPte))
{
/* Make it dirty */
MI_MAKE_DIRTY_PAGE(&TempPte);
}
else
{
/* Make it clean */
MI_MAKE_CLEAN_PAGE(&TempPte);
}
/* Write the valid PTE */
MI_WRITE_VALID_PTE(PointerPte, TempPte);
/* Return success */
return STATUS_PAGE_FAULT_TRANSITION;
}
static
NTSTATUS
NTAPI
MiResolveProtoPteFault(IN BOOLEAN StoreInstruction,
IN PVOID Address,
IN PMMPTE PointerPte,
IN PMMPTE PointerProtoPte,
IN OUT PMMPFN *OutPfn,
OUT PVOID *PageFileData,
OUT PMMPTE PteValue,
IN PEPROCESS Process,
IN KIRQL OldIrql,
IN PVOID TrapInformation)
{
MMPTE TempPte, PteContents;
PMMPFN Pfn1;
PFN_NUMBER PageFrameIndex;
NTSTATUS Status;
PKEVENT* InPageBlock = NULL;
ULONG Protection;
/* Must be called with an invalid, prototype PTE, with the PFN lock held */
MI_ASSERT_PFN_LOCK_HELD();
ASSERT(PointerPte->u.Hard.Valid == 0);
ASSERT(PointerPte->u.Soft.Prototype == 1);
/* Read the prototype PTE and check if it's valid */
TempPte = *PointerProtoPte;
if (TempPte.u.Hard.Valid == 1)
{
/* One more user of this mapped page */
PageFrameIndex = PFN_FROM_PTE(&TempPte);
Pfn1 = MiGetPfnEntry(PageFrameIndex);
Pfn1->u2.ShareCount++;
/* Call it a transition */
InterlockedIncrement(&KeGetCurrentPrcb()->MmTransitionCount);
/* Complete the prototype PTE fault -- this will release the PFN lock */
return MiCompleteProtoPteFault(StoreInstruction,
Address,
PointerPte,
PointerProtoPte,
OldIrql,
OutPfn);
}
/* Make sure there's some protection mask */
if (TempPte.u.Long == 0)
{
/* Release the lock */
DPRINT1("Access on reserved section?\n");
MiReleasePfnLock(OldIrql);
return STATUS_ACCESS_VIOLATION;
}
/* There is no such thing as a decommitted prototype PTE */
ASSERT(TempPte.u.Long != MmDecommittedPte.u.Long);
/* Check for access rights on the PTE proper */
PteContents = *PointerPte;
if (PteContents.u.Soft.PageFileHigh != MI_PTE_LOOKUP_NEEDED)
{
if (!PteContents.u.Proto.ReadOnly)
{
Protection = TempPte.u.Soft.Protection;
}
else
{
Protection = MM_READONLY;
}
/* Check for page acess in software */
Status = MiAccessCheck(PointerProtoPte,
StoreInstruction,
KernelMode,
TempPte.u.Soft.Protection,
TrapInformation,
TRUE);
ASSERT(Status == STATUS_SUCCESS);
}
else
{
Protection = PteContents.u.Soft.Protection;
}
/* Check for writing copy on write page */
if (((Protection & MM_WRITECOPY) == MM_WRITECOPY) && StoreInstruction)
{
PFN_NUMBER PageFrameIndex, ProtoPageFrameIndex;
ULONG Color;
/* Resolve the proto fault as if it was a read operation */
Status = MiResolveProtoPteFault(FALSE,
Address,
PointerPte,
PointerProtoPte,
OutPfn,
PageFileData,
PteValue,
Process,
OldIrql,
TrapInformation);
if (!NT_SUCCESS(Status))
{
return Status;
}
/* Lock again the PFN lock, MiResolveProtoPteFault unlocked it */
OldIrql = MiAcquirePfnLock();
/* And re-read the proto PTE */
TempPte = *PointerProtoPte;
ASSERT(TempPte.u.Hard.Valid == 1);
ProtoPageFrameIndex = PFN_FROM_PTE(&TempPte);
MI_SET_USAGE(MI_USAGE_COW);
MI_SET_PROCESS(Process);
/* Get a new page for the private copy */
if (Process > HYDRA_PROCESS)
Color = MI_GET_NEXT_PROCESS_COLOR(Process);
else
Color = MI_GET_NEXT_COLOR();
PageFrameIndex = MiRemoveAnyPage(Color);
if (PageFrameIndex == 0)
{
MiReleasePfnLock(OldIrql);
return STATUS_NO_MEMORY;
}
/* Perform the copy */
MiCopyPfn(PageFrameIndex, ProtoPageFrameIndex);
/* This will drop everything MiResolveProtoPteFault referenced */
MiDeletePte(PointerPte, Address, Process, PointerProtoPte);
/* Because now we use this */
Pfn1 = MI_PFN_ELEMENT(PageFrameIndex);
MiInitializePfn(PageFrameIndex, PointerPte, TRUE);
/* Fix the protection */
Protection &= ~MM_WRITECOPY;
Protection |= MM_READWRITE;
if (Address < MmSystemRangeStart)
{
/* Build the user PTE */
MI_MAKE_HARDWARE_PTE_USER(&PteContents, PointerPte, Protection, PageFrameIndex);
}
else
{
/* Build the kernel PTE */
MI_MAKE_HARDWARE_PTE(&PteContents, PointerPte, Protection, PageFrameIndex);
}
/* And finally, write the valid PTE */
MI_WRITE_VALID_PTE(PointerPte, PteContents);
/* The caller expects us to release the PFN lock */
MiReleasePfnLock(OldIrql);
return Status;
}
/* Check for clone PTEs */
if (PointerPte <= MiHighestUserPte) ASSERT(Process->CloneRoot == NULL);
/* We don't support mapped files yet */
ASSERT(TempPte.u.Soft.Prototype == 0);
/* We might however have transition PTEs */
if (TempPte.u.Soft.Transition == 1)
{
/* Resolve the transition fault */
ASSERT(OldIrql != MM_NOIRQL);
Status = MiResolveTransitionFault(StoreInstruction,
Address,
PointerProtoPte,
Process,
OldIrql,
&InPageBlock);
ASSERT(NT_SUCCESS(Status));
}
else
{
/* We also don't support paged out pages */
ASSERT(TempPte.u.Soft.PageFileHigh == 0);
/* Resolve the demand zero fault */
Status = MiResolveDemandZeroFault(Address,
PointerProtoPte,
(ULONG)TempPte.u.Soft.Protection,
Process,
OldIrql);
#if MI_TRACE_PFNS
/* Update debug info */
if (TrapInformation)
MiGetPfnEntry(PointerProtoPte->u.Hard.PageFrameNumber)->CallSite = (PVOID)((PKTRAP_FRAME)TrapInformation)->Eip;
else
MiGetPfnEntry(PointerProtoPte->u.Hard.PageFrameNumber)->CallSite = _ReturnAddress();
#endif
ASSERT(NT_SUCCESS(Status));
}
/* Complete the prototype PTE fault -- this will release the PFN lock */
ASSERT(PointerPte->u.Hard.Valid == 0);
return MiCompleteProtoPteFault(StoreInstruction,
Address,
PointerPte,
PointerProtoPte,
OldIrql,
OutPfn);
}
NTSTATUS
NTAPI
MiDispatchFault(IN ULONG FaultCode,
IN PVOID Address,
IN PMMPTE PointerPte,
IN PMMPTE PointerProtoPte,
IN BOOLEAN Recursive,
IN PEPROCESS Process,
IN PVOID TrapInformation,
IN PMMVAD Vad)
{
MMPTE TempPte;
KIRQL OldIrql, LockIrql;
NTSTATUS Status;
PMMPTE SuperProtoPte;
PMMPFN Pfn1, OutPfn = NULL;
PFN_NUMBER PageFrameIndex;
PFN_COUNT PteCount, ProcessedPtes;
DPRINT("ARM3 Page Fault Dispatcher for address: %p in process: %p\n",
Address,
Process);
/* Make sure the addresses are ok */
ASSERT(PointerPte == MiAddressToPte(Address));
//
// Make sure APCs are off and we're not at dispatch
//
OldIrql = KeGetCurrentIrql();
ASSERT(OldIrql <= APC_LEVEL);
ASSERT(KeAreAllApcsDisabled() == TRUE);
//
// Grab a copy of the PTE
//
TempPte = *PointerPte;
/* Do we have a prototype PTE? */
if (PointerProtoPte)
{
/* This should never happen */
ASSERT(!MI_IS_PHYSICAL_ADDRESS(PointerProtoPte));
/* Check if this is a kernel-mode address */
SuperProtoPte = MiAddressToPte(PointerProtoPte);
if (Address >= MmSystemRangeStart)
{
/* Lock the PFN database */
LockIrql = MiAcquirePfnLock();
/* Has the PTE been made valid yet? */
if (!SuperProtoPte->u.Hard.Valid)
{
ASSERT(FALSE);
}
else if (PointerPte->u.Hard.Valid == 1)
{
ASSERT(FALSE);
}
/* Resolve the fault -- this will release the PFN lock */
Status = MiResolveProtoPteFault(!MI_IS_NOT_PRESENT_FAULT(FaultCode),
Address,
PointerPte,
PointerProtoPte,
&OutPfn,
NULL,
NULL,
Process,
LockIrql,
TrapInformation);
ASSERT(Status == STATUS_SUCCESS);
/* Complete this as a transition fault */
ASSERT(OldIrql == KeGetCurrentIrql());
ASSERT(OldIrql <= APC_LEVEL);
ASSERT(KeAreAllApcsDisabled() == TRUE);
return Status;
}
else
{
/* We only handle the lookup path */
ASSERT(PointerPte->u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED);
/* Is there a non-image VAD? */
if ((Vad) &&
(Vad->u.VadFlags.VadType != VadImageMap) &&
!(Vad->u2.VadFlags2.ExtendableFile))
{
/* One day, ReactOS will cluster faults */
ASSERT(Address <= MM_HIGHEST_USER_ADDRESS);
DPRINT("Should cluster fault, but won't\n");
}
/* Only one PTE to handle for now */
PteCount = 1;
ProcessedPtes = 0;
/* Lock the PFN database */
LockIrql = MiAcquirePfnLock();
/* We only handle the valid path */
ASSERT(SuperProtoPte->u.Hard.Valid == 1);
/* Capture the PTE */
TempPte = *PointerProtoPte;
/* Loop to handle future case of clustered faults */
while (TRUE)
{
/* For our current usage, this should be true */
if (TempPte.u.Hard.Valid == 1)
{
/* Bump the share count on the PTE */
PageFrameIndex = PFN_FROM_PTE(&TempPte);
Pfn1 = MI_PFN_ELEMENT(PageFrameIndex);
Pfn1->u2.ShareCount++;
}
else if ((TempPte.u.Soft.Prototype == 0) &&
(TempPte.u.Soft.Transition == 1))
{
/* This is a standby page, bring it back from the cache */
PageFrameIndex = TempPte.u.Trans.PageFrameNumber;
DPRINT("oooh, shiny, a soft fault! 0x%lx\n", PageFrameIndex);
Pfn1 = MI_PFN_ELEMENT(PageFrameIndex);
ASSERT(Pfn1->u3.e1.PageLocation != ActiveAndValid);
/* Should not yet happen in ReactOS */
ASSERT(Pfn1->u3.e1.ReadInProgress == 0);
ASSERT(Pfn1->u4.InPageError == 0);
/* Get the page */
MiUnlinkPageFromList(Pfn1);
/* Bump its reference count */
ASSERT(Pfn1->u2.ShareCount == 0);
InterlockedIncrement16((PSHORT)&Pfn1->u3.e2.ReferenceCount);
Pfn1->u2.ShareCount++;
/* Make it valid again */
/* This looks like another macro.... */
Pfn1->u3.e1.PageLocation = ActiveAndValid;
ASSERT(PointerProtoPte->u.Hard.Valid == 0);
ASSERT(PointerProtoPte->u.Trans.Prototype == 0);
ASSERT(PointerProtoPte->u.Trans.Transition == 1);
TempPte.u.Long = (PointerProtoPte->u.Long & ~0xFFF) |
MmProtectToPteMask[PointerProtoPte->u.Trans.Protection];
TempPte.u.Hard.Valid = 1;
MI_MAKE_ACCESSED_PAGE(&TempPte);
/* Is the PTE writeable? */
if ((Pfn1->u3.e1.Modified) &&
MI_IS_PAGE_WRITEABLE(&TempPte) &&
!MI_IS_PAGE_COPY_ON_WRITE(&TempPte))
{
/* Make it dirty */
MI_MAKE_DIRTY_PAGE(&TempPte);
}
else
{
/* Make it clean */
MI_MAKE_CLEAN_PAGE(&TempPte);
}
/* Write the valid PTE */
MI_WRITE_VALID_PTE(PointerProtoPte, TempPte);
ASSERT(PointerPte->u.Hard.Valid == 0);
}
else
{
/* Page is invalid, get out of the loop */
break;
}
/* One more done, was it the last? */
if (++ProcessedPtes == PteCount)
{
/* Complete the fault */
MiCompleteProtoPteFault(!MI_IS_NOT_PRESENT_FAULT(FaultCode),
Address,
PointerPte,
PointerProtoPte,
LockIrql,
&OutPfn);
/* THIS RELEASES THE PFN LOCK! */
break;
}
/* No clustered faults yet */
ASSERT(FALSE);
}
/* Did we resolve the fault? */
if (ProcessedPtes)
{
/* Bump the transition count */
InterlockedExchangeAddSizeT(&KeGetCurrentPrcb()->MmTransitionCount, ProcessedPtes);
ProcessedPtes--;
/* Loop all the processing we did */
ASSERT(ProcessedPtes == 0);
/* Complete this as a transition fault */
ASSERT(OldIrql == KeGetCurrentIrql());
ASSERT(OldIrql <= APC_LEVEL);
ASSERT(KeAreAllApcsDisabled() == TRUE);
return STATUS_PAGE_FAULT_TRANSITION;
}
/* We did not -- PFN lock is still held, prepare to resolve prototype PTE fault */
OutPfn = MI_PFN_ELEMENT(SuperProtoPte->u.Hard.PageFrameNumber);
MiReferenceUsedPageAndBumpLockCount(OutPfn);
ASSERT(OutPfn->u3.e2.ReferenceCount > 1);
ASSERT(PointerPte->u.Hard.Valid == 0);
/* Resolve the fault -- this will release the PFN lock */
Status = MiResolveProtoPteFault(!MI_IS_NOT_PRESENT_FAULT(FaultCode),
Address,
PointerPte,
PointerProtoPte,
&OutPfn,
NULL,
NULL,
Process,
LockIrql,
TrapInformation);
//ASSERT(Status != STATUS_ISSUE_PAGING_IO);
//ASSERT(Status != STATUS_REFAULT);
//ASSERT(Status != STATUS_PTE_CHANGED);
/* Did the routine clean out the PFN or should we? */
if (OutPfn)
{
/* We had a locked PFN, so acquire the PFN lock to dereference it */
ASSERT(PointerProtoPte != NULL);
OldIrql = MiAcquirePfnLock();
/* Dereference the locked PFN */
MiDereferencePfnAndDropLockCount(OutPfn);
ASSERT(OutPfn->u3.e2.ReferenceCount >= 1);
/* And now release the lock */
MiReleasePfnLock(OldIrql);
}
/* Complete this as a transition fault */
ASSERT(OldIrql == KeGetCurrentIrql());
ASSERT(OldIrql <= APC_LEVEL);
ASSERT(KeAreAllApcsDisabled() == TRUE);
return Status;
}
}
/* Is this a transition PTE */
if (TempPte.u.Soft.Transition)
{
PKEVENT* InPageBlock = NULL;
PKEVENT PreviousPageEvent;
KEVENT CurrentPageEvent;
/* Lock the PFN database */
LockIrql = MiAcquirePfnLock();
/* Resolve */
Status = MiResolveTransitionFault(!MI_IS_NOT_PRESENT_FAULT(FaultCode), Address, PointerPte, Process, LockIrql, &InPageBlock);
ASSERT(NT_SUCCESS(Status));
if (InPageBlock != NULL)
{
/* Another thread is reading or writing this page. Put us into the waiting queue. */
KeInitializeEvent(&CurrentPageEvent, NotificationEvent, FALSE);
PreviousPageEvent = *InPageBlock;
*InPageBlock = &CurrentPageEvent;
}
/* And now release the lock and leave*/
MiReleasePfnLock(LockIrql);
if (InPageBlock != NULL)
{
KeWaitForSingleObject(&CurrentPageEvent, WrPageIn, KernelMode, FALSE, NULL);
/* Let's the chain go on */
if (PreviousPageEvent)
{
KeSetEvent(PreviousPageEvent, IO_NO_INCREMENT, FALSE);
}
}
ASSERT(OldIrql == KeGetCurrentIrql());
ASSERT(OldIrql <= APC_LEVEL);
ASSERT(KeAreAllApcsDisabled() == TRUE);
return Status;
}
/* Should we page the data back in ? */
if (TempPte.u.Soft.PageFileHigh != 0)
{
/* Lock the PFN database */
LockIrql = MiAcquirePfnLock();
/* Resolve */
Status = MiResolvePageFileFault(!MI_IS_NOT_PRESENT_FAULT(FaultCode), Address, PointerPte, Process, &LockIrql);
/* And now release the lock and leave*/
MiReleasePfnLock(LockIrql);
ASSERT(OldIrql == KeGetCurrentIrql());
ASSERT(OldIrql <= APC_LEVEL);
ASSERT(KeAreAllApcsDisabled() == TRUE);
return Status;
}
//
// The PTE must be invalid but not completely empty. It must also not be a
// prototype a transition or a paged-out PTE as those scenarii should've been handled above.
// These are all Windows checks
//
ASSERT(TempPte.u.Hard.Valid == 0);
ASSERT(TempPte.u.Soft.Prototype == 0);
ASSERT(TempPte.u.Soft.Transition == 0);
ASSERT(TempPte.u.Soft.PageFileHigh == 0);
ASSERT(TempPte.u.Long != 0);
//
// If we got this far, the PTE can only be a demand zero PTE, which is what
// we want. Go handle it!
//
Status = MiResolveDemandZeroFault(Address,
PointerPte,
(ULONG)TempPte.u.Soft.Protection,
Process,
MM_NOIRQL);
ASSERT(KeAreAllApcsDisabled() == TRUE);
if (NT_SUCCESS(Status))
{
#if MI_TRACE_PFNS
/* Update debug info */
if (TrapInformation)
MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber)->CallSite = (PVOID)((PKTRAP_FRAME)TrapInformation)->Eip;
else
MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber)->CallSite = _ReturnAddress();
#endif
//
// Make sure we're returning in a sane state and pass the status down
//
ASSERT(OldIrql == KeGetCurrentIrql());
ASSERT(KeGetCurrentIrql() <= APC_LEVEL);
return Status;
}
//
// Return status
//
return Status;
}
NTSTATUS
NTAPI
MmArmAccessFault(IN ULONG FaultCode,
IN PVOID Address,
IN KPROCESSOR_MODE Mode,
IN PVOID TrapInformation)
{
KIRQL OldIrql = KeGetCurrentIrql(), LockIrql;
PMMPTE ProtoPte = NULL;
PMMPTE PointerPte = MiAddressToPte(Address);
PMMPDE PointerPde = MiAddressToPde(Address);
#if (_MI_PAGING_LEVELS >= 3)
PMMPDE PointerPpe = MiAddressToPpe(Address);
#if (_MI_PAGING_LEVELS == 4)
PMMPDE PointerPxe = MiAddressToPxe(Address);
#endif
#endif
MMPTE TempPte;
PETHREAD CurrentThread;
PEPROCESS CurrentProcess;
NTSTATUS Status;
PMMSUPPORT WorkingSet;
ULONG ProtectionCode;
PMMVAD Vad = NULL;
PFN_NUMBER PageFrameIndex;
ULONG Color;
BOOLEAN IsSessionAddress;
PMMPFN Pfn1;
DPRINT("ARM3 FAULT AT: %p\n", Address);
/* Check for page fault on high IRQL */
if (OldIrql > APC_LEVEL)
{
#if (_MI_PAGING_LEVELS < 3)
/* Could be a page table for paged pool, which we'll allow */
if (MI_IS_SYSTEM_PAGE_TABLE_ADDRESS(Address)) MiSynchronizeSystemPde((PMMPDE)PointerPte);
MiCheckPdeForPagedPool(Address);
#endif
/* Check if any of the top-level pages are invalid */
if (
#if (_MI_PAGING_LEVELS == 4)
(PointerPxe->u.Hard.Valid == 0) ||
#endif
#if (_MI_PAGING_LEVELS >= 3)
(PointerPpe->u.Hard.Valid == 0) ||
#endif
(PointerPde->u.Hard.Valid == 0) ||
(PointerPte->u.Hard.Valid == 0))
{
/* This fault is not valid, print out some debugging help */
DbgPrint("MM:***PAGE FAULT AT IRQL > 1 Va %p, IRQL %lx\n",
Address,
OldIrql);
if (TrapInformation)
{
PKTRAP_FRAME TrapFrame = TrapInformation;
#ifdef _M_IX86
DbgPrint("MM:***EIP %p, EFL %p\n", TrapFrame->Eip, TrapFrame->EFlags);
DbgPrint("MM:***EAX %p, ECX %p EDX %p\n", TrapFrame->Eax, TrapFrame->Ecx, TrapFrame->Edx);
DbgPrint("MM:***EBX %p, ESI %p EDI %p\n", TrapFrame->Ebx, TrapFrame->Esi, TrapFrame->Edi);
#elif defined(_M_AMD64)
DbgPrint("MM:***RIP %p, EFL %p\n", TrapFrame->Rip, TrapFrame->EFlags);
DbgPrint("MM:***RAX %p, RCX %p RDX %p\n", TrapFrame->Rax, TrapFrame->Rcx, TrapFrame->Rdx);
DbgPrint("MM:***RBX %p, RSI %p RDI %p\n", TrapFrame->Rbx, TrapFrame->Rsi, TrapFrame->Rdi);
#elif defined(_M_ARM)
DbgPrint("MM:***PC %p\n", TrapFrame->Pc);
DbgPrint("MM:***R0 %p, R1 %p R2 %p, R3 %p\n", TrapFrame->R0, TrapFrame->R1, TrapFrame->R2, TrapFrame->R3);
DbgPrint("MM:***R11 %p, R12 %p SP %p, LR %p\n", TrapFrame->R11, TrapFrame->R12, TrapFrame->Sp, TrapFrame->Lr);
#endif
}
/* Tell the trap handler to fail */
return STATUS_IN_PAGE_ERROR | 0x10000000;
}
/* Not yet implemented in ReactOS */
ASSERT(MI_IS_PAGE_LARGE(PointerPde) == FALSE);
ASSERT((!MI_IS_NOT_PRESENT_FAULT(FaultCode) && MI_IS_PAGE_COPY_ON_WRITE(PointerPte)) == FALSE);
/* Check if this was a write */
if (MI_IS_WRITE_ACCESS(FaultCode))
{
/* Was it to a read-only page? */
Pfn1 = MI_PFN_ELEMENT(PointerPte->u.Hard.PageFrameNumber);
if (!(PointerPte->u.Long & PTE_READWRITE) &&
!(Pfn1->OriginalPte.u.Soft.Protection & MM_READWRITE))
{
/* Crash with distinguished bugcheck code */
KeBugCheckEx(ATTEMPTED_WRITE_TO_READONLY_MEMORY,
(ULONG_PTR)Address,
PointerPte->u.Long,
(ULONG_PTR)TrapInformation,
10);
}
}
/* Nothing is actually wrong */
DPRINT1("Fault at IRQL %u is ok (%p)\n", OldIrql, Address);
return STATUS_SUCCESS;
}
/* Check for kernel fault address */
if (Address >= MmSystemRangeStart)
{
/* Bail out, if the fault came from user mode */
if (Mode == UserMode) return STATUS_ACCESS_VIOLATION;
#if (_MI_PAGING_LEVELS == 2)
if (MI_IS_SYSTEM_PAGE_TABLE_ADDRESS(Address)) MiSynchronizeSystemPde((PMMPDE)PointerPte);
MiCheckPdeForPagedPool(Address);
#endif
/* Check if the higher page table entries are invalid */
if (
#if (_MI_PAGING_LEVELS == 4)
/* AMD64 system, check if PXE is invalid */
(PointerPxe->u.Hard.Valid == 0) ||
#endif
#if (_MI_PAGING_LEVELS >= 3)
/* PAE/AMD64 system, check if PPE is invalid */
(PointerPpe->u.Hard.Valid == 0) ||
#endif
/* Always check if the PDE is valid */
(PointerPde->u.Hard.Valid == 0))
{
/* PXE/PPE/PDE (still) not valid, kill the system */
KeBugCheckEx(PAGE_FAULT_IN_NONPAGED_AREA,
(ULONG_PTR)Address,
FaultCode,
(ULONG_PTR)TrapInformation,
2);
}
/* Not handling session faults yet */
IsSessionAddress = MI_IS_SESSION_ADDRESS(Address);
/* The PDE is valid, so read the PTE */
TempPte = *PointerPte;
if (TempPte.u.Hard.Valid == 1)
{
/* Check if this was system space or session space */
if (!IsSessionAddress)
{
/* Check if the PTE is still valid under PFN lock */
OldIrql = MiAcquirePfnLock();
TempPte = *PointerPte;
if (TempPte.u.Hard.Valid)
{
/* Check if this was a write */
if (MI_IS_WRITE_ACCESS(FaultCode))
{
/* Was it to a read-only page? */
Pfn1 = MI_PFN_ELEMENT(PointerPte->u.Hard.PageFrameNumber);
if (!(PointerPte->u.Long & PTE_READWRITE) &&
!(Pfn1->OriginalPte.u.Soft.Protection & MM_READWRITE))
{
/* Crash with distinguished bugcheck code */
KeBugCheckEx(ATTEMPTED_WRITE_TO_READONLY_MEMORY,
(ULONG_PTR)Address,
PointerPte->u.Long,
(ULONG_PTR)TrapInformation,
11);
}
}
/* Check for execution of non-executable memory */
if (MI_IS_INSTRUCTION_FETCH(FaultCode) &&
!MI_IS_PAGE_EXECUTABLE(&TempPte))
{
KeBugCheckEx(ATTEMPTED_EXECUTE_OF_NOEXECUTE_MEMORY,
(ULONG_PTR)Address,
(ULONG_PTR)TempPte.u.Long,
(ULONG_PTR)TrapInformation,
1);
}
}
/* Release PFN lock and return all good */
MiReleasePfnLock(OldIrql);
return STATUS_SUCCESS;
}
}
#if (_MI_PAGING_LEVELS == 2)
/* Check if this was a session PTE that needs to remap the session PDE */
if (MI_IS_SESSION_PTE(Address))
{
/* Do the remapping */
Status = MiCheckPdeForSessionSpace(Address);
if (!NT_SUCCESS(Status))
{
/* It failed, this address is invalid */
KeBugCheckEx(PAGE_FAULT_IN_NONPAGED_AREA,
(ULONG_PTR)Address,
FaultCode,
(ULONG_PTR)TrapInformation,
6);
}
}
#else
_WARN("Session space stuff is not implemented yet!")
#endif
/* Check for a fault on the page table or hyperspace */
if (MI_IS_PAGE_TABLE_OR_HYPER_ADDRESS(Address))
{
#if (_MI_PAGING_LEVELS < 3)
/* Windows does this check but I don't understand why -- it's done above! */
ASSERT(MiCheckPdeForPagedPool(Address) != STATUS_WAIT_1);
#endif
/* Handle this as a user mode fault */
goto UserFault;
}
/* Get the current thread */
CurrentThread = PsGetCurrentThread();
/* What kind of address is this */
if (!IsSessionAddress)
{
/* Use the system working set */
WorkingSet = &MmSystemCacheWs;
CurrentProcess = NULL;
/* Make sure we don't have a recursive working set lock */
if ((CurrentThread->OwnsProcessWorkingSetExclusive) ||
(CurrentThread->OwnsProcessWorkingSetShared) ||
(CurrentThread->OwnsSystemWorkingSetExclusive) ||
(CurrentThread->OwnsSystemWorkingSetShared) ||
(CurrentThread->OwnsSessionWorkingSetExclusive) ||
(CurrentThread->OwnsSessionWorkingSetShared))
{
/* Fail */
return STATUS_IN_PAGE_ERROR | 0x10000000;
}
}
else
{
/* Use the session process and working set */
CurrentProcess = HYDRA_PROCESS;
WorkingSet = &MmSessionSpace->GlobalVirtualAddress->Vm;
/* Make sure we don't have a recursive working set lock */
if ((CurrentThread->OwnsSessionWorkingSetExclusive) ||
(CurrentThread->OwnsSessionWorkingSetShared))
{
/* Fail */
return STATUS_IN_PAGE_ERROR | 0x10000000;
}
}
RetryKernel:
/* Acquire the working set lock */
KeRaiseIrql(APC_LEVEL, &LockIrql);
MiLockWorkingSet(CurrentThread, WorkingSet);
/* Re-read PTE now that we own the lock */
TempPte = *PointerPte;
if (TempPte.u.Hard.Valid == 1)
{
/* Check if this was a write */
if (MI_IS_WRITE_ACCESS(FaultCode))
{
/* Was it to a read-only page that is not copy on write? */
Pfn1 = MI_PFN_ELEMENT(PointerPte->u.Hard.PageFrameNumber);
if (!(TempPte.u.Long & PTE_READWRITE) &&
!(Pfn1->OriginalPte.u.Soft.Protection & MM_READWRITE) &&
!MI_IS_PAGE_COPY_ON_WRITE(&TempPte))
{
/* Case not yet handled */
ASSERT(!IsSessionAddress);
/* Crash with distinguished bugcheck code */
KeBugCheckEx(ATTEMPTED_WRITE_TO_READONLY_MEMORY,
(ULONG_PTR)Address,
TempPte.u.Long,
(ULONG_PTR)TrapInformation,
12);
}
}
/* Check for execution of non-executable memory */
if (MI_IS_INSTRUCTION_FETCH(FaultCode) &&
!MI_IS_PAGE_EXECUTABLE(&TempPte))
{
KeBugCheckEx(ATTEMPTED_EXECUTE_OF_NOEXECUTE_MEMORY,
(ULONG_PTR)Address,
(ULONG_PTR)TempPte.u.Long,
(ULONG_PTR)TrapInformation,
2);
}
/* Check for read-only write in session space */
if ((IsSessionAddress) &&
MI_IS_WRITE_ACCESS(FaultCode) &&
!MI_IS_PAGE_WRITEABLE(&TempPte))
{
/* Sanity check */
ASSERT(MI_IS_SESSION_IMAGE_ADDRESS(Address));
/* Was this COW? */
if (!MI_IS_PAGE_COPY_ON_WRITE(&TempPte))
{
/* Then this is not allowed */
KeBugCheckEx(ATTEMPTED_WRITE_TO_READONLY_MEMORY,
(ULONG_PTR)Address,
(ULONG_PTR)TempPte.u.Long,
(ULONG_PTR)TrapInformation,
13);
}
/* Otherwise, handle COW */
ASSERT(FALSE);
}
/* Release the working set */
MiUnlockWorkingSet(CurrentThread, WorkingSet);
KeLowerIrql(LockIrql);
/* Otherwise, the PDE was probably invalid, and all is good now */
return STATUS_SUCCESS;
}
/* Check one kind of prototype PTE */
if (TempPte.u.Soft.Prototype)
{
/* Make sure protected pool is on, and that this is a pool address */
if ((MmProtectFreedNonPagedPool) &&
(((Address >= MmNonPagedPoolStart) &&
(Address < (PVOID)((ULONG_PTR)MmNonPagedPoolStart +
MmSizeOfNonPagedPoolInBytes))) ||
((Address >= MmNonPagedPoolExpansionStart) &&
(Address < MmNonPagedPoolEnd))))
{
/* Bad boy, bad boy, whatcha gonna do, whatcha gonna do when ARM3 comes for you! */
KeBugCheckEx(DRIVER_CAUGHT_MODIFYING_FREED_POOL,
(ULONG_PTR)Address,
FaultCode,
Mode,
4);
}
/* Get the prototype PTE! */
ProtoPte = MiProtoPteToPte(&TempPte);
/* Do we need to locate the prototype PTE in session space? */
if ((IsSessionAddress) &&
(TempPte.u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED))
{
/* Yep, go find it as well as the VAD for it */
ProtoPte = MiCheckVirtualAddress(Address,
&ProtectionCode,
&Vad);
ASSERT(ProtoPte != NULL);
}
}
else
{
/* We don't implement transition PTEs */
ASSERT(TempPte.u.Soft.Transition == 0);
/* Check for no-access PTE */
if (TempPte.u.Soft.Protection == MM_NOACCESS)
{
/* Bugcheck the system! */
KeBugCheckEx(PAGE_FAULT_IN_NONPAGED_AREA,
(ULONG_PTR)Address,
FaultCode,
(ULONG_PTR)TrapInformation,
1);
}
/* Check for no protecton at all */
if (TempPte.u.Soft.Protection == MM_ZERO_ACCESS)
{
/* Bugcheck the system! */
KeBugCheckEx(PAGE_FAULT_IN_NONPAGED_AREA,
(ULONG_PTR)Address,
FaultCode,
(ULONG_PTR)TrapInformation,
0);
}
}
/* Check for demand page */
if (MI_IS_WRITE_ACCESS(FaultCode) &&
!(ProtoPte) &&
!(IsSessionAddress) &&
!(TempPte.u.Hard.Valid))
{
/* Get the protection code */
ASSERT(TempPte.u.Soft.Transition == 0);
if (!(TempPte.u.Soft.Protection & MM_READWRITE))
{
/* Bugcheck the system! */
KeBugCheckEx(ATTEMPTED_WRITE_TO_READONLY_MEMORY,
(ULONG_PTR)Address,
TempPte.u.Long,
(ULONG_PTR)TrapInformation,
14);
}
}
/* Now do the real fault handling */
Status = MiDispatchFault(FaultCode,
Address,
PointerPte,
ProtoPte,
FALSE,
CurrentProcess,
TrapInformation,
NULL);
/* Release the working set */
ASSERT(KeAreAllApcsDisabled() == TRUE);
MiUnlockWorkingSet(CurrentThread, WorkingSet);
KeLowerIrql(LockIrql);
if (Status == STATUS_NO_MEMORY)
{
MmRebalanceMemoryConsumersAndWait();
goto RetryKernel;
}
/* We are done! */
DPRINT("Fault resolved with status: %lx\n", Status);
return Status;
}
/* This is a user fault */
UserFault:
CurrentThread = PsGetCurrentThread();
CurrentProcess = (PEPROCESS)CurrentThread->Tcb.ApcState.Process;
/* Lock the working set */
MiLockProcessWorkingSet(CurrentProcess, CurrentThread);
ProtectionCode = MM_INVALID_PROTECTION;
#if (_MI_PAGING_LEVELS == 4)
/* Check if the PXE is valid */
if (PointerPxe->u.Hard.Valid == 0)
{
/* Right now, we only handle scenarios where the PXE is totally empty */
ASSERT(PointerPxe->u.Long == 0);
/* This is only possible for user mode addresses! */
ASSERT(PointerPte <= MiHighestUserPte);
/* Check if we have a VAD */
MiCheckVirtualAddress(Address, &ProtectionCode, &Vad);
if (ProtectionCode == MM_NOACCESS)
{
MiUnlockProcessWorkingSet(CurrentProcess, CurrentThread);
return STATUS_ACCESS_VIOLATION;
}
/* Resolve a demand zero fault */
Status = MiResolveDemandZeroFault(PointerPpe,
PointerPxe,
MM_EXECUTE_READWRITE,
CurrentProcess,
MM_NOIRQL);
if (!NT_SUCCESS(Status))
{
goto ExitUser;
}
/* We should come back with a valid PXE */
ASSERT(PointerPxe->u.Hard.Valid == 1);
}
#endif
#if (_MI_PAGING_LEVELS >= 3)
/* Check if the PPE is valid */
if (PointerPpe->u.Hard.Valid == 0)
{
/* Right now, we only handle scenarios where the PPE is totally empty */
ASSERT(PointerPpe->u.Long == 0);
/* This is only possible for user mode addresses! */
ASSERT(PointerPte <= MiHighestUserPte);
/* Check if we have a VAD, unless we did this already */
if (ProtectionCode == MM_INVALID_PROTECTION)
{
MiCheckVirtualAddress(Address, &ProtectionCode, &Vad);
}
if (ProtectionCode == MM_NOACCESS)
{
MiUnlockProcessWorkingSet(CurrentProcess, CurrentThread);
return STATUS_ACCESS_VIOLATION;
}
/* Resolve a demand zero fault */
Status = MiResolveDemandZeroFault(PointerPde,
PointerPpe,
MM_EXECUTE_READWRITE,
CurrentProcess,
MM_NOIRQL);
if (!NT_SUCCESS(Status))
{
goto ExitUser;
}
/* We should come back with a valid PPE */
ASSERT(PointerPpe->u.Hard.Valid == 1);
MiIncrementPageTableReferences(PointerPde);
}
#endif
/* Check if the PDE is invalid */
if (PointerPde->u.Hard.Valid == 0)
{
/* Right now, we only handle scenarios where the PDE is totally empty */
ASSERT(PointerPde->u.Long == 0);
/* And go dispatch the fault on the PDE. This should handle the demand-zero */
#if MI_TRACE_PFNS
UserPdeFault = TRUE;
#endif
/* Check if we have a VAD, unless we did this already */
if (ProtectionCode == MM_INVALID_PROTECTION)
{
MiCheckVirtualAddress(Address, &ProtectionCode, &Vad);
}
if (ProtectionCode == MM_NOACCESS)
{
#if (_MI_PAGING_LEVELS == 2)
/* Could be a page table for paged pool */
MiCheckPdeForPagedPool(Address);
#endif
/* Has the code above changed anything -- is this now a valid PTE? */
Status = (PointerPde->u.Hard.Valid == 1) ? STATUS_SUCCESS : STATUS_ACCESS_VIOLATION;
/* Either this was a bogus VA or we've fixed up a paged pool PDE */
MiUnlockProcessWorkingSet(CurrentProcess, CurrentThread);
return Status;
}
/* Resolve a demand zero fault */
Status = MiResolveDemandZeroFault(PointerPte,
PointerPde,
MM_EXECUTE_READWRITE,
CurrentProcess,
MM_NOIRQL);
if (!NT_SUCCESS(Status))
{
goto ExitUser;
}
#if _MI_PAGING_LEVELS >= 3
MiIncrementPageTableReferences(PointerPte);
#endif
#if MI_TRACE_PFNS
UserPdeFault = FALSE;
/* Update debug info */
if (TrapInformation)
MiGetPfnEntry(PointerPde->u.Hard.PageFrameNumber)->CallSite = (PVOID)((PKTRAP_FRAME)TrapInformation)->Eip;
else
MiGetPfnEntry(PointerPde->u.Hard.PageFrameNumber)->CallSite = _ReturnAddress();
#endif
/* We should come back with APCs enabled, and with a valid PDE */
ASSERT(KeAreAllApcsDisabled() == TRUE);
ASSERT(PointerPde->u.Hard.Valid == 1);
}
else
{
/* Not yet implemented in ReactOS */
ASSERT(MI_IS_PAGE_LARGE(PointerPde) == FALSE);
}
/* Now capture the PTE. */
TempPte = *PointerPte;
/* Check if the PTE is valid */
if (TempPte.u.Hard.Valid)
{
/* Check if this is a write on a readonly PTE */
if (MI_IS_WRITE_ACCESS(FaultCode))
{
/* Is this a copy on write PTE? */
if (MI_IS_PAGE_COPY_ON_WRITE(&TempPte))
{
PFN_NUMBER PageFrameIndex, OldPageFrameIndex;
PMMPFN Pfn1;
LockIrql = MiAcquirePfnLock();
ASSERT(MmAvailablePages > 0);
MI_SET_USAGE(MI_USAGE_COW);
MI_SET_PROCESS(CurrentProcess);
/* Allocate a new page and copy it */
PageFrameIndex = MiRemoveAnyPage(MI_GET_NEXT_PROCESS_COLOR(CurrentProcess));
if (PageFrameIndex == 0)
{
MiReleasePfnLock(LockIrql);
Status = STATUS_NO_MEMORY;
goto ExitUser;
}
OldPageFrameIndex = PFN_FROM_PTE(&TempPte);
MiCopyPfn(PageFrameIndex, OldPageFrameIndex);
/* Dereference whatever this PTE is referencing */
Pfn1 = MI_PFN_ELEMENT(OldPageFrameIndex);
ASSERT(Pfn1->u3.e1.PrototypePte == 1);
ASSERT(!MI_IS_PFN_DELETED(Pfn1));
ProtoPte = Pfn1->PteAddress;
MiDeletePte(PointerPte, Address, CurrentProcess, ProtoPte);
/* And make a new shiny one with our page */
MiInitializePfn(PageFrameIndex, PointerPte, TRUE);
TempPte.u.Hard.PageFrameNumber = PageFrameIndex;
TempPte.u.Hard.Write = 1;
TempPte.u.Hard.CopyOnWrite = 0;
MI_WRITE_VALID_PTE(PointerPte, TempPte);
MiReleasePfnLock(LockIrql);
/* Return the status */
MiUnlockProcessWorkingSet(CurrentProcess, CurrentThread);
return STATUS_PAGE_FAULT_COPY_ON_WRITE;
}
/* Is this a read-only PTE? */
if (!MI_IS_PAGE_WRITEABLE(&TempPte))
{
/* Return the status */
MiUnlockProcessWorkingSet(CurrentProcess, CurrentThread);
return STATUS_ACCESS_VIOLATION;
}
}
#if _MI_HAS_NO_EXECUTE
/* Check for execution of non-executable memory */
if (MI_IS_INSTRUCTION_FETCH(FaultCode) &&
!MI_IS_PAGE_EXECUTABLE(&TempPte))
{
/* Check if execute enable was set */
if (CurrentProcess->Pcb.Flags.ExecuteEnable)
{
/* Fix up the PTE to be executable */
TempPte.u.Hard.NoExecute = 0;
MI_UPDATE_VALID_PTE(PointerPte, TempPte);
MiUnlockProcessWorkingSet(CurrentProcess, CurrentThread);
return STATUS_SUCCESS;
}
/* Return the status */
MiUnlockProcessWorkingSet(CurrentProcess, CurrentThread);
return STATUS_ACCESS_VIOLATION;
}
#endif
/* The fault has already been resolved by a different thread */
MiUnlockProcessWorkingSet(CurrentProcess, CurrentThread);
return STATUS_SUCCESS;
}
/* Quick check for demand-zero */
if ((TempPte.u.Long == (MM_READWRITE << MM_PTE_SOFTWARE_PROTECTION_BITS)) ||
(TempPte.u.Long == (MM_EXECUTE_READWRITE << MM_PTE_SOFTWARE_PROTECTION_BITS)))
{
/* Resolve the fault */
Status = MiResolveDemandZeroFault(Address,
PointerPte,
TempPte.u.Soft.Protection,
CurrentProcess,
MM_NOIRQL);
if (!NT_SUCCESS(Status))
{
goto ExitUser;
}
#if MI_TRACE_PFNS
/* Update debug info */
if (TrapInformation)
MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber)->CallSite = (PVOID)((PKTRAP_FRAME)TrapInformation)->Eip;
else
MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber)->CallSite = _ReturnAddress();
#endif
/* Return the status */
MiUnlockProcessWorkingSet(CurrentProcess, CurrentThread);
return STATUS_PAGE_FAULT_DEMAND_ZERO;
}
/* Check for zero PTE */
if (TempPte.u.Long == 0)
{
/* Check if this address range belongs to a valid allocation (VAD) */
ProtoPte = MiCheckVirtualAddress(Address, &ProtectionCode, &Vad);
if (ProtectionCode == MM_NOACCESS)
{
#if (_MI_PAGING_LEVELS == 2)
/* Could be a page table for paged pool */
MiCheckPdeForPagedPool(Address);
#endif
/* Has the code above changed anything -- is this now a valid PTE? */
Status = (PointerPte->u.Hard.Valid == 1) ? STATUS_SUCCESS : STATUS_ACCESS_VIOLATION;
/* Either this was a bogus VA or we've fixed up a paged pool PDE */
MiUnlockProcessWorkingSet(CurrentProcess, CurrentThread);
return Status;
}
/*
* Check if this is a real user-mode address or actually a kernel-mode
* page table for a user mode address
*/
if (Address <= MM_HIGHEST_USER_ADDRESS
#if _MI_PAGING_LEVELS >= 3
|| MiIsUserPte(Address)
#if _MI_PAGING_LEVELS == 4
|| MiIsUserPde(Address)
#endif
#endif
)
{
/* Add an additional page table reference */
MiIncrementPageTableReferences(Address);
}
/* Is this a guard page? */
if ((ProtectionCode & MM_PROTECT_SPECIAL) == MM_GUARDPAGE)
{
/* The VAD protection cannot be MM_DECOMMIT! */
ASSERT(ProtectionCode != MM_DECOMMIT);
/* Remove the bit */
TempPte.u.Soft.Protection = ProtectionCode & ~MM_GUARDPAGE;
MI_WRITE_INVALID_PTE(PointerPte, TempPte);
/* Not supported */
ASSERT(ProtoPte == NULL);
ASSERT(CurrentThread->ApcNeeded == 0);
/* Drop the working set lock */
MiUnlockProcessWorkingSet(CurrentProcess, CurrentThread);
ASSERT(KeGetCurrentIrql() == OldIrql);
/* Handle stack expansion */
return MiCheckForUserStackOverflow(Address, TrapInformation);
}
/* Did we get a prototype PTE back? */
if (!ProtoPte)
{
/* Is this PTE actually part of the PDE-PTE self-mapping directory? */
if (PointerPde == MiAddressToPde(PTE_BASE))
{
/* Then it's really a demand-zero PDE (on behalf of user-mode) */
#ifdef _M_ARM
_WARN("This is probably completely broken!");
MI_WRITE_INVALID_PDE((PMMPDE)PointerPte, DemandZeroPde);
#else
MI_WRITE_INVALID_PDE(PointerPte, DemandZeroPde);
#endif
}
else
{
/* No, create a new PTE. First, write the protection */
TempPte.u.Soft.Protection = ProtectionCode;
MI_WRITE_INVALID_PTE(PointerPte, TempPte);
}
/* Lock the PFN database since we're going to grab a page */
OldIrql = MiAcquirePfnLock();
/* Make sure we have enough pages */
//ASSERT(MmAvailablePages >= 32);
/* Try to get a zero page */
MI_SET_USAGE(MI_USAGE_PEB_TEB);
MI_SET_PROCESS2(CurrentProcess->ImageFileName);
Color = MI_GET_NEXT_PROCESS_COLOR(CurrentProcess);
PageFrameIndex = MiRemoveZeroPageSafe(Color);
if (!PageFrameIndex)
{
/* Grab a page out of there. Later we should grab a colored zero page */
PageFrameIndex = MiRemoveAnyPage(Color);
/* Release the lock since we need to do some zeroing */
MiReleasePfnLock(OldIrql);
if (PageFrameIndex == 0)
{
Status = STATUS_NO_MEMORY;
goto ExitUser;
}
/* Zero out the page, since it's for user-mode */
MiZeroPfn(PageFrameIndex);
/* Grab the lock again so we can initialize the PFN entry */
OldIrql = MiAcquirePfnLock();
}
/* Initialize the PFN entry now */
MiInitializePfn(PageFrameIndex, PointerPte, 1);
/* Increment the count of pages in the process */
CurrentProcess->NumberOfPrivatePages++;
/* One more demand-zero fault */
KeGetCurrentPrcb()->MmDemandZeroCount++;
/* And we're done with the lock */
MiReleasePfnLock(OldIrql);
/* Fault on user PDE, or fault on user PTE? */
if (PointerPte <= MiHighestUserPte)
{
/* User fault, build a user PTE */
MI_MAKE_HARDWARE_PTE_USER(&TempPte,
PointerPte,
PointerPte->u.Soft.Protection,
PageFrameIndex);
}
else
{
/* This is a user-mode PDE, create a kernel PTE for it */
MI_MAKE_HARDWARE_PTE(&TempPte,
PointerPte,
PointerPte->u.Soft.Protection,
PageFrameIndex);
}
/* Write the dirty bit for writeable pages */
if (MI_IS_PAGE_WRITEABLE(&TempPte)) MI_MAKE_DIRTY_PAGE(&TempPte);
/* And now write down the PTE, making the address valid */
MI_WRITE_VALID_PTE(PointerPte, TempPte);
Pfn1 = MI_PFN_ELEMENT(PageFrameIndex);
ASSERT(Pfn1->u1.Event == NULL);
/* Demand zero */
ASSERT(KeGetCurrentIrql() <= APC_LEVEL);
MiUnlockProcessWorkingSet(CurrentProcess, CurrentThread);
return STATUS_PAGE_FAULT_DEMAND_ZERO;
}
/* We should have a valid protection here */
ASSERT(ProtectionCode != 0x100);
/* Write the prototype PTE */
TempPte = PrototypePte;
TempPte.u.Soft.Protection = ProtectionCode;
ASSERT(TempPte.u.Long != 0);
MI_WRITE_INVALID_PTE(PointerPte, TempPte);
}
else
{
/* Get the protection code and check if this is a proto PTE */
ProtectionCode = (ULONG)TempPte.u.Soft.Protection;
if (TempPte.u.Soft.Prototype)
{
/* Do we need to go find the real PTE? */
if (TempPte.u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED)
{
/* Get the prototype pte and VAD for it */
ProtoPte = MiCheckVirtualAddress(Address,
&ProtectionCode,
&Vad);
if (!ProtoPte)
{
ASSERT(KeGetCurrentIrql() <= APC_LEVEL);
MiUnlockProcessWorkingSet(CurrentProcess, CurrentThread);
return STATUS_ACCESS_VIOLATION;
}
}
else
{
/* Get the prototype PTE! */
ProtoPte = MiProtoPteToPte(&TempPte);
/* Is it read-only */
if (TempPte.u.Proto.ReadOnly)
{
/* Set read-only code */
ProtectionCode = MM_READONLY;
}
else
{
/* Set unknown protection */
ProtectionCode = 0x100;
ASSERT(CurrentProcess->CloneRoot != NULL);
}
}
}
}
/* Do we have a valid protection code? */
if (ProtectionCode != 0x100)
{
/* Run a software access check first, including to detect guard pages */
Status = MiAccessCheck(PointerPte,
!MI_IS_NOT_PRESENT_FAULT(FaultCode),
Mode,
ProtectionCode,
TrapInformation,
FALSE);
if (Status != STATUS_SUCCESS)
{
/* Not supported */
ASSERT(CurrentThread->ApcNeeded == 0);
/* Drop the working set lock */
MiUnlockProcessWorkingSet(CurrentProcess, CurrentThread);
ASSERT(KeGetCurrentIrql() == OldIrql);
/* Did we hit a guard page? */
if (Status == STATUS_GUARD_PAGE_VIOLATION)
{
/* Handle stack expansion */
return MiCheckForUserStackOverflow(Address, TrapInformation);
}
/* Otherwise, fail back to the caller directly */
return Status;
}
}
/* Dispatch the fault */
Status = MiDispatchFault(FaultCode,
Address,
PointerPte,
ProtoPte,
FALSE,
CurrentProcess,
TrapInformation,
Vad);
ExitUser:
/* Return the status */
ASSERT(KeGetCurrentIrql() <= APC_LEVEL);
MiUnlockProcessWorkingSet(CurrentProcess, CurrentThread);
if (Status == STATUS_NO_MEMORY)
{
MmRebalanceMemoryConsumersAndWait();
goto UserFault;
}
return Status;
}
NTSTATUS
NTAPI
MmGetExecuteOptions(IN PULONG ExecuteOptions)
{
PKPROCESS CurrentProcess = &PsGetCurrentProcess()->Pcb;
ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL);
*ExecuteOptions = 0;
if (CurrentProcess->Flags.ExecuteDisable)
{
*ExecuteOptions |= MEM_EXECUTE_OPTION_DISABLE;
}
if (CurrentProcess->Flags.ExecuteEnable)
{
*ExecuteOptions |= MEM_EXECUTE_OPTION_ENABLE;
}
if (CurrentProcess->Flags.DisableThunkEmulation)
{
*ExecuteOptions |= MEM_EXECUTE_OPTION_DISABLE_THUNK_EMULATION;
}
if (CurrentProcess->Flags.Permanent)
{
*ExecuteOptions |= MEM_EXECUTE_OPTION_PERMANENT;
}
if (CurrentProcess->Flags.ExecuteDispatchEnable)
{
*ExecuteOptions |= MEM_EXECUTE_OPTION_EXECUTE_DISPATCH_ENABLE;
}
if (CurrentProcess->Flags.ImageDispatchEnable)
{
*ExecuteOptions |= MEM_EXECUTE_OPTION_IMAGE_DISPATCH_ENABLE;
}
return STATUS_SUCCESS;
}
NTSTATUS
NTAPI
MmSetExecuteOptions(IN ULONG ExecuteOptions)
{
PKPROCESS CurrentProcess = &PsGetCurrentProcess()->Pcb;
KLOCK_QUEUE_HANDLE ProcessLock;
NTSTATUS Status = STATUS_ACCESS_DENIED;
ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL);
/* Only accept valid flags */
if (ExecuteOptions & ~MEM_EXECUTE_OPTION_VALID_FLAGS)
{
/* Fail */
DPRINT1("Invalid no-execute options\n");
return STATUS_INVALID_PARAMETER;
}
/* Change the NX state in the process lock */
KiAcquireProcessLockRaiseToSynch(CurrentProcess, &ProcessLock);
/* Don't change anything if the permanent flag was set */
if (!CurrentProcess->Flags.Permanent)
{
/* Start by assuming it's not disabled */
CurrentProcess->Flags.ExecuteDisable = FALSE;
/* Now process each flag and turn the equivalent bit on */
if (ExecuteOptions & MEM_EXECUTE_OPTION_DISABLE)
{
CurrentProcess->Flags.ExecuteDisable = TRUE;
}
if (ExecuteOptions & MEM_EXECUTE_OPTION_ENABLE)
{
CurrentProcess->Flags.ExecuteEnable = TRUE;
}
if (ExecuteOptions & MEM_EXECUTE_OPTION_DISABLE_THUNK_EMULATION)
{
CurrentProcess->Flags.DisableThunkEmulation = TRUE;
}
if (ExecuteOptions & MEM_EXECUTE_OPTION_PERMANENT)
{
CurrentProcess->Flags.Permanent = TRUE;
}
if (ExecuteOptions & MEM_EXECUTE_OPTION_EXECUTE_DISPATCH_ENABLE)
{
CurrentProcess->Flags.ExecuteDispatchEnable = TRUE;
}
if (ExecuteOptions & MEM_EXECUTE_OPTION_IMAGE_DISPATCH_ENABLE)
{
CurrentProcess->Flags.ImageDispatchEnable = TRUE;
}
/* These are turned on by default if no-execution is also enabled */
if (CurrentProcess->Flags.ExecuteEnable)
{
CurrentProcess->Flags.ExecuteDispatchEnable = TRUE;
CurrentProcess->Flags.ImageDispatchEnable = TRUE;
}
/* All good */
Status = STATUS_SUCCESS;
}
/* Release the lock and return status */
KiReleaseProcessLock(&ProcessLock);
return Status;
}
/* EOF */