reactos/drivers/filesystems/btrfs/treefuncs.c
Vincent Franchomme c982533ea9 [BTRFS][UBTRFS][SHELLBTRFS] Upgrade to 1.7.6 (#4417)
v1.7.6 (2021-01-14):

- Fixed race condition when booting with Quibble
- No longer need to restart Windows after initial installation
- Forced maximum file name to 255 UTF-8 characters, to match Linux driver
- Fixed issue where directories could be created with trailing backslash
- Fixed potential deadlock when Windows calls NtCreateSection during flush
- Miscellaneous bug fixes
2022-05-03 17:30:11 +02:00

2364 lines
78 KiB
C

/* Copyright (c) Mark Harmstone 2016-17
*
* This file is part of WinBtrfs.
*
* WinBtrfs is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public Licence as published by
* the Free Software Foundation, either version 3 of the Licence, or
* (at your option) any later version.
*
* WinBtrfs is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public Licence for more details.
*
* You should have received a copy of the GNU Lesser General Public Licence
* along with WinBtrfs. If not, see <http://www.gnu.org/licenses/>. */
#include "btrfs_drv.h"
#include "crc32c.h"
__attribute__((nonnull(1,3,4,5)))
NTSTATUS load_tree(device_extension* Vcb, uint64_t addr, uint8_t* buf, root* r, tree** pt) {
tree_header* th;
tree* t;
tree_data* td;
uint8_t h;
bool inserted;
LIST_ENTRY* le;
th = (tree_header*)buf;
t = ExAllocatePoolWithTag(PagedPool, sizeof(tree), ALLOC_TAG);
if (!t) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
if (th->level > 0) {
t->nonpaged = ExAllocatePoolWithTag(NonPagedPool, sizeof(tree_nonpaged), ALLOC_TAG);
if (!t->nonpaged) {
ERR("out of memory\n");
ExFreePool(t);
return STATUS_INSUFFICIENT_RESOURCES;
}
ExInitializeFastMutex(&t->nonpaged->mutex);
} else
t->nonpaged = NULL;
RtlCopyMemory(&t->header, th, sizeof(tree_header));
t->hash = calc_crc32c(0xffffffff, (uint8_t*)&addr, sizeof(uint64_t));
t->has_address = true;
t->Vcb = Vcb;
t->parent = NULL;
t->root = r;
t->paritem = NULL;
t->size = 0;
t->new_address = 0;
t->has_new_address = false;
t->updated_extents = false;
t->write = false;
t->uniqueness_determined = false;
InitializeListHead(&t->itemlist);
if (t->header.level == 0) { // leaf node
leaf_node* ln = (leaf_node*)(buf + sizeof(tree_header));
unsigned int i;
if ((t->header.num_items * sizeof(leaf_node)) + sizeof(tree_header) > Vcb->superblock.node_size) {
ERR("tree at %I64x has more items than expected (%x)\n", addr, t->header.num_items);
ExFreePool(t);
return STATUS_INSUFFICIENT_RESOURCES;
}
for (i = 0; i < t->header.num_items; i++) {
td = ExAllocateFromPagedLookasideList(&Vcb->tree_data_lookaside);
if (!td) {
ERR("out of memory\n");
ExFreePool(t);
return STATUS_INSUFFICIENT_RESOURCES;
}
td->key = ln[i].key;
if (ln[i].size > 0)
td->data = buf + sizeof(tree_header) + ln[i].offset;
else
td->data = NULL;
if (ln[i].size + sizeof(tree_header) + sizeof(leaf_node) > Vcb->superblock.node_size) {
ERR("overlarge item in tree %I64x: %u > %Iu\n", addr, ln[i].size, Vcb->superblock.node_size - sizeof(tree_header) - sizeof(leaf_node));
ExFreeToPagedLookasideList(&t->Vcb->tree_data_lookaside, td);
ExFreePool(t);
return STATUS_INTERNAL_ERROR;
}
td->size = (uint16_t)ln[i].size;
td->ignore = false;
td->inserted = false;
InsertTailList(&t->itemlist, &td->list_entry);
t->size += ln[i].size;
}
t->size += t->header.num_items * sizeof(leaf_node);
t->buf = buf;
} else {
internal_node* in = (internal_node*)(buf + sizeof(tree_header));
unsigned int i;
if ((t->header.num_items * sizeof(internal_node)) + sizeof(tree_header) > Vcb->superblock.node_size) {
ERR("tree at %I64x has more items than expected (%x)\n", addr, t->header.num_items);
ExFreePool(t);
return STATUS_INSUFFICIENT_RESOURCES;
}
for (i = 0; i < t->header.num_items; i++) {
td = ExAllocateFromPagedLookasideList(&Vcb->tree_data_lookaside);
if (!td) {
ERR("out of memory\n");
ExFreePool(t);
return STATUS_INSUFFICIENT_RESOURCES;
}
td->key = in[i].key;
td->treeholder.address = in[i].address;
td->treeholder.generation = in[i].generation;
td->treeholder.tree = NULL;
td->ignore = false;
td->inserted = false;
InsertTailList(&t->itemlist, &td->list_entry);
}
t->size = t->header.num_items * sizeof(internal_node);
t->buf = NULL;
}
ExAcquireFastMutex(&Vcb->trees_list_mutex);
InsertTailList(&Vcb->trees, &t->list_entry);
h = t->hash >> 24;
if (!Vcb->trees_ptrs[h]) {
uint8_t h2 = h;
le = Vcb->trees_hash.Flink;
if (h2 > 0) {
h2--;
do {
if (Vcb->trees_ptrs[h2]) {
le = Vcb->trees_ptrs[h2];
break;
}
h2--;
} while (h2 > 0);
}
} else
le = Vcb->trees_ptrs[h];
inserted = false;
while (le != &Vcb->trees_hash) {
tree* t2 = CONTAINING_RECORD(le, tree, list_entry_hash);
if (t2->hash >= t->hash) {
InsertHeadList(le->Blink, &t->list_entry_hash);
inserted = true;
break;
}
le = le->Flink;
}
if (!inserted)
InsertTailList(&Vcb->trees_hash, &t->list_entry_hash);
if (!Vcb->trees_ptrs[h] || t->list_entry_hash.Flink == Vcb->trees_ptrs[h])
Vcb->trees_ptrs[h] = &t->list_entry_hash;
ExReleaseFastMutex(&Vcb->trees_list_mutex);
TRACE("returning %p\n", t);
*pt = t;
return STATUS_SUCCESS;
}
__attribute__((nonnull(1,2,3,4)))
static NTSTATUS do_load_tree2(device_extension* Vcb, tree_holder* th, uint8_t* buf, root* r, tree* t, tree_data* td) {
if (!th->tree) {
NTSTATUS Status;
tree* nt;
Status = load_tree(Vcb, th->address, buf, r, &nt);
if (!NT_SUCCESS(Status)) {
ERR("load_tree returned %08lx\n", Status);
return Status;
}
nt->parent = t;
#ifdef DEBUG_PARANOID
if (t && t->header.level <= nt->header.level) int3;
#endif
nt->paritem = td;
th->tree = nt;
}
return STATUS_SUCCESS;
}
__attribute__((nonnull(1,2,3)))
NTSTATUS do_load_tree(device_extension* Vcb, tree_holder* th, root* r, tree* t, tree_data* td, PIRP Irp) {
NTSTATUS Status;
uint8_t* buf;
chunk* c;
buf = ExAllocatePoolWithTag(PagedPool, Vcb->superblock.node_size, ALLOC_TAG);
if (!buf) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
Status = read_data(Vcb, th->address, Vcb->superblock.node_size, NULL, true, buf, NULL,
&c, Irp, th->generation, false, NormalPagePriority);
if (!NT_SUCCESS(Status)) {
ERR("read_data returned 0x%08lx\n", Status);
ExFreePool(buf);
return Status;
}
if (t)
ExAcquireFastMutex(&t->nonpaged->mutex);
else
ExAcquireResourceExclusiveLite(&r->nonpaged->load_tree_lock, true);
Status = do_load_tree2(Vcb, th, buf, r, t, td);
if (t)
ExReleaseFastMutex(&t->nonpaged->mutex);
else
ExReleaseResourceLite(&r->nonpaged->load_tree_lock);
if (!th->tree || th->tree->buf != buf)
ExFreePool(buf);
if (!NT_SUCCESS(Status)) {
ERR("do_load_tree2 returned %08lx\n", Status);
return Status;
}
return Status;
}
__attribute__((nonnull(1)))
void free_tree(tree* t) {
tree* par;
root* r = t->root;
// No need to acquire lock, as this is only ever called while Vcb->tree_lock held exclusively
par = t->parent;
if (r && r->treeholder.tree != t)
r = NULL;
if (par) {
if (t->paritem)
t->paritem->treeholder.tree = NULL;
}
while (!IsListEmpty(&t->itemlist)) {
tree_data* td = CONTAINING_RECORD(RemoveHeadList(&t->itemlist), tree_data, list_entry);
if (t->header.level == 0 && td->data && td->inserted)
ExFreePool(td->data);
ExFreeToPagedLookasideList(&t->Vcb->tree_data_lookaside, td);
}
RemoveEntryList(&t->list_entry);
if (r)
r->treeholder.tree = NULL;
if (t->list_entry_hash.Flink) {
uint8_t h = t->hash >> 24;
if (t->Vcb->trees_ptrs[h] == &t->list_entry_hash) {
if (t->list_entry_hash.Flink != &t->Vcb->trees_hash) {
tree* t2 = CONTAINING_RECORD(t->list_entry_hash.Flink, tree, list_entry_hash);
if ((t2->hash >> 24) == h)
t->Vcb->trees_ptrs[h] = &t2->list_entry_hash;
else
t->Vcb->trees_ptrs[h] = NULL;
} else
t->Vcb->trees_ptrs[h] = NULL;
}
RemoveEntryList(&t->list_entry_hash);
}
if (t->buf)
ExFreePool(t->buf);
if (t->nonpaged)
ExFreePool(t->nonpaged);
ExFreePool(t);
}
__attribute__((nonnull(1)))
static __inline tree_data* first_item(tree* t) {
LIST_ENTRY* le = t->itemlist.Flink;
if (le == &t->itemlist)
return NULL;
return CONTAINING_RECORD(le, tree_data, list_entry);
}
__attribute__((nonnull(1,2)))
static __inline tree_data* prev_item(tree* t, tree_data* td) {
LIST_ENTRY* le = td->list_entry.Blink;
if (le == &t->itemlist)
return NULL;
return CONTAINING_RECORD(le, tree_data, list_entry);
}
__attribute__((nonnull(1,2)))
static __inline tree_data* next_item(tree* t, tree_data* td) {
LIST_ENTRY* le = td->list_entry.Flink;
if (le == &t->itemlist)
return NULL;
return CONTAINING_RECORD(le, tree_data, list_entry);
}
__attribute__((nonnull(1,2,3,4)))
static NTSTATUS next_item2(device_extension* Vcb, tree* t, tree_data* td, traverse_ptr* tp) {
tree_data* td2 = next_item(t, td);
tree* t2;
if (td2) {
tp->tree = t;
tp->item = td2;
return STATUS_SUCCESS;
}
t2 = t;
do {
td2 = t2->paritem;
t2 = t2->parent;
} while (td2 && !next_item(t2, td2));
if (!td2)
return STATUS_NOT_FOUND;
td2 = next_item(t2, td2);
return find_item_to_level(Vcb, t2->root, tp, &td2->key, false, t->header.level, NULL);
}
__attribute__((nonnull(1,2,3,4,5)))
NTSTATUS skip_to_difference(device_extension* Vcb, traverse_ptr* tp, traverse_ptr* tp2, bool* ended1, bool* ended2) {
NTSTATUS Status;
tree *t1, *t2;
tree_data *td1, *td2;
t1 = tp->tree;
t2 = tp2->tree;
do {
td1 = t1->paritem;
td2 = t2->paritem;
t1 = t1->parent;
t2 = t2->parent;
} while (t1 && t2 && t1->header.address == t2->header.address);
while (true) {
traverse_ptr tp3, tp4;
Status = next_item2(Vcb, t1, td1, &tp3);
if (Status == STATUS_NOT_FOUND)
*ended1 = true;
else if (!NT_SUCCESS(Status)) {
ERR("next_item2 returned %08lx\n", Status);
return Status;
}
Status = next_item2(Vcb, t2, td2, &tp4);
if (Status == STATUS_NOT_FOUND)
*ended2 = true;
else if (!NT_SUCCESS(Status)) {
ERR("next_item2 returned %08lx\n", Status);
return Status;
}
if (*ended1 || *ended2) {
if (!*ended1) {
Status = find_item(Vcb, t1->root, tp, &tp3.item->key, false, NULL);
if (!NT_SUCCESS(Status)) {
ERR("find_item returned %08lx\n", Status);
return Status;
}
} else if (!*ended2) {
Status = find_item(Vcb, t2->root, tp2, &tp4.item->key, false, NULL);
if (!NT_SUCCESS(Status)) {
ERR("find_item returned %08lx\n", Status);
return Status;
}
}
return STATUS_SUCCESS;
}
if (tp3.tree->header.address != tp4.tree->header.address) {
Status = find_item(Vcb, t1->root, tp, &tp3.item->key, false, NULL);
if (!NT_SUCCESS(Status)) {
ERR("find_item returned %08lx\n", Status);
return Status;
}
Status = find_item(Vcb, t2->root, tp2, &tp4.item->key, false, NULL);
if (!NT_SUCCESS(Status)) {
ERR("find_item returned %08lx\n", Status);
return Status;
}
return STATUS_SUCCESS;
}
t1 = tp3.tree;
td1 = tp3.item;
t2 = tp4.tree;
td2 = tp4.item;
}
}
__attribute__((nonnull(1,2,3,4)))
static NTSTATUS find_item_in_tree(device_extension* Vcb, tree* t, traverse_ptr* tp, const KEY* searchkey, bool ignore, uint8_t level, PIRP Irp) {
int cmp;
tree_data *td, *lasttd;
KEY key2;
cmp = 1;
td = first_item(t);
lasttd = NULL;
if (!td) return STATUS_NOT_FOUND;
key2 = *searchkey;
do {
cmp = keycmp(key2, td->key);
if (cmp == 1) {
lasttd = td;
td = next_item(t, td);
}
if (t->header.level == 0 && cmp == 0 && !ignore && td && td->ignore) {
tree_data* origtd = td;
while (td && td->ignore)
td = next_item(t, td);
if (td) {
cmp = keycmp(key2, td->key);
if (cmp != 0) {
td = origtd;
cmp = 0;
}
} else
td = origtd;
}
} while (td && cmp == 1);
if ((cmp == -1 || !td) && lasttd)
td = lasttd;
if (t->header.level == 0) {
if (td->ignore && !ignore) {
traverse_ptr oldtp;
oldtp.tree = t;
oldtp.item = td;
while (find_prev_item(Vcb, &oldtp, tp, Irp)) {
if (!tp->item->ignore)
return STATUS_SUCCESS;
oldtp = *tp;
}
// if no valid entries before where item should be, look afterwards instead
oldtp.tree = t;
oldtp.item = td;
while (find_next_item(Vcb, &oldtp, tp, true, Irp)) {
if (!tp->item->ignore)
return STATUS_SUCCESS;
oldtp = *tp;
}
return STATUS_NOT_FOUND;
} else {
tp->tree = t;
tp->item = td;
}
return STATUS_SUCCESS;
} else {
NTSTATUS Status;
while (td && td->treeholder.tree && IsListEmpty(&td->treeholder.tree->itemlist)) {
td = prev_item(t, td);
}
if (!td)
return STATUS_NOT_FOUND;
if (t->header.level <= level) {
tp->tree = t;
tp->item = td;
return STATUS_SUCCESS;
}
if (!td->treeholder.tree) {
Status = do_load_tree(Vcb, &td->treeholder, t->root, t, td, Irp);
if (!NT_SUCCESS(Status)) {
ERR("do_load_tree returned %08lx\n", Status);
return Status;
}
}
Status = find_item_in_tree(Vcb, td->treeholder.tree, tp, searchkey, ignore, level, Irp);
return Status;
}
}
__attribute__((nonnull(1,2,3,4)))
NTSTATUS find_item(_In_ _Requires_lock_held_(_Curr_->tree_lock) device_extension* Vcb, _In_ root* r, _Out_ traverse_ptr* tp,
_In_ const KEY* searchkey, _In_ bool ignore, _In_opt_ PIRP Irp) {
NTSTATUS Status;
if (!r->treeholder.tree) {
Status = do_load_tree(Vcb, &r->treeholder, r, NULL, NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("do_load_tree returned %08lx\n", Status);
return Status;
}
}
Status = find_item_in_tree(Vcb, r->treeholder.tree, tp, searchkey, ignore, 0, Irp);
if (!NT_SUCCESS(Status) && Status != STATUS_NOT_FOUND) {
ERR("find_item_in_tree returned %08lx\n", Status);
}
return Status;
}
__attribute__((nonnull(1,2,3,4)))
NTSTATUS find_item_to_level(device_extension* Vcb, root* r, traverse_ptr* tp, const KEY* searchkey, bool ignore, uint8_t level, PIRP Irp) {
NTSTATUS Status;
if (!r->treeholder.tree) {
Status = do_load_tree(Vcb, &r->treeholder, r, NULL, NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("do_load_tree returned %08lx\n", Status);
return Status;
}
}
Status = find_item_in_tree(Vcb, r->treeholder.tree, tp, searchkey, ignore, level, Irp);
if (!NT_SUCCESS(Status) && Status != STATUS_NOT_FOUND) {
ERR("find_item_in_tree returned %08lx\n", Status);
}
if (Status == STATUS_NOT_FOUND) {
tp->tree = r->treeholder.tree;
tp->item = NULL;
}
return Status;
}
__attribute__((nonnull(1,2,3)))
bool find_next_item(_Requires_lock_held_(_Curr_->tree_lock) device_extension* Vcb, const traverse_ptr* tp, traverse_ptr* next_tp, bool ignore, PIRP Irp) {
tree* t;
tree_data *td = NULL, *next;
NTSTATUS Status;
next = next_item(tp->tree, tp->item);
if (!ignore) {
while (next && next->ignore)
next = next_item(tp->tree, next);
}
if (next) {
next_tp->tree = tp->tree;
next_tp->item = next;
#ifdef DEBUG_PARANOID
if (!ignore && next_tp->item->ignore) {
ERR("error - returning ignored item\n");
int3;
}
#endif
return true;
}
if (!tp->tree->parent)
return false;
t = tp->tree;
do {
if (t->parent) {
td = next_item(t->parent, t->paritem);
if (td) break;
}
t = t->parent;
} while (t);
if (!t)
return false;
if (!td->treeholder.tree) {
Status = do_load_tree(Vcb, &td->treeholder, t->parent->root, t->parent, td, Irp);
if (!NT_SUCCESS(Status)) {
ERR("do_load_tree returned %08lx\n", Status);
return false;
}
}
t = td->treeholder.tree;
while (t->header.level != 0) {
tree_data* fi;
fi = first_item(t);
if (!fi)
return false;
if (!fi->treeholder.tree) {
Status = do_load_tree(Vcb, &fi->treeholder, t->parent->root, t, fi, Irp);
if (!NT_SUCCESS(Status)) {
ERR("do_load_tree returned %08lx\n", Status);
return false;
}
}
t = fi->treeholder.tree;
}
next_tp->tree = t;
next_tp->item = first_item(t);
if (!next_tp->item)
return false;
if (!ignore && next_tp->item->ignore) {
traverse_ptr ntp2;
bool b;
while ((b = find_next_item(Vcb, next_tp, &ntp2, true, Irp))) {
*next_tp = ntp2;
if (!next_tp->item->ignore)
break;
}
if (!b)
return false;
}
#ifdef DEBUG_PARANOID
if (!ignore && next_tp->item->ignore) {
ERR("error - returning ignored item\n");
int3;
}
#endif
return true;
}
__attribute__((nonnull(1)))
static __inline tree_data* last_item(tree* t) {
LIST_ENTRY* le = t->itemlist.Blink;
if (le == &t->itemlist)
return NULL;
return CONTAINING_RECORD(le, tree_data, list_entry);
}
__attribute__((nonnull(1,2,3)))
bool find_prev_item(_Requires_lock_held_(_Curr_->tree_lock) device_extension* Vcb, const traverse_ptr* tp, traverse_ptr* prev_tp, PIRP Irp) {
tree* t;
tree_data* td;
NTSTATUS Status;
// FIXME - support ignore flag
if (prev_item(tp->tree, tp->item)) {
prev_tp->tree = tp->tree;
prev_tp->item = prev_item(tp->tree, tp->item);
return true;
}
if (!tp->tree->parent)
return false;
t = tp->tree;
while (t && (!t->parent || !prev_item(t->parent, t->paritem))) {
t = t->parent;
}
if (!t)
return false;
td = prev_item(t->parent, t->paritem);
if (!td->treeholder.tree) {
Status = do_load_tree(Vcb, &td->treeholder, t->parent->root, t->parent, td, Irp);
if (!NT_SUCCESS(Status)) {
ERR("do_load_tree returned %08lx\n", Status);
return false;
}
}
t = td->treeholder.tree;
while (t->header.level != 0) {
tree_data* li;
li = last_item(t);
if (!li->treeholder.tree) {
Status = do_load_tree(Vcb, &li->treeholder, t->parent->root, t, li, Irp);
if (!NT_SUCCESS(Status)) {
ERR("do_load_tree returned %08lx\n", Status);
return false;
}
}
t = li->treeholder.tree;
}
prev_tp->tree = t;
prev_tp->item = last_item(t);
return true;
}
__attribute__((nonnull(1,2)))
void free_trees_root(device_extension* Vcb, root* r) {
LIST_ENTRY* le;
ULONG level;
for (level = 0; level <= 255; level++) {
bool empty = true;
le = Vcb->trees.Flink;
while (le != &Vcb->trees) {
LIST_ENTRY* nextle = le->Flink;
tree* t = CONTAINING_RECORD(le, tree, list_entry);
if (t->root == r) {
if (t->header.level == level) {
bool top = !t->paritem;
empty = false;
free_tree(t);
if (top && r->treeholder.tree == t)
r->treeholder.tree = NULL;
if (IsListEmpty(&Vcb->trees))
return;
} else if (t->header.level > level)
empty = false;
}
le = nextle;
}
if (empty)
break;
}
}
__attribute__((nonnull(1)))
void free_trees(device_extension* Vcb) {
LIST_ENTRY* le;
ULONG level;
for (level = 0; level <= 255; level++) {
bool empty = true;
le = Vcb->trees.Flink;
while (le != &Vcb->trees) {
LIST_ENTRY* nextle = le->Flink;
tree* t = CONTAINING_RECORD(le, tree, list_entry);
root* r = t->root;
if (t->header.level == level) {
bool top = !t->paritem;
empty = false;
free_tree(t);
if (top && r->treeholder.tree == t)
r->treeholder.tree = NULL;
if (IsListEmpty(&Vcb->trees))
break;
} else if (t->header.level > level)
empty = false;
le = nextle;
}
if (empty)
break;
}
reap_filerefs(Vcb, Vcb->root_fileref);
reap_fcbs(Vcb);
}
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(suppress: 28194)
#endif
__attribute__((nonnull(1,3)))
void add_rollback(_In_ LIST_ENTRY* rollback, _In_ enum rollback_type type, _In_ __drv_aliasesMem void* ptr) {
rollback_item* ri;
ri = ExAllocatePoolWithTag(PagedPool, sizeof(rollback_item), ALLOC_TAG);
if (!ri) {
ERR("out of memory\n");
return;
}
ri->type = type;
ri->ptr = ptr;
InsertTailList(rollback, &ri->list_entry);
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(suppress: 28194)
#endif
__attribute__((nonnull(1,2)))
NTSTATUS insert_tree_item(_In_ _Requires_exclusive_lock_held_(_Curr_->tree_lock) device_extension* Vcb, _In_ root* r, _In_ uint64_t obj_id,
_In_ uint8_t obj_type, _In_ uint64_t offset, _In_reads_bytes_opt_(size) _When_(return >= 0, __drv_aliasesMem) void* data,
_In_ uint16_t size, _Out_opt_ traverse_ptr* ptp, _In_opt_ PIRP Irp) {
traverse_ptr tp;
KEY searchkey;
int cmp;
tree_data *td, *paritem;
tree* t;
#ifdef _DEBUG
LIST_ENTRY* le;
KEY firstitem = {0xcccccccccccccccc,0xcc,0xcccccccccccccccc};
#endif
NTSTATUS Status;
TRACE("(%p, %p, %I64x, %x, %I64x, %p, %x, %p)\n", Vcb, r, obj_id, obj_type, offset, data, size, ptp);
searchkey.obj_id = obj_id;
searchkey.obj_type = obj_type;
searchkey.offset = offset;
Status = find_item(Vcb, r, &tp, &searchkey, true, Irp);
if (Status == STATUS_NOT_FOUND) {
if (!r->treeholder.tree) {
Status = do_load_tree(Vcb, &r->treeholder, r, NULL, NULL, Irp);
if (!NT_SUCCESS(Status)) {
ERR("do_load_tree returned %08lx\n", Status);
return Status;
}
}
if (r->treeholder.tree && r->treeholder.tree->header.num_items == 0) {
tp.tree = r->treeholder.tree;
tp.item = NULL;
} else {
ERR("error: unable to load tree for root %I64x\n", r->id);
return STATUS_INTERNAL_ERROR;
}
} else if (!NT_SUCCESS(Status)) {
ERR("find_item returned %08lx\n", Status);
return Status;
}
TRACE("tp.item = %p\n", tp.item);
if (tp.item) {
TRACE("tp.item->key = %p\n", &tp.item->key);
cmp = keycmp(searchkey, tp.item->key);
if (cmp == 0 && !tp.item->ignore) {
ERR("error: key (%I64x,%x,%I64x) already present\n", obj_id, obj_type, offset);
#ifdef DEBUG_PARANOID
int3;
#endif
return STATUS_INTERNAL_ERROR;
}
} else
cmp = -1;
td = ExAllocateFromPagedLookasideList(&Vcb->tree_data_lookaside);
if (!td) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
td->key = searchkey;
td->size = size;
td->data = data;
td->ignore = false;
td->inserted = true;
#ifdef _DEBUG
le = tp.tree->itemlist.Flink;
while (le != &tp.tree->itemlist) {
tree_data* td2 = CONTAINING_RECORD(le, tree_data, list_entry);
firstitem = td2->key;
break;
}
TRACE("inserting %I64x,%x,%I64x into tree beginning %I64x,%x,%I64x (num_items %x)\n", obj_id, obj_type, offset, firstitem.obj_id, firstitem.obj_type, firstitem.offset, tp.tree->header.num_items);
#endif
if (cmp == -1) { // very first key in root
InsertHeadList(&tp.tree->itemlist, &td->list_entry);
paritem = tp.tree->paritem;
while (paritem) {
if (!keycmp(paritem->key, tp.item->key)) {
paritem->key = searchkey;
} else
break;
paritem = paritem->treeholder.tree->paritem;
}
} else if (cmp == 0)
InsertHeadList(tp.item->list_entry.Blink, &td->list_entry); // make sure non-deleted item is before deleted ones
else
InsertHeadList(&tp.item->list_entry, &td->list_entry);
tp.tree->header.num_items++;
tp.tree->size += size + sizeof(leaf_node);
if (!tp.tree->write) {
tp.tree->write = true;
Vcb->need_write = true;
}
if (ptp)
*ptp = tp;
t = tp.tree;
while (t) {
if (t->paritem && t->paritem->ignore) {
t->paritem->ignore = false;
t->parent->header.num_items++;
t->parent->size += sizeof(internal_node);
}
t->header.generation = Vcb->superblock.generation;
t = t->parent;
}
return STATUS_SUCCESS;
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
__attribute__((nonnull(1,2)))
NTSTATUS delete_tree_item(_In_ _Requires_exclusive_lock_held_(_Curr_->tree_lock) device_extension* Vcb, _Inout_ traverse_ptr* tp) {
tree* t;
uint64_t gen;
TRACE("deleting item %I64x,%x,%I64x (ignore = %s)\n", tp->item->key.obj_id, tp->item->key.obj_type, tp->item->key.offset, tp->item->ignore ? "true" : "false");
#ifdef DEBUG_PARANOID
if (tp->item->ignore) {
ERR("trying to delete already-deleted item %I64x,%x,%I64x\n", tp->item->key.obj_id, tp->item->key.obj_type, tp->item->key.offset);
int3;
return STATUS_INTERNAL_ERROR;
}
#endif
tp->item->ignore = true;
if (!tp->tree->write) {
tp->tree->write = true;
Vcb->need_write = true;
}
tp->tree->header.num_items--;
if (tp->tree->header.level == 0)
tp->tree->size -= sizeof(leaf_node) + tp->item->size;
else
tp->tree->size -= sizeof(internal_node);
gen = tp->tree->Vcb->superblock.generation;
t = tp->tree;
while (t) {
t->header.generation = gen;
t = t->parent;
}
return STATUS_SUCCESS;
}
__attribute__((nonnull(1)))
void clear_rollback(LIST_ENTRY* rollback) {
while (!IsListEmpty(rollback)) {
LIST_ENTRY* le = RemoveHeadList(rollback);
rollback_item* ri = CONTAINING_RECORD(le, rollback_item, list_entry);
switch (ri->type) {
case ROLLBACK_ADD_SPACE:
case ROLLBACK_SUBTRACT_SPACE:
case ROLLBACK_INSERT_EXTENT:
case ROLLBACK_DELETE_EXTENT:
ExFreePool(ri->ptr);
break;
default:
break;
}
ExFreePool(ri);
}
}
__attribute__((nonnull(1,2)))
void do_rollback(device_extension* Vcb, LIST_ENTRY* rollback) {
NTSTATUS Status;
rollback_item* ri;
while (!IsListEmpty(rollback)) {
LIST_ENTRY* le = RemoveTailList(rollback);
ri = CONTAINING_RECORD(le, rollback_item, list_entry);
switch (ri->type) {
case ROLLBACK_INSERT_EXTENT:
{
rollback_extent* re = ri->ptr;
re->ext->ignore = true;
switch (re->ext->extent_data.type) {
case EXTENT_TYPE_REGULAR:
case EXTENT_TYPE_PREALLOC: {
EXTENT_DATA2* ed2 = (EXTENT_DATA2*)re->ext->extent_data.data;
if (ed2->size != 0) {
chunk* c = get_chunk_from_address(Vcb, ed2->address);
if (c) {
Status = update_changed_extent_ref(Vcb, c, ed2->address, ed2->size, re->fcb->subvol->id,
re->fcb->inode, re->ext->offset - ed2->offset, -1,
re->fcb->inode_item.flags & BTRFS_INODE_NODATASUM, false, NULL);
if (!NT_SUCCESS(Status))
ERR("update_changed_extent_ref returned %08lx\n", Status);
}
re->fcb->inode_item.st_blocks -= ed2->num_bytes;
}
break;
}
case EXTENT_TYPE_INLINE:
re->fcb->inode_item.st_blocks -= re->ext->extent_data.decoded_size;
break;
}
ExFreePool(re);
break;
}
case ROLLBACK_DELETE_EXTENT:
{
rollback_extent* re = ri->ptr;
re->ext->ignore = false;
switch (re->ext->extent_data.type) {
case EXTENT_TYPE_REGULAR:
case EXTENT_TYPE_PREALLOC: {
EXTENT_DATA2* ed2 = (EXTENT_DATA2*)re->ext->extent_data.data;
if (ed2->size != 0) {
chunk* c = get_chunk_from_address(Vcb, ed2->address);
if (c) {
Status = update_changed_extent_ref(Vcb, c, ed2->address, ed2->size, re->fcb->subvol->id,
re->fcb->inode, re->ext->offset - ed2->offset, 1,
re->fcb->inode_item.flags & BTRFS_INODE_NODATASUM, false, NULL);
if (!NT_SUCCESS(Status))
ERR("update_changed_extent_ref returned %08lx\n", Status);
}
re->fcb->inode_item.st_blocks += ed2->num_bytes;
}
break;
}
case EXTENT_TYPE_INLINE:
re->fcb->inode_item.st_blocks += re->ext->extent_data.decoded_size;
break;
}
ExFreePool(re);
break;
}
case ROLLBACK_ADD_SPACE:
case ROLLBACK_SUBTRACT_SPACE:
{
rollback_space* rs = ri->ptr;
if (rs->chunk)
acquire_chunk_lock(rs->chunk, Vcb);
if (ri->type == ROLLBACK_ADD_SPACE)
space_list_subtract2(rs->list, rs->list_size, rs->address, rs->length, NULL, NULL);
else
space_list_add2(rs->list, rs->list_size, rs->address, rs->length, NULL, NULL);
if (rs->chunk) {
if (ri->type == ROLLBACK_ADD_SPACE)
rs->chunk->used += rs->length;
else
rs->chunk->used -= rs->length;
}
if (rs->chunk) {
LIST_ENTRY* le2 = le->Blink;
while (le2 != rollback) {
LIST_ENTRY* le3 = le2->Blink;
rollback_item* ri2 = CONTAINING_RECORD(le2, rollback_item, list_entry);
if (ri2->type == ROLLBACK_ADD_SPACE || ri2->type == ROLLBACK_SUBTRACT_SPACE) {
rollback_space* rs2 = ri2->ptr;
if (rs2->chunk == rs->chunk) {
if (ri2->type == ROLLBACK_ADD_SPACE) {
space_list_subtract2(rs2->list, rs2->list_size, rs2->address, rs2->length, NULL, NULL);
rs->chunk->used += rs2->length;
} else {
space_list_add2(rs2->list, rs2->list_size, rs2->address, rs2->length, NULL, NULL);
rs->chunk->used -= rs2->length;
}
ExFreePool(rs2);
RemoveEntryList(&ri2->list_entry);
ExFreePool(ri2);
}
}
le2 = le3;
}
release_chunk_lock(rs->chunk, Vcb);
}
ExFreePool(rs);
break;
}
}
ExFreePool(ri);
}
}
__attribute__((nonnull(1,2,3)))
static NTSTATUS find_tree_end(tree* t, KEY* tree_end, bool* no_end) {
tree* p;
p = t;
do {
tree_data* pi;
if (!p->parent) {
tree_end->obj_id = 0xffffffffffffffff;
tree_end->obj_type = 0xff;
tree_end->offset = 0xffffffffffffffff;
*no_end = true;
return STATUS_SUCCESS;
}
pi = p->paritem;
if (pi->list_entry.Flink != &p->parent->itemlist) {
tree_data* td = CONTAINING_RECORD(pi->list_entry.Flink, tree_data, list_entry);
*tree_end = td->key;
*no_end = false;
return STATUS_SUCCESS;
}
p = p->parent;
} while (p);
return STATUS_INTERNAL_ERROR;
}
__attribute__((nonnull(1,2)))
void clear_batch_list(device_extension* Vcb, LIST_ENTRY* batchlist) {
while (!IsListEmpty(batchlist)) {
LIST_ENTRY* le = RemoveHeadList(batchlist);
batch_root* br = CONTAINING_RECORD(le, batch_root, list_entry);
while (!IsListEmpty(&br->items)) {
LIST_ENTRY* le2 = RemoveHeadList(&br->items);
batch_item* bi = CONTAINING_RECORD(le2, batch_item, list_entry);
ExFreeToPagedLookasideList(&Vcb->batch_item_lookaside, bi);
}
ExFreePool(br);
}
}
__attribute__((nonnull(1,2,3)))
static void add_delete_inode_extref(device_extension* Vcb, batch_item* bi, LIST_ENTRY* listhead) {
batch_item* bi2;
LIST_ENTRY* le;
INODE_REF* delir = (INODE_REF*)bi->data;
INODE_EXTREF* ier;
TRACE("entry in INODE_REF not found, adding Batch_DeleteInodeExtRef entry\n");
bi2 = ExAllocateFromPagedLookasideList(&Vcb->batch_item_lookaside);
if (!bi2) {
ERR("out of memory\n");
return;
}
ier = ExAllocatePoolWithTag(PagedPool, sizeof(INODE_EXTREF) - 1 + delir->n, ALLOC_TAG);
if (!ier) {
ERR("out of memory\n");
ExFreePool(bi2);
return;
}
ier->dir = bi->key.offset;
ier->index = delir->index;
ier->n = delir->n;
RtlCopyMemory(ier->name, delir->name, delir->n);
bi2->key.obj_id = bi->key.obj_id;
bi2->key.obj_type = TYPE_INODE_EXTREF;
bi2->key.offset = calc_crc32c((uint32_t)bi->key.offset, (uint8_t*)ier->name, ier->n);
bi2->data = ier;
bi2->datalen = sizeof(INODE_EXTREF) - 1 + ier->n;
bi2->operation = Batch_DeleteInodeExtRef;
le = bi->list_entry.Flink;
while (le != listhead) {
batch_item* bi3 = CONTAINING_RECORD(le, batch_item, list_entry);
if (keycmp(bi3->key, bi2->key) != -1) {
InsertHeadList(le->Blink, &bi2->list_entry);
return;
}
le = le->Flink;
}
InsertTailList(listhead, &bi2->list_entry);
}
__attribute__((nonnull(1,2,3,4,6,7)))
static NTSTATUS handle_batch_collision(device_extension* Vcb, batch_item* bi, tree* t, tree_data* td, tree_data* newtd, LIST_ENTRY* listhead, bool* ignore) {
if (bi->operation == Batch_Delete || bi->operation == Batch_SetXattr || bi->operation == Batch_DirItem || bi->operation == Batch_InodeRef ||
bi->operation == Batch_InodeExtRef || bi->operation == Batch_DeleteDirItem || bi->operation == Batch_DeleteInodeRef ||
bi->operation == Batch_DeleteInodeExtRef || bi->operation == Batch_DeleteXattr) {
uint16_t maxlen = (uint16_t)(Vcb->superblock.node_size - sizeof(tree_header) - sizeof(leaf_node));
switch (bi->operation) {
case Batch_SetXattr: {
if (td->size < sizeof(DIR_ITEM)) {
ERR("(%I64x,%x,%I64x) was %u bytes, expected at least %Iu\n", bi->key.obj_id, bi->key.obj_type, bi->key.offset, td->size, sizeof(DIR_ITEM));
} else {
uint8_t* newdata;
ULONG size = td->size;
DIR_ITEM* newxa = (DIR_ITEM*)bi->data;
DIR_ITEM* xa = (DIR_ITEM*)td->data;
while (true) {
ULONG oldxasize;
if (size < sizeof(DIR_ITEM) || size < sizeof(DIR_ITEM) - 1 + xa->m + xa->n) {
ERR("(%I64x,%x,%I64x) was truncated\n", bi->key.obj_id, bi->key.obj_type, bi->key.offset);
break;
}
oldxasize = sizeof(DIR_ITEM) - 1 + xa->m + xa->n;
if (xa->n == newxa->n && RtlCompareMemory(newxa->name, xa->name, xa->n) == xa->n) {
uint64_t pos;
// replace
if (td->size + bi->datalen - oldxasize > maxlen)
ERR("DIR_ITEM would be over maximum size, truncating (%u + %u - %lu > %u)\n", td->size, bi->datalen, oldxasize, maxlen);
newdata = ExAllocatePoolWithTag(PagedPool, td->size + bi->datalen - oldxasize, ALLOC_TAG);
if (!newdata) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
pos = (uint8_t*)xa - td->data;
if (pos + oldxasize < td->size) // copy after changed xattr
RtlCopyMemory(newdata + pos + bi->datalen, td->data + pos + oldxasize, (ULONG)(td->size - pos - oldxasize));
if (pos > 0) { // copy before changed xattr
RtlCopyMemory(newdata, td->data, (ULONG)pos);
xa = (DIR_ITEM*)(newdata + pos);
} else
xa = (DIR_ITEM*)newdata;
RtlCopyMemory(xa, bi->data, bi->datalen);
bi->datalen = (uint16_t)min(td->size + bi->datalen - oldxasize, maxlen);
ExFreePool(bi->data);
bi->data = newdata;
break;
}
if ((uint8_t*)xa - (uint8_t*)td->data + oldxasize >= size) {
// not found, add to end of data
if (td->size + bi->datalen > maxlen)
ERR("DIR_ITEM would be over maximum size, truncating (%u + %u > %u)\n", td->size, bi->datalen, maxlen);
newdata = ExAllocatePoolWithTag(PagedPool, td->size + bi->datalen, ALLOC_TAG);
if (!newdata) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(newdata, td->data, td->size);
xa = (DIR_ITEM*)((uint8_t*)newdata + td->size);
RtlCopyMemory(xa, bi->data, bi->datalen);
bi->datalen = min(bi->datalen + td->size, maxlen);
ExFreePool(bi->data);
bi->data = newdata;
break;
} else {
xa = (DIR_ITEM*)&xa->name[xa->m + xa->n];
size -= oldxasize;
}
}
}
break;
}
case Batch_DirItem: {
uint8_t* newdata;
if (td->size + bi->datalen > maxlen) {
ERR("DIR_ITEM would be over maximum size (%u + %u > %u)\n", td->size, bi->datalen, maxlen);
return STATUS_INTERNAL_ERROR;
}
newdata = ExAllocatePoolWithTag(PagedPool, td->size + bi->datalen, ALLOC_TAG);
if (!newdata) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(newdata, td->data, td->size);
RtlCopyMemory(newdata + td->size, bi->data, bi->datalen);
bi->datalen += td->size;
ExFreePool(bi->data);
bi->data = newdata;
break;
}
case Batch_InodeRef: {
uint8_t* newdata;
if (td->size + bi->datalen > maxlen) {
if (Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_EXTENDED_IREF) {
INODE_REF* ir = (INODE_REF*)bi->data;
INODE_EXTREF* ier;
uint16_t ierlen;
batch_item* bi2;
LIST_ENTRY* le;
bool inserted = false;
TRACE("INODE_REF would be too long, adding INODE_EXTREF instead\n");
ierlen = (uint16_t)(offsetof(INODE_EXTREF, name[0]) + ir->n);
ier = ExAllocatePoolWithTag(PagedPool, ierlen, ALLOC_TAG);
if (!ier) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
ier->dir = bi->key.offset;
ier->index = ir->index;
ier->n = ir->n;
RtlCopyMemory(ier->name, ir->name, ier->n);
bi2 = ExAllocateFromPagedLookasideList(&Vcb->batch_item_lookaside);
if (!bi2) {
ERR("out of memory\n");
ExFreePool(ier);
return STATUS_INSUFFICIENT_RESOURCES;
}
bi2->key.obj_id = bi->key.obj_id;
bi2->key.obj_type = TYPE_INODE_EXTREF;
bi2->key.offset = calc_crc32c((uint32_t)ier->dir, (uint8_t*)ier->name, ier->n);
bi2->data = ier;
bi2->datalen = ierlen;
bi2->operation = Batch_InodeExtRef;
le = bi->list_entry.Flink;
while (le != listhead) {
batch_item* bi3 = CONTAINING_RECORD(le, batch_item, list_entry);
if (keycmp(bi3->key, bi2->key) != -1) {
InsertHeadList(le->Blink, &bi2->list_entry);
inserted = true;
}
le = le->Flink;
}
if (!inserted)
InsertTailList(listhead, &bi2->list_entry);
*ignore = true;
return STATUS_SUCCESS;
} else {
ERR("INODE_REF would be over maximum size (%u + %u > %u)\n", td->size, bi->datalen, maxlen);
return STATUS_INTERNAL_ERROR;
}
}
newdata = ExAllocatePoolWithTag(PagedPool, td->size + bi->datalen, ALLOC_TAG);
if (!newdata) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(newdata, td->data, td->size);
RtlCopyMemory(newdata + td->size, bi->data, bi->datalen);
bi->datalen += td->size;
ExFreePool(bi->data);
bi->data = newdata;
break;
}
case Batch_InodeExtRef: {
uint8_t* newdata;
if (td->size + bi->datalen > maxlen) {
ERR("INODE_EXTREF would be over maximum size (%u + %u > %u)\n", td->size, bi->datalen, maxlen);
return STATUS_INTERNAL_ERROR;
}
newdata = ExAllocatePoolWithTag(PagedPool, td->size + bi->datalen, ALLOC_TAG);
if (!newdata) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(newdata, td->data, td->size);
RtlCopyMemory(newdata + td->size, bi->data, bi->datalen);
bi->datalen += td->size;
ExFreePool(bi->data);
bi->data = newdata;
break;
}
case Batch_DeleteDirItem: {
if (td->size < sizeof(DIR_ITEM)) {
ERR("DIR_ITEM was %u bytes, expected at least %Iu\n", td->size, sizeof(DIR_ITEM));
return STATUS_INTERNAL_ERROR;
} else {
DIR_ITEM *di, *deldi;
LONG len;
deldi = (DIR_ITEM*)bi->data;
di = (DIR_ITEM*)td->data;
len = td->size;
do {
if (di->m == deldi->m && di->n == deldi->n && RtlCompareMemory(di->name, deldi->name, di->n + di->m) == di->n + di->m) {
uint16_t newlen = td->size - (sizeof(DIR_ITEM) - sizeof(char) + di->n + di->m);
if (newlen == 0) {
TRACE("deleting DIR_ITEM\n");
} else {
uint8_t *newdi = ExAllocatePoolWithTag(PagedPool, newlen, ALLOC_TAG), *dioff;
tree_data* td2;
if (!newdi) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
TRACE("modifying DIR_ITEM\n");
if ((uint8_t*)di > td->data) {
RtlCopyMemory(newdi, td->data, (uint8_t*)di - td->data);
dioff = newdi + ((uint8_t*)di - td->data);
} else {
dioff = newdi;
}
if ((uint8_t*)&di->name[di->n + di->m] < td->data + td->size)
RtlCopyMemory(dioff, &di->name[di->n + di->m], td->size - ((uint8_t*)&di->name[di->n + di->m] - td->data));
td2 = ExAllocateFromPagedLookasideList(&Vcb->tree_data_lookaside);
if (!td2) {
ERR("out of memory\n");
ExFreePool(newdi);
return STATUS_INSUFFICIENT_RESOURCES;
}
td2->key = bi->key;
td2->size = newlen;
td2->data = newdi;
td2->ignore = false;
td2->inserted = true;
InsertHeadList(td->list_entry.Blink, &td2->list_entry);
t->header.num_items++;
t->size += newlen + sizeof(leaf_node);
t->write = true;
}
break;
}
len -= sizeof(DIR_ITEM) - sizeof(char) + di->n + di->m;
di = (DIR_ITEM*)&di->name[di->n + di->m];
if (len == 0) {
TRACE("could not find DIR_ITEM to delete\n");
*ignore = true;
return STATUS_SUCCESS;
}
} while (len > 0);
}
break;
}
case Batch_DeleteInodeRef: {
if (td->size < sizeof(INODE_REF)) {
ERR("INODE_REF was %u bytes, expected at least %Iu\n", td->size, sizeof(INODE_REF));
return STATUS_INTERNAL_ERROR;
} else {
INODE_REF *ir, *delir;
ULONG len;
bool changed = false;
delir = (INODE_REF*)bi->data;
ir = (INODE_REF*)td->data;
len = td->size;
do {
uint16_t itemlen;
if (len < sizeof(INODE_REF) || len < offsetof(INODE_REF, name[0]) + ir->n) {
ERR("INODE_REF was truncated\n");
break;
}
itemlen = (uint16_t)offsetof(INODE_REF, name[0]) + ir->n;
if (ir->n == delir->n && RtlCompareMemory(ir->name, delir->name, ir->n) == ir->n) {
uint16_t newlen = td->size - itemlen;
changed = true;
if (newlen == 0)
TRACE("deleting INODE_REF\n");
else {
uint8_t *newir = ExAllocatePoolWithTag(PagedPool, newlen, ALLOC_TAG), *iroff;
tree_data* td2;
if (!newir) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
TRACE("modifying INODE_REF\n");
if ((uint8_t*)ir > td->data) {
RtlCopyMemory(newir, td->data, (uint8_t*)ir - td->data);
iroff = newir + ((uint8_t*)ir - td->data);
} else {
iroff = newir;
}
if ((uint8_t*)&ir->name[ir->n] < td->data + td->size)
RtlCopyMemory(iroff, &ir->name[ir->n], td->size - ((uint8_t*)&ir->name[ir->n] - td->data));
td2 = ExAllocateFromPagedLookasideList(&Vcb->tree_data_lookaside);
if (!td2) {
ERR("out of memory\n");
ExFreePool(newir);
return STATUS_INSUFFICIENT_RESOURCES;
}
td2->key = bi->key;
td2->size = newlen;
td2->data = newir;
td2->ignore = false;
td2->inserted = true;
InsertHeadList(td->list_entry.Blink, &td2->list_entry);
t->header.num_items++;
t->size += newlen + sizeof(leaf_node);
t->write = true;
}
break;
}
if (len > itemlen) {
len -= itemlen;
ir = (INODE_REF*)&ir->name[ir->n];
} else
break;
} while (len > 0);
if (!changed) {
if (Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_EXTENDED_IREF) {
TRACE("entry in INODE_REF not found, adding Batch_DeleteInodeExtRef entry\n");
add_delete_inode_extref(Vcb, bi, listhead);
*ignore = true;
return STATUS_SUCCESS;
} else
WARN("entry not found in INODE_REF\n");
}
}
break;
}
case Batch_DeleteInodeExtRef: {
if (td->size < sizeof(INODE_EXTREF)) {
ERR("INODE_EXTREF was %u bytes, expected at least %Iu\n", td->size, sizeof(INODE_EXTREF));
return STATUS_INTERNAL_ERROR;
} else {
INODE_EXTREF *ier, *delier;
ULONG len;
delier = (INODE_EXTREF*)bi->data;
ier = (INODE_EXTREF*)td->data;
len = td->size;
do {
uint16_t itemlen;
if (len < sizeof(INODE_EXTREF) || len < offsetof(INODE_EXTREF, name[0]) + ier->n) {
ERR("INODE_REF was truncated\n");
break;
}
itemlen = (uint16_t)offsetof(INODE_EXTREF, name[0]) + ier->n;
if (ier->dir == delier->dir && ier->n == delier->n && RtlCompareMemory(ier->name, delier->name, ier->n) == ier->n) {
uint16_t newlen = td->size - itemlen;
if (newlen == 0)
TRACE("deleting INODE_EXTREF\n");
else {
uint8_t *newier = ExAllocatePoolWithTag(PagedPool, newlen, ALLOC_TAG), *ieroff;
tree_data* td2;
if (!newier) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
TRACE("modifying INODE_EXTREF\n");
if ((uint8_t*)ier > td->data) {
RtlCopyMemory(newier, td->data, (uint8_t*)ier - td->data);
ieroff = newier + ((uint8_t*)ier - td->data);
} else {
ieroff = newier;
}
if ((uint8_t*)&ier->name[ier->n] < td->data + td->size)
RtlCopyMemory(ieroff, &ier->name[ier->n], td->size - ((uint8_t*)&ier->name[ier->n] - td->data));
td2 = ExAllocateFromPagedLookasideList(&Vcb->tree_data_lookaside);
if (!td2) {
ERR("out of memory\n");
ExFreePool(newier);
return STATUS_INSUFFICIENT_RESOURCES;
}
td2->key = bi->key;
td2->size = newlen;
td2->data = newier;
td2->ignore = false;
td2->inserted = true;
InsertHeadList(td->list_entry.Blink, &td2->list_entry);
t->header.num_items++;
t->size += newlen + sizeof(leaf_node);
t->write = true;
}
break;
}
if (len > itemlen) {
len -= itemlen;
ier = (INODE_EXTREF*)&ier->name[ier->n];
} else
break;
} while (len > 0);
}
break;
}
case Batch_DeleteXattr: {
if (td->size < sizeof(DIR_ITEM)) {
ERR("XATTR_ITEM was %u bytes, expected at least %Iu\n", td->size, sizeof(DIR_ITEM));
return STATUS_INTERNAL_ERROR;
} else {
DIR_ITEM *di, *deldi;
LONG len;
deldi = (DIR_ITEM*)bi->data;
di = (DIR_ITEM*)td->data;
len = td->size;
do {
if (di->n == deldi->n && RtlCompareMemory(di->name, deldi->name, di->n) == di->n) {
uint16_t newlen = td->size - ((uint16_t)offsetof(DIR_ITEM, name[0]) + di->n + di->m);
if (newlen == 0)
TRACE("deleting XATTR_ITEM\n");
else {
uint8_t *newdi = ExAllocatePoolWithTag(PagedPool, newlen, ALLOC_TAG), *dioff;
tree_data* td2;
if (!newdi) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
TRACE("modifying XATTR_ITEM\n");
if ((uint8_t*)di > td->data) {
RtlCopyMemory(newdi, td->data, (uint8_t*)di - td->data);
dioff = newdi + ((uint8_t*)di - td->data);
} else
dioff = newdi;
if ((uint8_t*)&di->name[di->n + di->m] < td->data + td->size)
RtlCopyMemory(dioff, &di->name[di->n + di->m], td->size - ((uint8_t*)&di->name[di->n + di->m] - td->data));
td2 = ExAllocateFromPagedLookasideList(&Vcb->tree_data_lookaside);
if (!td2) {
ERR("out of memory\n");
ExFreePool(newdi);
return STATUS_INSUFFICIENT_RESOURCES;
}
td2->key = bi->key;
td2->size = newlen;
td2->data = newdi;
td2->ignore = false;
td2->inserted = true;
InsertHeadList(td->list_entry.Blink, &td2->list_entry);
t->header.num_items++;
t->size += newlen + sizeof(leaf_node);
t->write = true;
}
break;
}
len -= sizeof(DIR_ITEM) - sizeof(char) + di->n + di->m;
di = (DIR_ITEM*)&di->name[di->n + di->m];
if (len == 0) {
TRACE("could not find DIR_ITEM to delete\n");
*ignore = true;
return STATUS_SUCCESS;
}
} while (len > 0);
}
break;
}
case Batch_Delete:
break;
default:
ERR("unexpected batch operation type\n");
return STATUS_INTERNAL_ERROR;
}
// delete old item
if (!td->ignore) {
td->ignore = true;
t->header.num_items--;
t->size -= sizeof(leaf_node) + td->size;
t->write = true;
}
if (newtd) {
newtd->data = bi->data;
newtd->size = bi->datalen;
InsertHeadList(td->list_entry.Blink, &newtd->list_entry);
}
} else {
ERR("(%I64x,%x,%I64x) already exists\n", bi->key.obj_id, bi->key.obj_type, bi->key.offset);
return STATUS_INTERNAL_ERROR;
}
*ignore = false;
return STATUS_SUCCESS;
}
__attribute__((nonnull(1,2)))
static NTSTATUS commit_batch_list_root(_Requires_exclusive_lock_held_(_Curr_->tree_lock) device_extension* Vcb, batch_root* br, PIRP Irp) {
LIST_ENTRY* le;
NTSTATUS Status;
TRACE("root: %I64x\n", br->r->id);
le = br->items.Flink;
while (le != &br->items) {
batch_item* bi = CONTAINING_RECORD(le, batch_item, list_entry);
LIST_ENTRY *le2;
traverse_ptr tp;
KEY tree_end;
bool no_end;
tree_data *td, *listhead;
int cmp;
tree* t;
bool ignore = false;
TRACE("(%I64x,%x,%I64x)\n", bi->key.obj_id, bi->key.obj_type, bi->key.offset);
Status = find_item(Vcb, br->r, &tp, &bi->key, true, Irp);
if (!NT_SUCCESS(Status)) { // FIXME - handle STATUS_NOT_FOUND
ERR("find_item returned %08lx\n", Status);
return Status;
}
Status = find_tree_end(tp.tree, &tree_end, &no_end);
if (!NT_SUCCESS(Status)) {
ERR("find_tree_end returned %08lx\n", Status);
return Status;
}
if (bi->operation == Batch_DeleteInode) {
if (tp.item->key.obj_id == bi->key.obj_id) {
bool ended = false;
td = tp.item;
if (!tp.item->ignore) {
tp.item->ignore = true;
tp.tree->header.num_items--;
tp.tree->size -= tp.item->size + sizeof(leaf_node);
tp.tree->write = true;
}
le2 = tp.item->list_entry.Flink;
while (le2 != &tp.tree->itemlist) {
td = CONTAINING_RECORD(le2, tree_data, list_entry);
if (td->key.obj_id == bi->key.obj_id) {
if (!td->ignore) {
td->ignore = true;
tp.tree->header.num_items--;
tp.tree->size -= td->size + sizeof(leaf_node);
tp.tree->write = true;
}
} else {
ended = true;
break;
}
le2 = le2->Flink;
}
while (!ended) {
traverse_ptr next_tp;
tp.item = td;
if (!find_next_item(Vcb, &tp, &next_tp, false, Irp))
break;
tp = next_tp;
le2 = &tp.item->list_entry;
while (le2 != &tp.tree->itemlist) {
td = CONTAINING_RECORD(le2, tree_data, list_entry);
if (td->key.obj_id == bi->key.obj_id) {
if (!td->ignore) {
td->ignore = true;
tp.tree->header.num_items--;
tp.tree->size -= td->size + sizeof(leaf_node);
tp.tree->write = true;
}
} else {
ended = true;
break;
}
le2 = le2->Flink;
}
}
}
} else if (bi->operation == Batch_DeleteExtentData) {
if (tp.item->key.obj_id < bi->key.obj_id || (tp.item->key.obj_id == bi->key.obj_id && tp.item->key.obj_type < bi->key.obj_type)) {
traverse_ptr tp2;
if (find_next_item(Vcb, &tp, &tp2, false, Irp)) {
if (tp2.item->key.obj_id == bi->key.obj_id && tp2.item->key.obj_type == bi->key.obj_type) {
tp = tp2;
Status = find_tree_end(tp.tree, &tree_end, &no_end);
if (!NT_SUCCESS(Status)) {
ERR("find_tree_end returned %08lx\n", Status);
return Status;
}
}
}
}
if (tp.item->key.obj_id == bi->key.obj_id && tp.item->key.obj_type == bi->key.obj_type) {
bool ended = false;
td = tp.item;
if (!tp.item->ignore) {
tp.item->ignore = true;
tp.tree->header.num_items--;
tp.tree->size -= tp.item->size + sizeof(leaf_node);
tp.tree->write = true;
}
le2 = tp.item->list_entry.Flink;
while (le2 != &tp.tree->itemlist) {
td = CONTAINING_RECORD(le2, tree_data, list_entry);
if (td->key.obj_id == bi->key.obj_id && td->key.obj_type == bi->key.obj_type) {
if (!td->ignore) {
td->ignore = true;
tp.tree->header.num_items--;
tp.tree->size -= td->size + sizeof(leaf_node);
tp.tree->write = true;
}
} else {
ended = true;
break;
}
le2 = le2->Flink;
}
while (!ended) {
traverse_ptr next_tp;
tp.item = td;
if (!find_next_item(Vcb, &tp, &next_tp, false, Irp))
break;
tp = next_tp;
le2 = &tp.item->list_entry;
while (le2 != &tp.tree->itemlist) {
td = CONTAINING_RECORD(le2, tree_data, list_entry);
if (td->key.obj_id == bi->key.obj_id && td->key.obj_type == bi->key.obj_type) {
if (!td->ignore) {
td->ignore = true;
tp.tree->header.num_items--;
tp.tree->size -= td->size + sizeof(leaf_node);
tp.tree->write = true;
}
} else {
ended = true;
break;
}
le2 = le2->Flink;
}
}
}
} else if (bi->operation == Batch_DeleteFreeSpace) {
if (tp.item->key.obj_id >= bi->key.obj_id && tp.item->key.obj_id < bi->key.obj_id + bi->key.offset) {
bool ended = false;
td = tp.item;
if (!tp.item->ignore) {
tp.item->ignore = true;
tp.tree->header.num_items--;
tp.tree->size -= tp.item->size + sizeof(leaf_node);
tp.tree->write = true;
}
le2 = tp.item->list_entry.Flink;
while (le2 != &tp.tree->itemlist) {
td = CONTAINING_RECORD(le2, tree_data, list_entry);
if (td->key.obj_id >= bi->key.obj_id && td->key.obj_id < bi->key.obj_id + bi->key.offset) {
if (!td->ignore) {
td->ignore = true;
tp.tree->header.num_items--;
tp.tree->size -= td->size + sizeof(leaf_node);
tp.tree->write = true;
}
} else {
ended = true;
break;
}
le2 = le2->Flink;
}
while (!ended) {
traverse_ptr next_tp;
tp.item = td;
if (!find_next_item(Vcb, &tp, &next_tp, false, Irp))
break;
tp = next_tp;
le2 = &tp.item->list_entry;
while (le2 != &tp.tree->itemlist) {
td = CONTAINING_RECORD(le2, tree_data, list_entry);
if (td->key.obj_id >= bi->key.obj_id && td->key.obj_id < bi->key.obj_id + bi->key.offset) {
if (!td->ignore) {
td->ignore = true;
tp.tree->header.num_items--;
tp.tree->size -= td->size + sizeof(leaf_node);
tp.tree->write = true;
}
} else {
ended = true;
break;
}
le2 = le2->Flink;
}
}
}
} else {
if (bi->operation == Batch_Delete || bi->operation == Batch_DeleteDirItem || bi->operation == Batch_DeleteInodeRef ||
bi->operation == Batch_DeleteInodeExtRef || bi->operation == Batch_DeleteXattr)
td = NULL;
else {
td = ExAllocateFromPagedLookasideList(&Vcb->tree_data_lookaside);
if (!td) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
td->key = bi->key;
td->size = bi->datalen;
td->data = bi->data;
td->ignore = false;
td->inserted = true;
}
cmp = keycmp(bi->key, tp.item->key);
if (cmp == -1) { // very first key in root
if (td) {
tree_data* paritem;
InsertHeadList(&tp.tree->itemlist, &td->list_entry);
paritem = tp.tree->paritem;
while (paritem) {
if (!keycmp(paritem->key, tp.item->key)) {
paritem->key = bi->key;
} else
break;
paritem = paritem->treeholder.tree->paritem;
}
}
} else if (cmp == 0) { // item already exists
if (tp.item->ignore) {
if (td)
InsertHeadList(tp.item->list_entry.Blink, &td->list_entry);
} else {
Status = handle_batch_collision(Vcb, bi, tp.tree, tp.item, td, &br->items, &ignore);
if (!NT_SUCCESS(Status)) {
ERR("handle_batch_collision returned %08lx\n", Status);
#ifdef _DEBUG
int3;
#endif
if (td)
ExFreeToPagedLookasideList(&Vcb->tree_data_lookaside, td);
return Status;
}
}
} else if (td) {
InsertHeadList(&tp.item->list_entry, &td->list_entry);
}
if (bi->operation == Batch_DeleteInodeRef && cmp != 0 && Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_EXTENDED_IREF) {
add_delete_inode_extref(Vcb, bi, &br->items);
}
if (!ignore && td) {
tp.tree->header.num_items++;
tp.tree->size += bi->datalen + sizeof(leaf_node);
tp.tree->write = true;
listhead = td;
} else
listhead = tp.item;
while (listhead->list_entry.Blink != &tp.tree->itemlist) {
tree_data* prevtd = CONTAINING_RECORD(listhead->list_entry.Blink, tree_data, list_entry);
if (!keycmp(prevtd->key, listhead->key))
listhead = prevtd;
else
break;
}
le2 = le->Flink;
while (le2 != &br->items) {
batch_item* bi2 = CONTAINING_RECORD(le2, batch_item, list_entry);
if (bi2->operation == Batch_DeleteInode || bi2->operation == Batch_DeleteExtentData || bi2->operation == Batch_DeleteFreeSpace)
break;
if (no_end || keycmp(bi2->key, tree_end) == -1) {
LIST_ENTRY* le3;
bool inserted = false;
ignore = false;
if (bi2->operation == Batch_Delete || bi2->operation == Batch_DeleteDirItem || bi2->operation == Batch_DeleteInodeRef ||
bi2->operation == Batch_DeleteInodeExtRef || bi2->operation == Batch_DeleteXattr)
td = NULL;
else {
td = ExAllocateFromPagedLookasideList(&Vcb->tree_data_lookaside);
if (!td) {
ERR("out of memory\n");
return STATUS_INSUFFICIENT_RESOURCES;
}
td->key = bi2->key;
td->size = bi2->datalen;
td->data = bi2->data;
td->ignore = false;
td->inserted = true;
}
le3 = &listhead->list_entry;
while (le3 != &tp.tree->itemlist) {
tree_data* td2 = CONTAINING_RECORD(le3, tree_data, list_entry);
cmp = keycmp(bi2->key, td2->key);
if (cmp == 0) {
if (td2->ignore) {
if (td) {
InsertHeadList(le3->Blink, &td->list_entry);
inserted = true;
} else if (bi2->operation == Batch_DeleteInodeRef && Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_EXTENDED_IREF) {
add_delete_inode_extref(Vcb, bi2, &br->items);
}
} else {
Status = handle_batch_collision(Vcb, bi2, tp.tree, td2, td, &br->items, &ignore);
if (!NT_SUCCESS(Status)) {
ERR("handle_batch_collision returned %08lx\n", Status);
#ifdef _DEBUG
int3;
#endif
return Status;
}
}
inserted = true;
break;
} else if (cmp == -1) {
if (td) {
InsertHeadList(le3->Blink, &td->list_entry);
inserted = true;
} else if (bi2->operation == Batch_DeleteInodeRef && Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_EXTENDED_IREF) {
add_delete_inode_extref(Vcb, bi2, &br->items);
}
break;
}
le3 = le3->Flink;
}
if (td) {
if (!inserted)
InsertTailList(&tp.tree->itemlist, &td->list_entry);
if (!ignore) {
tp.tree->header.num_items++;
tp.tree->size += bi2->datalen + sizeof(leaf_node);
listhead = td;
}
} else if (!inserted && bi2->operation == Batch_DeleteInodeRef && Vcb->superblock.incompat_flags & BTRFS_INCOMPAT_FLAGS_EXTENDED_IREF) {
add_delete_inode_extref(Vcb, bi2, &br->items);
}
while (listhead->list_entry.Blink != &tp.tree->itemlist) {
tree_data* prevtd = CONTAINING_RECORD(listhead->list_entry.Blink, tree_data, list_entry);
if (!keycmp(prevtd->key, listhead->key))
listhead = prevtd;
else
break;
}
le = le2;
} else
break;
le2 = le2->Flink;
}
t = tp.tree;
while (t) {
if (t->paritem && t->paritem->ignore) {
t->paritem->ignore = false;
t->parent->header.num_items++;
t->parent->size += sizeof(internal_node);
}
t->header.generation = Vcb->superblock.generation;
t = t->parent;
}
}
le = le->Flink;
}
// FIXME - remove as we are going along
while (!IsListEmpty(&br->items)) {
batch_item* bi = CONTAINING_RECORD(RemoveHeadList(&br->items), batch_item, list_entry);
if ((bi->operation == Batch_DeleteDirItem || bi->operation == Batch_DeleteInodeRef ||
bi->operation == Batch_DeleteInodeExtRef || bi->operation == Batch_DeleteXattr) && bi->data)
ExFreePool(bi->data);
ExFreeToPagedLookasideList(&Vcb->batch_item_lookaside, bi);
}
return STATUS_SUCCESS;
}
__attribute__((nonnull(1,2)))
NTSTATUS commit_batch_list(_Requires_exclusive_lock_held_(_Curr_->tree_lock) device_extension* Vcb, LIST_ENTRY* batchlist, PIRP Irp) {
NTSTATUS Status;
while (!IsListEmpty(batchlist)) {
LIST_ENTRY* le = RemoveHeadList(batchlist);
batch_root* br2 = CONTAINING_RECORD(le, batch_root, list_entry);
Status = commit_batch_list_root(Vcb, br2, Irp);
if (!NT_SUCCESS(Status)) {
ERR("commit_batch_list_root returned %08lx\n", Status);
return Status;
}
ExFreePool(br2);
}
return STATUS_SUCCESS;
}