reactos/drivers/network/tcpip/include/linux.h

1873 lines
45 KiB
C

#pragma once
#include <ntddk.h>
#ifndef NULL
#define NULL (void*)0
#endif
typedef struct page {
int x;
} mem_map_t;
/* i386 */
typedef unsigned short umode_t;
/*
* __xx is ok: it doesn't pollute the POSIX namespace. Use these in the
* header files exported to user space
*/
typedef __signed__ char __s8;
typedef unsigned char __u8;
typedef __signed__ short __s16;
typedef unsigned short __u16;
typedef __signed__ int __s32;
typedef unsigned int __u32;
#if defined(__GNUC__) && !defined(__STRICT_ANSI__)
typedef __signed__ long long __s64;
typedef unsigned long long __u64;
#endif
/*
* These aren't exported outside the kernel to avoid name space clashes
*/
typedef signed char s8;
typedef unsigned char u8;
typedef signed short s16;
typedef unsigned short u16;
typedef signed int s32;
typedef unsigned int u32;
typedef signed long long s64;
typedef unsigned long long u64;
#define BITS_PER_LONG 32
/* DMA addresses come in generic and 64-bit flavours. */
#ifdef CONFIG_HIGHMEM64G
typedef u64 dma_addr_t;
#else
typedef u32 dma_addr_t;
#endif
typedef u64 dma64_addr_t;
/*
* This allows for 1024 file descriptors: if NR_OPEN is ever grown
* beyond that you'll have to change this too. But 1024 fd's seem to be
* enough even for such "real" unices like OSF/1, so hopefully this is
* one limit that doesn't have to be changed [again].
*
* Note that POSIX wants the FD_CLEAR(fd,fdsetp) defines to be in
* <sys/time.h> (and thus <linux/time.h>) - but this is a more logical
* place for them. Solved by having dummy defines in <sys/time.h>.
*/
/*
* Those macros may have been defined in <gnu/types.h>. But we always
* use the ones here.
*/
#undef __NFDBITS
#define __NFDBITS (8 * sizeof(unsigned long))
#undef __FD_SETSIZE
#define __FD_SETSIZE 1024
#undef __FDSET_LONGS
#define __FDSET_LONGS (__FD_SETSIZE/__NFDBITS)
#undef __FDELT
#define __FDELT(d) ((d) / __NFDBITS)
#undef __FDMASK
#define __FDMASK(d) (1UL << ((d) % __NFDBITS))
typedef struct {
unsigned long fds_bits [__FDSET_LONGS];
} __kernel_fd_set;
/* Type of a signal handler. */
typedef void (*__kernel_sighandler_t)(int);
/* Type of a SYSV IPC key. */
typedef int __kernel_key_t;
/*
* This file is generally used by user-level software, so you need to
* be a little careful about namespace pollution etc. Also, we cannot
* assume GCC is being used.
*/
typedef unsigned short __kernel_dev_t;
typedef unsigned long __kernel_ino_t;
typedef unsigned short __kernel_mode_t;
typedef unsigned short __kernel_nlink_t;
typedef long __kernel_off_t;
typedef int __kernel_pid_t;
typedef unsigned short __kernel_ipc_pid_t;
typedef unsigned short __kernel_uid_t;
typedef unsigned short __kernel_gid_t;
typedef unsigned int __kernel_size_t;
typedef int __kernel_ssize_t;
typedef int __kernel_ptrdiff_t;
typedef long __kernel_time_t;
typedef long __kernel_suseconds_t;
typedef long __kernel_clock_t;
typedef int __kernel_daddr_t;
typedef char * __kernel_caddr_t;
typedef unsigned short __kernel_uid16_t;
typedef unsigned short __kernel_gid16_t;
typedef unsigned int __kernel_uid32_t;
typedef unsigned int __kernel_gid32_t;
typedef unsigned short __kernel_old_uid_t;
typedef unsigned short __kernel_old_gid_t;
#ifdef __GNUC__
typedef long long __kernel_loff_t;
#endif
typedef struct {
#if defined(__KERNEL__) || defined(__USE_ALL)
int val[2];
#else /* !defined(__KERNEL__) && !defined(__USE_ALL) */
int __val[2];
#endif /* !defined(__KERNEL__) && !defined(__USE_ALL) */
} __kernel_fsid_t;
#if defined(__KERNEL__) || !defined(__GLIBC__) || (__GLIBC__ < 2)
#undef __FD_SET
#define __FD_SET(fd,fdsetp) \
__asm__ __volatile__("btsl %1,%0": \
"=m" (*(__kernel_fd_set *) (fdsetp)):"r" ((int) (fd)))
#undef __FD_CLR
#define __FD_CLR(fd,fdsetp) \
__asm__ __volatile__("btrl %1,%0": \
"=m" (*(__kernel_fd_set *) (fdsetp)):"r" ((int) (fd)))
#undef __FD_ISSET
#define __FD_ISSET(fd,fdsetp) (__extension__ ({ \
unsigned char __result; \
__asm__ __volatile__("btl %1,%2 ; setb %0" \
:"=q" (__result) :"r" ((int) (fd)), \
"m" (*(__kernel_fd_set *) (fdsetp))); \
__result; }))
#undef __FD_ZERO
#define __FD_ZERO(fdsetp) \
do { \
int __d0, __d1; \
__asm__ __volatile__("cld ; rep ; stosl" \
:"=m" (*(__kernel_fd_set *) (fdsetp)), \
"=&c" (__d0), "=&D" (__d1) \
:"a" (0), "1" (__FDSET_LONGS), \
"2" ((__kernel_fd_set *) (fdsetp)) : "memory"); \
} while (0)
#endif /* defined(__KERNEL__) || !defined(__GLIBC__) || (__GLIBC__ < 2) */
#ifndef __KERNEL_STRICT_NAMES
typedef __kernel_fd_set fd_set;
typedef __kernel_dev_t dev_t;
typedef __kernel_ino_t ino_t;
typedef __kernel_mode_t mode_t;
typedef __kernel_nlink_t nlink_t;
typedef __kernel_off_t off_t;
typedef __kernel_pid_t pid_t;
typedef __kernel_daddr_t daddr_t;
typedef __kernel_key_t key_t;
typedef __kernel_suseconds_t suseconds_t;
#ifdef __KERNEL__
typedef __kernel_uid32_t uid_t;
typedef __kernel_gid32_t gid_t;
typedef __kernel_uid16_t uid16_t;
typedef __kernel_gid16_t gid16_t;
#ifdef CONFIG_UID16
/* This is defined by include/asm-{arch}/posix_types.h */
typedef __kernel_old_uid_t old_uid_t;
typedef __kernel_old_gid_t old_gid_t;
#endif /* CONFIG_UID16 */
/* libc5 includes this file to define uid_t, thus uid_t can never change
* when it is included by non-kernel code
*/
#else
typedef __kernel_uid_t uid_t;
typedef __kernel_gid_t gid_t;
#endif /* __KERNEL__ */
#if defined(__GNUC__)
typedef __kernel_loff_t loff_t;
#endif
/*
* The following typedefs are also protected by individual ifdefs for
* historical reasons:
*/
#ifndef _SIZE_T
#define _SIZE_T
typedef __kernel_size_t size_t;
#endif
#ifndef _SSIZE_T
#define _SSIZE_T
typedef __kernel_ssize_t ssize_t;
#endif
#ifndef _PTRDIFF_T
#define _PTRDIFF_T
typedef __kernel_ptrdiff_t ptrdiff_t;
#endif
#ifndef _TIME_T
#define _TIME_T
typedef __kernel_time_t time_t;
#endif
#ifndef _CLOCK_T
#define _CLOCK_T
typedef __kernel_clock_t clock_t;
#endif
#ifndef _CADDR_T
#define _CADDR_T
typedef __kernel_caddr_t caddr_t;
#endif
/* bsd */
typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned int u_int;
typedef unsigned long u_long;
/* sysv */
typedef unsigned char unchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong;
#ifndef __BIT_TYPES_DEFINED__
#define __BIT_TYPES_DEFINED__
typedef __u8 u_int8_t;
typedef __s8 int8_t;
typedef __u16 u_int16_t;
typedef __s16 int16_t;
typedef __u32 u_int32_t;
typedef __s32 int32_t;
#endif /* !(__BIT_TYPES_DEFINED__) */
typedef __u8 uint8_t;
typedef __u16 uint16_t;
typedef __u32 uint32_t;
#if defined(__GNUC__) && !defined(__STRICT_ANSI__)
typedef __u64 uint64_t;
typedef __u64 u_int64_t;
typedef __s64 int64_t;
#endif
#endif /* __KERNEL_STRICT_NAMES */
/*
* Below are truly Linux-specific types that should never collide with
* any application/library that wants linux/types.h.
*/
struct ustat {
__kernel_daddr_t f_tfree;
__kernel_ino_t f_tinode;
char f_fname[6];
char f_fpack[6];
};
#ifndef __LITTLE_ENDIAN
#define __LITTLE_ENDIAN 1234
#endif
#ifndef __LITTLE_ENDIAN_BITFIELD
#define __LITTLE_ENDIAN_BITFIELD
#endif
#if 1 /* swab */
/*
* linux/byteorder/swab.h
* Byte-swapping, independently from CPU endianness
* swabXX[ps]?(foo)
*
* Francois-Rene Rideau <fare@tunes.org> 19971205
* separated swab functions from cpu_to_XX,
* to clean up support for bizarre-endian architectures.
*
* See asm-i386/byteorder.h and such for examples of how to provide
* architecture-dependent optimized versions
*
*/
/* casts are necessary for constants, because we never know how for sure
* how U/UL/ULL map to __u16, __u32, __u64. At least not in a portable way.
*/
#define ___swab16(x) \
({ \
__u16 __x = (x); \
((__u16)( \
(((__u16)(__x) & (__u16)0x00ffU) << 8) | \
(((__u16)(__x) & (__u16)0xff00U) >> 8) )); \
})
#define ___swab24(x) \
({ \
__u32 __x = (x); \
((__u32)( \
((__x & (__u32)0x000000ffUL) << 16) | \
(__x & (__u32)0x0000ff00UL) | \
((__x & (__u32)0x00ff0000UL) >> 16) )); \
})
#define ___swab32(x) \
({ \
__u32 __x = (x); \
((__u32)( \
(((__u32)(__x) & (__u32)0x000000ffUL) << 24) | \
(((__u32)(__x) & (__u32)0x0000ff00UL) << 8) | \
(((__u32)(__x) & (__u32)0x00ff0000UL) >> 8) | \
(((__u32)(__x) & (__u32)0xff000000UL) >> 24) )); \
})
#define ___swab64(x) \
({ \
__u64 __x = (x); \
((__u64)( \
(__u64)(((__u64)(__x) & (__u64)0x00000000000000ffULL) << 56) | \
(__u64)(((__u64)(__x) & (__u64)0x000000000000ff00ULL) << 40) | \
(__u64)(((__u64)(__x) & (__u64)0x0000000000ff0000ULL) << 24) | \
(__u64)(((__u64)(__x) & (__u64)0x00000000ff000000ULL) << 8) | \
(__u64)(((__u64)(__x) & (__u64)0x000000ff00000000ULL) >> 8) | \
(__u64)(((__u64)(__x) & (__u64)0x0000ff0000000000ULL) >> 24) | \
(__u64)(((__u64)(__x) & (__u64)0x00ff000000000000ULL) >> 40) | \
(__u64)(((__u64)(__x) & (__u64)0xff00000000000000ULL) >> 56) )); \
})
#define ___constant_swab16(x) \
((__u16)( \
(((__u16)(x) & (__u16)0x00ffU) << 8) | \
(((__u16)(x) & (__u16)0xff00U) >> 8) ))
#define ___constant_swab24(x) \
((__u32)( \
(((__u32)(x) & (__u32)0x000000ffU) << 16) | \
(((__u32)(x) & (__u32)0x0000ff00U) | \
(((__u32)(x) & (__u32)0x00ff0000U) >> 16) ))
#define ___constant_swab32(x) \
((__u32)( \
(((__u32)(x) & (__u32)0x000000ffUL) << 24) | \
(((__u32)(x) & (__u32)0x0000ff00UL) << 8) | \
(((__u32)(x) & (__u32)0x00ff0000UL) >> 8) | \
(((__u32)(x) & (__u32)0xff000000UL) >> 24) ))
#define ___constant_swab64(x) \
((__u64)( \
(__u64)(((__u64)(x) & (__u64)0x00000000000000ffULL) << 56) | \
(__u64)(((__u64)(x) & (__u64)0x000000000000ff00ULL) << 40) | \
(__u64)(((__u64)(x) & (__u64)0x0000000000ff0000ULL) << 24) | \
(__u64)(((__u64)(x) & (__u64)0x00000000ff000000ULL) << 8) | \
(__u64)(((__u64)(x) & (__u64)0x000000ff00000000ULL) >> 8) | \
(__u64)(((__u64)(x) & (__u64)0x0000ff0000000000ULL) >> 24) | \
(__u64)(((__u64)(x) & (__u64)0x00ff000000000000ULL) >> 40) | \
(__u64)(((__u64)(x) & (__u64)0xff00000000000000ULL) >> 56) ))
/*
* provide defaults when no architecture-specific optimization is detected
*/
#ifndef __arch__swab16
# define __arch__swab16(x) ({ __u16 __tmp = (x) ; ___swab16(__tmp); })
#endif
#ifndef __arch__swab24
# define __arch__swab24(x) ({ __u32 __tmp = (x) ; ___swab24(__tmp); })
#endif
#ifndef __arch__swab32
# define __arch__swab32(x) ({ __u32 __tmp = (x) ; ___swab32(__tmp); })
#endif
#ifndef __arch__swab64
# define __arch__swab64(x) ({ __u64 __tmp = (x) ; ___swab64(__tmp); })
#endif
#ifndef __arch__swab16p
# define __arch__swab16p(x) __arch__swab16(*(x))
#endif
#ifndef __arch__swab24p
# define __arch__swab24p(x) __arch__swab24(*(x))
#endif
#ifndef __arch__swab32p
# define __arch__swab32p(x) __arch__swab32(*(x))
#endif
#ifndef __arch__swab64p
# define __arch__swab64p(x) __arch__swab64(*(x))
#endif
#ifndef __arch__swab16s
# define __arch__swab16s(x) do { *(x) = __arch__swab16p((x)); } while (0)
#endif
#ifndef __arch__swab24s
# define __arch__swab24s(x) do { *(x) = __arch__swab24p((x)); } while (0)
#endif
#ifndef __arch__swab32s
# define __arch__swab32s(x) do { *(x) = __arch__swab32p((x)); } while (0)
#endif
#ifndef __arch__swab64s
# define __arch__swab64s(x) do { *(x) = __arch__swab64p((x)); } while (0)
#endif
/*
* Allow constant folding
*/
#if defined(__GNUC__) && (__GNUC__ >= 2) && defined(__OPTIMIZE__)
# define __swab16(x) \
(__builtin_constant_p((__u16)(x)) ? \
___swab16((x)) : \
__fswab16((x)))
# define __swab24(x) \
(__builtin_constant_p((__u32)(x)) ? \
___swab24((x)) : \
__fswab24((x)))
# define __swab32(x) \
(__builtin_constant_p((__u32)(x)) ? \
___swab32((x)) : \
__fswab32((x)))
# define __swab64(x) \
(__builtin_constant_p((__u64)(x)) ? \
___swab64((x)) : \
__fswab64((x)))
#else
# define __swab16(x) __fswab16(x)
# define __swab24(x) __fswab24(x)
# define __swab32(x) __fswab32(x)
# define __swab64(x) __fswab64(x)
#endif /* OPTIMIZE */
static __inline__ __const__ __u16 __fswab16(__u16 x)
{
return __arch__swab16(x);
}
static __inline__ __u16 __swab16p(__u16 *x)
{
return __arch__swab16p(x);
}
static __inline__ void __swab16s(__u16 *addr)
{
__arch__swab16s(addr);
}
static __inline__ __const__ __u32 __fswab24(__u32 x)
{
return __arch__swab24(x);
}
static __inline__ __u32 __swab24p(__u32 *x)
{
return __arch__swab24p(x);
}
static __inline__ void __swab24s(__u32 *addr)
{
__arch__swab24s(addr);
}
static __inline__ __const__ __u32 __fswab32(__u32 x)
{
return __arch__swab32(x);
}
static __inline__ __u32 __swab32p(__u32 *x)
{
return __arch__swab32p(x);
}
static __inline__ void __swab32s(__u32 *addr)
{
__arch__swab32s(addr);
}
#ifdef __BYTEORDER_HAS_U64__
static __inline__ __const__ __u64 __fswab64(__u64 x)
{
# ifdef __SWAB_64_THRU_32__
__u32 h = x >> 32;
__u32 l = x & ((1ULL<<32)-1);
return (((__u64)__swab32(l)) << 32) | ((__u64)(__swab32(h)));
# else
return __arch__swab64(x);
# endif
}
static __inline__ __u64 __swab64p(__u64 *x)
{
return __arch__swab64p(x);
}
static __inline__ void __swab64s(__u64 *addr)
{
__arch__swab64s(addr);
}
#endif /* __BYTEORDER_HAS_U64__ */
#if defined(__KERNEL__)
#define swab16 __swab16
#define swab24 __swab24
#define swab32 __swab32
#define swab64 __swab64
#define swab16p __swab16p
#define swab24p __swab24p
#define swab32p __swab32p
#define swab64p __swab64p
#define swab16s __swab16s
#define swab24s __swab24s
#define swab32s __swab32s
#define swab64s __swab64s
#endif
#endif /* swab */
#if 1 /* generic */
/*
* linux/byteorder_generic.h
* Generic Byte-reordering support
*
* Francois-Rene Rideau <fare@tunes.org> 19970707
* gathered all the good ideas from all asm-foo/byteorder.h into one file,
* cleaned them up.
* I hope it is compliant with non-GCC compilers.
* I decided to put __BYTEORDER_HAS_U64__ in byteorder.h,
* because I wasn't sure it would be ok to put it in types.h
* Upgraded it to 2.1.43
* Francois-Rene Rideau <fare@tunes.org> 19971012
* Upgraded it to 2.1.57
* to please Linus T., replaced huge #ifdef's between little/big endian
* by nestedly #include'd files.
* Francois-Rene Rideau <fare@tunes.org> 19971205
* Made it to 2.1.71; now a facelift:
* Put files under include/linux/byteorder/
* Split swab from generic support.
*
* TODO:
* = Regular kernel maintainers could also replace all these manual
* byteswap macros that remain, disseminated among drivers,
* after some grep or the sources...
* = Linus might want to rename all these macros and files to fit his taste,
* to fit his personal naming scheme.
* = it seems that a few drivers would also appreciate
* nybble swapping support...
* = every architecture could add their byteswap macro in asm/byteorder.h
* see how some architectures already do (i386, alpha, ppc, etc)
* = cpu_to_beXX and beXX_to_cpu might some day need to be well
* distinguished throughout the kernel. This is not the case currently,
* since little endian, big endian, and pdp endian machines needn't it.
* But this might be the case for, say, a port of Linux to 20/21 bit
* architectures (and F21 Linux addict around?).
*/
/*
* The following macros are to be defined by <asm/byteorder.h>:
*
* Conversion of long and short int between network and host format
* ntohl(__u32 x)
* ntohs(__u16 x)
* htonl(__u32 x)
* htons(__u16 x)
* It seems that some programs (which? where? or perhaps a standard? POSIX?)
* might like the above to be functions, not macros (why?).
* if that's true, then detect them, and take measures.
* Anyway, the measure is: define only ___ntohl as a macro instead,
* and in a separate file, have
* unsigned long inline ntohl(x){return ___ntohl(x);}
*
* The same for constant arguments
* __constant_ntohl(__u32 x)
* __constant_ntohs(__u16 x)
* __constant_htonl(__u32 x)
* __constant_htons(__u16 x)
*
* Conversion of XX-bit integers (16- 32- or 64-)
* between native CPU format and little/big endian format
* 64-bit stuff only defined for proper architectures
* cpu_to_[bl]eXX(__uXX x)
* [bl]eXX_to_cpu(__uXX x)
*
* The same, but takes a pointer to the value to convert
* cpu_to_[bl]eXXp(__uXX x)
* [bl]eXX_to_cpup(__uXX x)
*
* The same, but change in situ
* cpu_to_[bl]eXXs(__uXX x)
* [bl]eXX_to_cpus(__uXX x)
*
* See asm-foo/byteorder.h for examples of how to provide
* architecture-optimized versions
*
*/
#if defined(__KERNEL__)
/*
* inside the kernel, we can use nicknames;
* outside of it, we must avoid POSIX namespace pollution...
*/
#define cpu_to_le64 __cpu_to_le64
#define le64_to_cpu __le64_to_cpu
#define cpu_to_le32 __cpu_to_le32
#define le32_to_cpu __le32_to_cpu
#define cpu_to_le16 __cpu_to_le16
#define le16_to_cpu __le16_to_cpu
#define cpu_to_be64 __cpu_to_be64
#define be64_to_cpu __be64_to_cpu
#define cpu_to_be32 __cpu_to_be32
#define be32_to_cpu __be32_to_cpu
#define cpu_to_be16 __cpu_to_be16
#define be16_to_cpu __be16_to_cpu
#define cpu_to_le64p __cpu_to_le64p
#define le64_to_cpup __le64_to_cpup
#define cpu_to_le32p __cpu_to_le32p
#define le32_to_cpup __le32_to_cpup
#define cpu_to_le16p __cpu_to_le16p
#define le16_to_cpup __le16_to_cpup
#define cpu_to_be64p __cpu_to_be64p
#define be64_to_cpup __be64_to_cpup
#define cpu_to_be32p __cpu_to_be32p
#define be32_to_cpup __be32_to_cpup
#define cpu_to_be16p __cpu_to_be16p
#define be16_to_cpup __be16_to_cpup
#define cpu_to_le64s __cpu_to_le64s
#define le64_to_cpus __le64_to_cpus
#define cpu_to_le32s __cpu_to_le32s
#define le32_to_cpus __le32_to_cpus
#define cpu_to_le16s __cpu_to_le16s
#define le16_to_cpus __le16_to_cpus
#define cpu_to_be64s __cpu_to_be64s
#define be64_to_cpus __be64_to_cpus
#define cpu_to_be32s __cpu_to_be32s
#define be32_to_cpus __be32_to_cpus
#define cpu_to_be16s __cpu_to_be16s
#define be16_to_cpus __be16_to_cpus
#endif
/*
* Handle ntohl and suches. These have various compatibility
* issues - like we want to give the prototype even though we
* also have a macro for them in case some strange program
* wants to take the address of the thing or something..
*
* Note that these used to return a "long" in libc5, even though
* long is often 64-bit these days.. Thus the casts.
*
* They have to be macros in order to do the constant folding
* correctly - if the argument passed into a inline function
* it is no longer constant according to gcc..
*/
#undef ntohl
#undef ntohs
#undef htonl
#undef htons
/*
* Do the prototypes. Somebody might want to take the
* address or some such sick thing..
*/
#if defined(__KERNEL__) || (defined (__GLIBC__) && __GLIBC__ >= 2)
extern __u32 ntohl(__u32);
extern __u32 htonl(__u32);
#else
extern unsigned long int ntohl(unsigned long int);
extern unsigned long int htonl(unsigned long int);
#endif
extern unsigned short int ntohs(unsigned short int);
extern unsigned short int htons(unsigned short int);
#if defined(__GNUC__) && (__GNUC__ >= 2) && defined(__OPTIMIZE__) && !defined(__STRICT_ANSI__)
#define ___htonl(x) __cpu_to_be32(x)
#define ___htons(x) __cpu_to_be16(x)
#define ___ntohl(x) __be32_to_cpu(x)
#define ___ntohs(x) __be16_to_cpu(x)
#if defined(__KERNEL__) || (defined (__GLIBC__) && __GLIBC__ >= 2)
#define htonl(x) ___htonl(x)
#define ntohl(x) ___ntohl(x)
#else
#define htonl(x) ((unsigned long)___htonl(x))
#define ntohl(x) ((unsigned long)___ntohl(x))
#endif
#define htons(x) ___htons(x)
#define ntohs(x) ___ntohs(x)
#endif /* OPTIMIZE */
#endif /* generic */
#define __constant_htonl(x) ___constant_swab32((x))
#define __constant_ntohl(x) ___constant_swab32((x))
#define __constant_htons(x) ___constant_swab16((x))
#define __constant_ntohs(x) ___constant_swab16((x))
#define __constant_cpu_to_le64(x) ((__u64)(x))
#define __constant_le64_to_cpu(x) ((__u64)(x))
#define __constant_cpu_to_le32(x) ((__u32)(x))
#define __constant_le32_to_cpu(x) ((__u32)(x))
#define __constant_cpu_to_le24(x) ((__u32)(x))
#define __constant_le24_to_cpu(x) ((__u32)(x))
#define __constant_cpu_to_le16(x) ((__u16)(x))
#define __constant_le16_to_cpu(x) ((__u16)(x))
#define __constant_cpu_to_be64(x) ___constant_swab64((x))
#define __constant_be64_to_cpu(x) ___constant_swab64((x))
#define __constant_cpu_to_be32(x) ___constant_swab32((x))
#define __constant_be32_to_cpu(x) ___constant_swab32((x))
#define __constant_cpu_to_be24(x) ___constant_swab24((x))
#define __constant_be24_to_cpu(x) ___constant_swab24((x))
#define __constant_cpu_to_be16(x) ___constant_swab16((x))
#define __constant_be16_to_cpu(x) ___constant_swab16((x))
#define __cpu_to_le64(x) ((__u64)(x))
#define __le64_to_cpu(x) ((__u64)(x))
#define __cpu_to_le32(x) ((__u32)(x))
#define __le32_to_cpu(x) ((__u32)(x))
#define __cpu_to_le24(x) ((__u32)(x))
#define __le24_to_cpu(x) ((__u32)(x))
#define __cpu_to_le16(x) ((__u16)(x))
#define __le16_to_cpu(x) ((__u16)(x))
#define __cpu_to_be64(x) __swab64((x))
#define __be64_to_cpu(x) __swab64((x))
#define __cpu_to_be32(x) __swab32((x))
#define __be32_to_cpu(x) __swab32((x))
#define __cpu_to_be24(x) __swab24((x))
#define __be24_to_cpu(x) __swab24((x))
#define __cpu_to_be16(x) __swab16((x))
#define __be16_to_cpu(x) __swab16((x))
#define __cpu_to_le64p(x) (*(__u64*)(x))
#define __le64_to_cpup(x) (*(__u64*)(x))
#define __cpu_to_le32p(x) (*(__u32*)(x))
#define __le32_to_cpup(x) (*(__u32*)(x))
#define __cpu_to_le24p(x) (*(__u32*)(x))
#define __le24_to_cpup(x) (*(__u32*)(x))
#define __cpu_to_le16p(x) (*(__u16*)(x))
#define __le16_to_cpup(x) (*(__u16*)(x))
#define __cpu_to_be64p(x) __swab64p((x))
#define __be64_to_cpup(x) __swab64p((x))
#define __cpu_to_be32p(x) __swab32p((x))
#define __be32_to_cpup(x) __swab32p((x))
#define __cpu_to_be24p(x) __swab24p((x))
#define __be24_to_cpup(x) __swab24p((x))
#define __cpu_to_be16p(x) __swab16p((x))
#define __be16_to_cpup(x) __swab16p((x))
#define __cpu_to_le64s(x) do {} while (0)
#define __le64_to_cpus(x) do {} while (0)
#define __cpu_to_le32s(x) do {} while (0)
#define __le32_to_cpus(x) do {} while (0)
#define __cpu_to_le24s(x) do {} while (0)
#define __le24_to_cpus(x) do {} while (0)
#define __cpu_to_le16s(x) do {} while (0)
#define __le16_to_cpus(x) do {} while (0)
#define __cpu_to_be64s(x) __swab64s((x))
#define __be64_to_cpus(x) __swab64s((x))
#define __cpu_to_be32s(x) __swab32s((x))
#define __be32_to_cpus(x) __swab32s((x))
#define __cpu_to_be24s(x) __swab24s((x))
#define __be24_to_cpus(x) __swab24s((x))
#define __cpu_to_be16s(x) __swab16s((x))
#define __be16_to_cpus(x) __swab16s((x))
#if 1
/* Dummy types */
#define ____cacheline_aligned
typedef struct
{
volatile unsigned int lock;
} rwlock_t;
typedef struct {
volatile unsigned int lock;
} spinlock_t;
struct task_struct;
#if 1 /* atomic */
/*
* Atomic operations that C can't guarantee us. Useful for
* resource counting etc..
*/
#ifdef CONFIG_SMP
#define LOCK "lock ; "
#else
#define LOCK ""
#endif
/*
* Make sure gcc doesn't try to be clever and move things around
* on us. We need to use _exactly_ the address the user gave us,
* not some alias that contains the same information.
*/
typedef struct { volatile int counter; } atomic_t;
#define ATOMIC_INIT(i) { (i) }
/**
* atomic_read - read atomic variable
* @v: pointer of type atomic_t
*
* Atomically reads the value of @v. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
#define atomic_read(v) ((v)->counter)
/**
* atomic_set - set atomic variable
* @v: pointer of type atomic_t
* @i: required value
*
* Atomically sets the value of @v to @i. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
#define atomic_set(v,i) (((v)->counter) = (i))
/**
* atomic_add - add integer to atomic variable
* @i: integer value to add
* @v: pointer of type atomic_t
*
* Atomically adds @i to @v. Note that the guaranteed useful range
* of an atomic_t is only 24 bits.
*/
static __inline__ void atomic_add(int i, atomic_t *v)
{
#if 0
__asm__ __volatile__(
LOCK "addl %1,%0"
:"=m" (v->counter)
:"ir" (i), "m" (v->counter));
#endif
}
/**
* atomic_sub - subtract the atomic variable
* @i: integer value to subtract
* @v: pointer of type atomic_t
*
* Atomically subtracts @i from @v. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
static __inline__ void atomic_sub(int i, atomic_t *v)
{
#if 0
__asm__ __volatile__(
LOCK "subl %1,%0"
:"=m" (v->counter)
:"ir" (i), "m" (v->counter));
#endif
}
/**
* atomic_sub_and_test - subtract value from variable and test result
* @i: integer value to subtract
* @v: pointer of type atomic_t
*
* Atomically subtracts @i from @v and returns
* true if the result is zero, or false for all
* other cases. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
static __inline__ int atomic_sub_and_test(int i, atomic_t *v)
{
#if 0
unsigned char c;
__asm__ __volatile__(
LOCK "subl %2,%0; sete %1"
:"=m" (v->counter), "=qm" (c)
:"ir" (i), "m" (v->counter) : "memory");
return c;
#endif
}
/**
* atomic_inc - increment atomic variable
* @v: pointer of type atomic_t
*
* Atomically increments @v by 1. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
static __inline__ void atomic_inc(atomic_t *v)
{
#if 0
__asm__ __volatile__(
LOCK "incl %0"
:"=m" (v->counter)
:"m" (v->counter));
#endif
}
/**
* atomic_dec - decrement atomic variable
* @v: pointer of type atomic_t
*
* Atomically decrements @v by 1. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
static __inline__ void atomic_dec(atomic_t *v)
{
#if 0
__asm__ __volatile__(
LOCK "decl %0"
:"=m" (v->counter)
:"m" (v->counter));
#endif
}
/**
* atomic_dec_and_test - decrement and test
* @v: pointer of type atomic_t
*
* Atomically decrements @v by 1 and
* returns true if the result is 0, or false for all other
* cases. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
static __inline__ int atomic_dec_and_test(atomic_t *v)
{
#if 0
unsigned char c;
__asm__ __volatile__(
LOCK "decl %0; sete %1"
:"=m" (v->counter), "=qm" (c)
:"m" (v->counter) : "memory");
return c != 0;
#else
return 1;
#endif
}
/**
* atomic_inc_and_test - increment and test
* @v: pointer of type atomic_t
*
* Atomically increments @v by 1
* and returns true if the result is zero, or false for all
* other cases. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
static __inline__ int atomic_inc_and_test(atomic_t *v)
{
#if 0
unsigned char c;
__asm__ __volatile__(
LOCK "incl %0; sete %1"
:"=m" (v->counter), "=qm" (c)
:"m" (v->counter) : "memory");
return c != 0;
#else
return 1;
#endif
}
/**
* atomic_add_negative - add and test if negative
* @v: pointer of type atomic_t
* @i: integer value to add
*
* Atomically adds @i to @v and returns true
* if the result is negative, or false when
* result is greater than or equal to zero. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
static __inline__ int atomic_add_negative(int i, atomic_t *v)
{
#if 0
unsigned char c;
__asm__ __volatile__(
LOCK "addl %2,%0; sets %1"
:"=m" (v->counter), "=qm" (c)
:"ir" (i), "m" (v->counter) : "memory");
return c;
#else
return 0;
#endif
}
/* These are x86-specific, used by some header files */
#define atomic_clear_mask(mask, addr)
#if 0
__asm__ __volatile__(LOCK "andl %0,%1" \
: : "r" (~(mask)),"m" (*addr) : "memory")
#endif
#define atomic_set_mask(mask, addr)
#if 0
__asm__ __volatile__(LOCK "orl %0,%1" \
: : "r" (mask),"m" (*addr) : "memory")
#endif
/* Atomic operations are already serializing on x86 */
#define smp_mb__before_atomic_dec()
#define smp_mb__after_atomic_dec()
#define smp_mb__before_atomic_inc()
#define smp_mb__after_atomic_inc()
#endif /* atomic */
#if 1 /* list */
struct list_head {
struct list_head *next, *prev;
};
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)
#define INIT_LIST_HEAD(ptr) do { \
(ptr)->next = (ptr); (ptr)->prev = (ptr); \
} while (0)
/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
#if 0
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
#endif
}
/**
* list_add - add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static inline void list_add(struct list_head *new, struct list_head *head)
{
#if 0
__list_add(new, head, head->next);
#endif
}
/**
* list_add_tail - add a new entry
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
#if 0
__list_add(new, head->prev, head);
#endif
}
/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_del(struct list_head *prev, struct list_head *next)
{
next->prev = prev;
prev->next = next;
}
/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty on entry does not return true after this, the entry is in an undefined state.
*/
static inline void list_del(struct list_head *entry)
{
#if 0
__list_del(entry->prev, entry->next);
entry->next = (void *) 0;
entry->prev = (void *) 0;
#endif
}
/**
* list_del_init - deletes entry from list and reinitialize it.
* @entry: the element to delete from the list.
*/
static inline void list_del_init(struct list_head *entry)
{
#if 0
__list_del(entry->prev, entry->next);
INIT_LIST_HEAD(entry);
#endif
}
/**
* list_move - delete from one list and add as another's head
* @list: the entry to move
* @head: the head that will precede our entry
*/
static inline void list_move(struct list_head *list, struct list_head *head)
{
#if 0
__list_del(list->prev, list->next);
list_add(list, head);
#endif
}
/**
* list_move_tail - delete from one list and add as another's tail
* @list: the entry to move
* @head: the head that will follow our entry
*/
static inline void list_move_tail(struct list_head *list,
struct list_head *head)
{
#if 0
__list_del(list->prev, list->next);
list_add_tail(list, head);
#endif
}
/**
* list_empty - tests whether a list is empty
* @head: the list to test.
*/
static inline int list_empty(struct list_head *head)
{
return head->next == head;
}
static inline void __list_splice(struct list_head *list,
struct list_head *head)
{
#if 0
struct list_head *first = list->next;
struct list_head *last = list->prev;
struct list_head *at = head->next;
first->prev = head;
head->next = first;
last->next = at;
at->prev = last;
#endif
}
/**
* list_splice - join two lists
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice(struct list_head *list, struct list_head *head)
{
#if 0
if (!list_empty(list))
__list_splice(list, head);
#endif
}
/**
* list_splice_init - join two lists and reinitialise the emptied list.
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* The list at @list is reinitialised
*/
static inline void list_splice_init(struct list_head *list,
struct list_head *head)
{
#if 0
if (!list_empty(list)) {
__list_splice(list, head);
INIT_LIST_HEAD(list);
}
#endif
}
/**
* list_entry - get the struct for this entry
* @ptr: the &struct list_head pointer.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*/
#define list_entry(ptr, type, member)
#if 0
((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))
#endif
/**
* list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop counter.
* @head: the head for your list.
*/
#define list_for_each(pos, head)
#if 0
for (pos = (head)->next, prefetch(pos->next); pos != (head); \
pos = pos->next, prefetch(pos->next))
#endif
/**
* list_for_each_prev - iterate over a list backwards
* @pos: the &struct list_head to use as a loop counter.
* @head: the head for your list.
*/
#define list_for_each_prev(pos, head)
#if 0
for (pos = (head)->prev, prefetch(pos->prev); pos != (head); \
pos = pos->prev, prefetch(pos->prev))
#endif
/**
* list_for_each_safe - iterate over a list safe against removal of list entry
* @pos: the &struct list_head to use as a loop counter.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_safe(pos, n, head)
#if 0
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)
#endif
/**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop counter.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member)
#if 0
for (pos = list_entry((head)->next, typeof(*pos), member), \
prefetch(pos->member.next); \
&pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member), \
prefetch(pos->member.next))
#endif
#endif /* list */
#if 1 /* wait */
#define WNOHANG 0x00000001
#define WUNTRACED 0x00000002
#define __WNOTHREAD 0x20000000 /* Don't wait on children of other threads in this group */
#define __WALL 0x40000000 /* Wait on all children, regardless of type */
#define __WCLONE 0x80000000 /* Wait only on non-SIGCHLD children */
#if 0
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/stddef.h>
#include <linux/spinlock.h>
#include <linux/config.h>
#include <asm/page.h>
#include <asm/processor.h>
#endif
/*
* Debug control. Slow but useful.
*/
#if defined(CONFIG_DEBUG_WAITQ)
#define WAITQUEUE_DEBUG 1
#else
#define WAITQUEUE_DEBUG 0
#endif
struct __wait_queue {
unsigned int flags;
#define WQ_FLAG_EXCLUSIVE 0x01
struct task_struct * task;
struct list_head task_list;
#if WAITQUEUE_DEBUG
long __magic;
long __waker;
#endif
};
typedef struct __wait_queue wait_queue_t;
/*
* 'dual' spinlock architecture. Can be switched between spinlock_t and
* rwlock_t locks via changing this define. Since waitqueues are quite
* decoupled in the new architecture, lightweight 'simple' spinlocks give
* us slightly better latencies and smaller waitqueue structure size.
*/
#define USE_RW_WAIT_QUEUE_SPINLOCK 0
#if USE_RW_WAIT_QUEUE_SPINLOCK
# define wq_lock_t rwlock_t
# define WAITQUEUE_RW_LOCK_UNLOCKED RW_LOCK_UNLOCKED
# define wq_read_lock read_lock
# define wq_read_lock_irqsave read_lock_irqsave
# define wq_read_unlock_irqrestore read_unlock_irqrestore
# define wq_read_unlock read_unlock
# define wq_write_lock_irq write_lock_irq
# define wq_write_lock_irqsave write_lock_irqsave
# define wq_write_unlock_irqrestore write_unlock_irqrestore
# define wq_write_unlock write_unlock
#else
# define wq_lock_t spinlock_t
# define WAITQUEUE_RW_LOCK_UNLOCKED SPIN_LOCK_UNLOCKED
# define wq_read_lock spin_lock
# define wq_read_lock_irqsave spin_lock_irqsave
# define wq_read_unlock spin_unlock
# define wq_read_unlock_irqrestore spin_unlock_irqrestore
# define wq_write_lock_irq spin_lock_irq
# define wq_write_lock_irqsave spin_lock_irqsave
# define wq_write_unlock_irqrestore spin_unlock_irqrestore
# define wq_write_unlock spin_unlock
#endif
struct __wait_queue_head {
wq_lock_t lock;
struct list_head task_list;
#if WAITQUEUE_DEBUG
long __magic;
long __creator;
#endif
};
typedef struct __wait_queue_head wait_queue_head_t;
/*
* Debugging macros. We eschew `do { } while (0)' because gcc can generate
* spurious .aligns.
*/
#if WAITQUEUE_DEBUG
#define WQ_BUG() BUG()
#define CHECK_MAGIC(x)
#if 0
do { \
if ((x) != (long)&(x)) { \
printk("bad magic %lx (should be %lx), ", \
(long)x, (long)&(x)); \
WQ_BUG(); \
} \
} while (0)
#endif
#define CHECK_MAGIC_WQHEAD(x)
#if 0
do { \
if ((x)->__magic != (long)&((x)->__magic)) { \
printk("bad magic %lx (should be %lx, creator %lx), ", \
(x)->__magic, (long)&((x)->__magic), (x)->__creator); \
WQ_BUG(); \
} \
} while (0)
#endif
#define WQ_CHECK_LIST_HEAD(list)
#if 0
do { \
if (!(list)->next || !(list)->prev) \
WQ_BUG(); \
} while(0)
#endif
#define WQ_NOTE_WAKER(tsk)
#if 0
do { \
(tsk)->__waker = (long)__builtin_return_address(0); \
} while (0)
#endif
#else
#define WQ_BUG()
#define CHECK_MAGIC(x)
#define CHECK_MAGIC_WQHEAD(x)
#define WQ_CHECK_LIST_HEAD(list)
#define WQ_NOTE_WAKER(tsk)
#endif
/*
* Macros for declaration and initialisation of the datatypes
*/
#if WAITQUEUE_DEBUG
# define __WAITQUEUE_DEBUG_INIT(name) //(long)&(name).__magic, 0
# define __WAITQUEUE_HEAD_DEBUG_INIT(name) //(long)&(name).__magic, (long)&(name).__magic
#else
# define __WAITQUEUE_DEBUG_INIT(name)
# define __WAITQUEUE_HEAD_DEBUG_INIT(name)
#endif
#define __WAITQUEUE_INITIALIZER(name, tsk)
#if 0
{
task: tsk, \
task_list: { NULL, NULL }, \
__WAITQUEUE_DEBUG_INIT(name)}
#endif
#define DECLARE_WAITQUEUE(name, tsk)
#if 0
wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk)
#endif
#define __WAIT_QUEUE_HEAD_INITIALIZER(name)
#if 0
{
lock: WAITQUEUE_RW_LOCK_UNLOCKED, \
task_list: { &(name).task_list, &(name).task_list }, \
__WAITQUEUE_HEAD_DEBUG_INIT(name)}
#endif
#define DECLARE_WAIT_QUEUE_HEAD(name)
#if 0
wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
#endif
static inline void init_waitqueue_head(wait_queue_head_t *q)
{
#if 0
#if WAITQUEUE_DEBUG
if (!q)
WQ_BUG();
#endif
q->lock = WAITQUEUE_RW_LOCK_UNLOCKED;
INIT_LIST_HEAD(&q->task_list);
#if WAITQUEUE_DEBUG
q->__magic = (long)&q->__magic;
q->__creator = (long)current_text_addr();
#endif
#endif
}
static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)
{
#if 0
#if WAITQUEUE_DEBUG
if (!q || !p)
WQ_BUG();
#endif
q->flags = 0;
q->task = p;
#if WAITQUEUE_DEBUG
q->__magic = (long)&q->__magic;
#endif
#endif
}
static inline int waitqueue_active(wait_queue_head_t *q)
{
#if 0
#if WAITQUEUE_DEBUG
if (!q)
WQ_BUG();
CHECK_MAGIC_WQHEAD(q);
#endif
return !list_empty(&q->task_list);
#endif
}
static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
{
#if 0
#if WAITQUEUE_DEBUG
if (!head || !new)
WQ_BUG();
CHECK_MAGIC_WQHEAD(head);
CHECK_MAGIC(new->__magic);
if (!head->task_list.next || !head->task_list.prev)
WQ_BUG();
#endif
list_add(&new->task_list, &head->task_list);
#endif
}
/*
* Used for wake-one threads:
*/
static inline void __add_wait_queue_tail(wait_queue_head_t *head,
wait_queue_t *new)
{
#if 0
#if WAITQUEUE_DEBUG
if (!head || !new)
WQ_BUG();
CHECK_MAGIC_WQHEAD(head);
CHECK_MAGIC(new->__magic);
if (!head->task_list.next || !head->task_list.prev)
WQ_BUG();
#endif
list_add_tail(&new->task_list, &head->task_list);
#endif
}
static inline void __remove_wait_queue(wait_queue_head_t *head,
wait_queue_t *old)
{
#if 0
#if WAITQUEUE_DEBUG
if (!old)
WQ_BUG();
CHECK_MAGIC(old->__magic);
#endif
list_del(&old->task_list);
#endif
}
#endif /* wait */
#endif
#if 1 /* slab */
typedef struct
{
int x;
} kmem_cache_s;
typedef struct kmem_cache_s kmem_cache_t;
#if 0
#include <linux/mm.h>
#include <linux/cache.h>
#endif
/* flags for kmem_cache_alloc() */
#define SLAB_NOFS GFP_NOFS
#define SLAB_NOIO GFP_NOIO
#define SLAB_NOHIGHIO GFP_NOHIGHIO
#define SLAB_ATOMIC GFP_ATOMIC
#define SLAB_USER GFP_USER
#define SLAB_KERNEL GFP_KERNEL
#define SLAB_NFS GFP_NFS
#define SLAB_DMA GFP_DMA
#define SLAB_LEVEL_MASK (__GFP_WAIT|__GFP_HIGH|__GFP_IO|__GFP_HIGHIO|__GFP_FS)
#define SLAB_NO_GROW 0x00001000UL /* don't grow a cache */
/* flags to pass to kmem_cache_create().
* The first 3 are only valid when the allocator as been build
* SLAB_DEBUG_SUPPORT.
*/
#define SLAB_DEBUG_FREE 0x00000100UL /* Perform (expensive) checks on free */
#define SLAB_DEBUG_INITIAL 0x00000200UL /* Call constructor (as verifier) */
#define SLAB_RED_ZONE 0x00000400UL /* Red zone objs in a cache */
#define SLAB_POISON 0x00000800UL /* Poison objects */
#define SLAB_NO_REAP 0x00001000UL /* never reap from the cache */
#define SLAB_HWCACHE_ALIGN 0x00002000UL /* align objs on a h/w cache lines */
#define SLAB_CACHE_DMA 0x00004000UL /* use GFP_DMA memory */
#define SLAB_MUST_HWCACHE_ALIGN 0x00008000UL /* force alignment */
/* flags passed to a constructor func */
#define SLAB_CTOR_CONSTRUCTOR 0x001UL /* if not set, then deconstructor */
#define SLAB_CTOR_ATOMIC 0x002UL /* tell constructor it can't sleep */
#define SLAB_CTOR_VERIFY 0x004UL /* tell constructor it's a verify call */
/* prototypes */
extern void kmem_cache_init(void);
extern void kmem_cache_sizes_init(void);
extern kmem_cache_t *kmem_find_general_cachep(size_t, int gfpflags);
extern kmem_cache_t *kmem_cache_create(const char *, size_t, size_t, unsigned long,
void (*)(void *, kmem_cache_t *, unsigned long),
void (*)(void *, kmem_cache_t *, unsigned long));
extern int kmem_cache_destroy(kmem_cache_t *);
extern int kmem_cache_shrink(kmem_cache_t *);
extern void *kmem_cache_alloc(kmem_cache_t *, int);
extern void kmem_cache_free(kmem_cache_t *, void *);
extern unsigned int kmem_cache_size(kmem_cache_t *);
extern void *kmalloc(size_t, int);
extern void kfree(const void *);
//extern int FASTCALL(kmem_cache_reap(int));
/* System wide caches */
extern kmem_cache_t *vm_area_cachep;
extern kmem_cache_t *mm_cachep;
extern kmem_cache_t *names_cachep;
extern kmem_cache_t *files_cachep;
extern kmem_cache_t *filp_cachep;
extern kmem_cache_t *dquot_cachep;
extern kmem_cache_t *bh_cachep;
extern kmem_cache_t *fs_cachep;
extern kmem_cache_t *sigact_cachep;
#endif /* slab */
/*
* Berkeley style UIO structures - Alan Cox 1994.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/* A word of warning: Our uio structure will clash with the C library one (which is now obsolete). Remove the C
library one from sys/uio.h if you have a very old library set */
struct iovec
{
void *iov_base; /* BSD uses caddr_t (1003.1g requires void *) */
__kernel_size_t iov_len; /* Must be size_t (1003.1g) */
};
/*
* UIO_MAXIOV shall be at least 16 1003.1g (5.4.1.1)
*/
#define UIO_FASTIOV 8
#define UIO_MAXIOV 1024
#if 0
#define UIO_MAXIOV 16 /* Maximum iovec's in one operation
16 matches BSD */
/* Beg pardon: BSD has 1024 --ANK */
#endif
/*
* In Linux 2.4, static timers have been removed from the kernel.
* Timers may be dynamically created and destroyed, and should be initialized
* by a call to init_timer() upon creation.
*
* The "data" field enables use of a common timeout function for several
* timeouts. You can use this field to distinguish between the different
* invocations.
*/
struct timer_list {
struct list_head list;
unsigned long expires;
unsigned long data;
void (*function)(unsigned long);
};
struct timeval {
unsigned long tv_sec;
unsigned long tv_usec;
// time_t tv_sec; /* seconds */
// suseconds_t tv_usec; /* microseconds */
};
#if 1 /* poll */
struct file;
struct poll_table_page;
typedef struct poll_table_struct {
int error;
struct poll_table_page * table;
} poll_table;
extern void __pollwait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p);
static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p)
{
if (p && wait_address)
__pollwait(filp, wait_address, p);
}
static inline void poll_initwait(poll_table* pt)
{
pt->error = 0;
pt->table = NULL;
}
extern void poll_freewait(poll_table* pt);
/*
* Scalable version of the fd_set.
*/
typedef struct {
unsigned long *in, *out, *ex;
unsigned long *res_in, *res_out, *res_ex;
} fd_set_bits;
/*
* How many longwords for "nr" bits?
*/
#define FDS_BITPERLONG (8*sizeof(long))
#define FDS_LONGS(nr) (((nr)+FDS_BITPERLONG-1)/FDS_BITPERLONG)
#define FDS_BYTES(nr) (FDS_LONGS(nr)*sizeof(long))
/*
* We do a VERIFY_WRITE here even though we are only reading this time:
* we'll write to it eventually..
*
* Use "unsigned long" accesses to let user-mode fd_set's be long-aligned.
*/
static inline
int get_fd_set(unsigned long nr, void *ufdset, unsigned long *fdset)
{
#if 0
nr = FDS_BYTES(nr);
if (ufdset) {
int error;
error = verify_area(VERIFY_WRITE, ufdset, nr);
if (!error && __copy_from_user(fdset, ufdset, nr))
error = -EFAULT;
return error;
}
memset(fdset, 0, nr);
return 0;
#else
return 0;
#endif
}
static inline
void set_fd_set(unsigned long nr, void *ufdset, unsigned long *fdset)
{
#if 0
if (ufdset)
__copy_to_user(ufdset, fdset, FDS_BYTES(nr));
#endif
}
static inline
void zero_fd_set(unsigned long nr, unsigned long *fdset)
{
#if 0
memset(fdset, 0, FDS_BYTES(nr));
#endif
}
extern int do_select(int n, fd_set_bits *fds, long *timeout);
#endif /* poll */
typedef struct
{
int x;
} read_descriptor_t;
#if 1 /* poll */
/* These are specified by iBCS2 */
#define POLLIN 0x0001
#define POLLPRI 0x0002
#define POLLOUT 0x0004
#define POLLERR 0x0008
#define POLLHUP 0x0010
#define POLLNVAL 0x0020
/* The rest seem to be more-or-less nonstandard. Check them! */
#define POLLRDNORM 0x0040
#define POLLRDBAND 0x0080
#define POLLWRNORM 0x0100
#define POLLWRBAND 0x0200
#define POLLMSG 0x0400
struct pollfd {
int fd;
short events;
short revents;
};
#endif /* poll */