mirror of
https://github.com/reactos/reactos.git
synced 2024-12-26 17:14:41 +00:00
456be5d16b
svn path=/trunk/; revision=15091
446 lines
8.7 KiB
C
446 lines
8.7 KiB
C
/* $Id$
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
|
|
#include <tchar.h>
|
|
#include <windows.h>
|
|
|
|
#ifndef InitializeListHead
|
|
#define InitializeListHead(PLH__) ((PLH__)->Flink = (PLH__)->Blink = (PLH__))
|
|
#endif
|
|
|
|
#ifndef IsListEmpty
|
|
#define IsListEmpty(PLH__) ((PLH__)->Flink == (PVOID)(PLH__))
|
|
#endif
|
|
|
|
#ifndef RemoveEntryList
|
|
|
|
#define RemoveEntryList(PLE__) \
|
|
{ \
|
|
PLIST_ENTRY pleBack__ = (PLIST_ENTRY)((PLE__)->Blink); \
|
|
PLIST_ENTRY pleForward__ = (PLIST_ENTRY)((PLE__)->Flink); \
|
|
\
|
|
pleBack__->Flink = pleForward__; \
|
|
pleForward__->Blink = pleBack__; \
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef InsertTailList
|
|
|
|
#define InsertTailList(PLH__, PLE__) \
|
|
{ \
|
|
PLIST_ENTRY pleListHead__ = (PLH__); \
|
|
PLIST_ENTRY pleBlink__ = (PLIST_ENTRY)((PLH__)->Blink); \
|
|
\
|
|
(PLE__)->Flink = pleListHead__; \
|
|
(PLE__)->Blink = pleBlink__; \
|
|
pleBlink__->Flink = (PLE__); \
|
|
pleListHead__->Blink = (PLE__); \
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef RemoveHeadList
|
|
|
|
#define RemoveHeadList(PLH__) \
|
|
(PLIST_ENTRY)((PLH__)->Flink); \
|
|
RemoveEntryList((PLIST_ENTRY)((PLH__)->Flink));
|
|
|
|
#endif
|
|
|
|
#define FIBERTEST_COUNT 500
|
|
|
|
struct FiberData
|
|
{
|
|
unsigned nMagic;
|
|
unsigned nId;
|
|
unsigned nPrio;
|
|
unsigned nRealPrio;
|
|
PVOID pFiber;
|
|
LIST_ENTRY leQueue;
|
|
int nQuantumQueued;
|
|
int nBoost;
|
|
struct FiberData * pfdPrev;
|
|
int bExitPrev;
|
|
};
|
|
|
|
static LIST_ENTRY a_leQueues[32];
|
|
static unsigned nQuantum = 0;
|
|
static struct FiberData * pfdLastStarveScan = NULL;
|
|
|
|
void Fbt_Create(int);
|
|
void Fbt_Exit(void);
|
|
void Fbt_Yield(void);
|
|
|
|
struct FiberData * Fbt_GetCurrent(void);
|
|
unsigned Fbt_GetCurrentId(void);
|
|
VOID CALLBACK Fbt_Startup(PVOID);
|
|
void Fbt_Dispatch(struct FiberData *, int);
|
|
void Fbt_AfterSwitch(struct FiberData *);
|
|
|
|
void DoStuff(void);
|
|
|
|
struct FiberData * Fbt_GetCurrent(VOID)
|
|
{
|
|
return GetFiberData();
|
|
}
|
|
|
|
unsigned Fbt_GetCurrentId(VOID)
|
|
{
|
|
return Fbt_GetCurrent()->nId;
|
|
}
|
|
|
|
void Fbt_Yield(VOID)
|
|
{
|
|
struct FiberData * pfdCur;
|
|
|
|
pfdCur = Fbt_GetCurrent();
|
|
|
|
if(pfdCur->nBoost)
|
|
{
|
|
-- pfdCur->nBoost;
|
|
|
|
if(!pfdCur->nBoost)
|
|
pfdCur->nPrio = pfdCur->nRealPrio;
|
|
}
|
|
else if((rand() % 100) > 50 - (45 * pfdCur->nPrio) / 32)
|
|
Fbt_Dispatch(pfdCur, 0);
|
|
}
|
|
|
|
void Fbt_AfterSwitch(struct FiberData * pfdCur)
|
|
{
|
|
struct FiberData * pfdPrev;
|
|
|
|
pfdPrev = pfdCur->pfdPrev;
|
|
|
|
/* The previous fiber left some homework for us */
|
|
if(pfdPrev)
|
|
{
|
|
/* Kill the predecessor */
|
|
if(pfdCur->bExitPrev)
|
|
{
|
|
if(pfdLastStarveScan == pfdPrev)
|
|
pfdLastStarveScan = 0;
|
|
|
|
DeleteFiber(pfdPrev->pFiber);
|
|
free(pfdPrev);
|
|
}
|
|
/* Enqueue the previous fiber in the correct ready queue */
|
|
else
|
|
{
|
|
/* Remember the quantum in which the previous fiber was queued */
|
|
pfdPrev->nQuantumQueued = nQuantum;
|
|
|
|
/* Disable the anti-starvation boost */
|
|
if(pfdPrev->nBoost)
|
|
{
|
|
pfdPrev->nBoost = 0;
|
|
pfdPrev->nPrio = pfdPrev->nRealPrio;
|
|
}
|
|
|
|
/* Enqueue the previous fiber */
|
|
InsertTailList
|
|
(
|
|
&a_leQueues[pfdPrev->nPrio],
|
|
&pfdPrev->leQueue
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
VOID CALLBACK Fbt_Startup(PVOID pParam)
|
|
{
|
|
assert(pParam == GetFiberData());
|
|
Fbt_AfterSwitch(pParam);
|
|
DoStuff();
|
|
Fbt_Exit();
|
|
}
|
|
|
|
void Fbt_Dispatch(struct FiberData * pfdCur, int bExit)
|
|
{
|
|
UCHAR i;
|
|
UCHAR n;
|
|
struct FiberData * pfdNext;
|
|
|
|
assert(pfdCur == GetFiberData());
|
|
|
|
++ nQuantum;
|
|
|
|
/* Every ten quantums check for starving threads */
|
|
/* FIXME: this implementation of starvation prevention isn't that great */
|
|
if(nQuantum % 10 == 0)
|
|
{
|
|
int j;
|
|
int k;
|
|
int b;
|
|
int bResume;
|
|
PLIST_ENTRY ple = NULL;
|
|
|
|
bResume = 0;
|
|
i = 0;
|
|
|
|
/* Pick up from where we left last time */
|
|
if(pfdLastStarveScan)
|
|
{
|
|
unsigned nPrio;
|
|
|
|
nPrio = pfdLastStarveScan->nPrio;
|
|
|
|
/* The last fiber we scanned for starvation isn't queued anymore */
|
|
if(IsListEmpty(&pfdLastStarveScan->leQueue))
|
|
/* Scan the ready queue for its priority */
|
|
i = nPrio;
|
|
/* Last fiber for its priority level */
|
|
else if(pfdLastStarveScan->leQueue.Flink == &a_leQueues[nPrio])
|
|
/* Scan the ready queue for the next priority level */
|
|
i = nPrio + 1;
|
|
/* Scan the next fiber in the ready queue */
|
|
else
|
|
{
|
|
i = nPrio;
|
|
ple = pfdLastStarveScan->leQueue.Flink;
|
|
bResume = 1;
|
|
}
|
|
|
|
/* Priority levels 15-31 are never checked for starvation */
|
|
if(i >= 15)
|
|
{
|
|
if(bResume)
|
|
bResume = 0;
|
|
|
|
i = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Scan at most 16 threads, in the priority range 0-14, applying in total at
|
|
most 10 boosts. This loop scales O(1)
|
|
*/
|
|
for(j = 0, k = 0, b = 0; j < 16 && k < 15 && b < 10; ++ j)
|
|
{
|
|
unsigned nDiff;
|
|
|
|
/* No previous state to resume from */
|
|
if(!bResume)
|
|
{
|
|
int nQueue;
|
|
|
|
/* Get the first element in the current queue */
|
|
nQueue = (k + i) % 15;
|
|
|
|
if(IsListEmpty(&a_leQueues[nQueue]))
|
|
{
|
|
++ k;
|
|
continue;
|
|
}
|
|
|
|
ple = (PLIST_ENTRY)a_leQueues[nQueue].Flink;
|
|
}
|
|
else
|
|
bResume = 0;
|
|
|
|
/* Get the current fiber */
|
|
pfdLastStarveScan = CONTAINING_RECORD(ple, struct FiberData, leQueue);
|
|
assert(pfdLastStarveScan->nMagic == 0x12345678);
|
|
assert(pfdLastStarveScan != pfdCur);
|
|
|
|
/* Calculate the number of quantums the fiber has been in the queue */
|
|
if(nQuantum > pfdLastStarveScan->nQuantumQueued)
|
|
nDiff = nQuantum - pfdLastStarveScan->nQuantumQueued;
|
|
else
|
|
nDiff = UINT_MAX - pfdLastStarveScan->nQuantumQueued + nQuantum;
|
|
|
|
/* The fiber has been ready for more than 30 quantums: it's starving */
|
|
if(nDiff > 30)
|
|
{
|
|
/* Plus one boost applied */
|
|
++ b;
|
|
|
|
/* Apply the boost */
|
|
pfdLastStarveScan->nBoost = 1;
|
|
pfdLastStarveScan->nRealPrio = pfdLastStarveScan->nPrio;
|
|
pfdLastStarveScan->nPrio = 15;
|
|
|
|
/* Re-enqueue the fiber in the correct priority queue */
|
|
RemoveEntryList(&pfdLastStarveScan->leQueue);
|
|
InsertTailList(&a_leQueues[15], &pfdLastStarveScan->leQueue);
|
|
}
|
|
}
|
|
}
|
|
|
|
pfdNext = NULL;
|
|
|
|
/* This fiber is going to die: scan all ready queues */
|
|
if(bExit)
|
|
n = 1;
|
|
/*
|
|
Scan only ready queues for priorities greater than or equal to the priority of
|
|
the current thread (round-robin)
|
|
*/
|
|
else
|
|
n = pfdCur->nPrio + 1;
|
|
|
|
/* This loop scales O(1) */
|
|
for(i = 32; i >= n; -- i)
|
|
{
|
|
PLIST_ENTRY pleNext;
|
|
|
|
/* No fiber ready for this priority level */
|
|
if(IsListEmpty(&a_leQueues[i - 1]))
|
|
continue;
|
|
|
|
/* Get the next ready fiber */
|
|
pleNext = RemoveHeadList(&a_leQueues[i - 1]);
|
|
InitializeListHead(pleNext);
|
|
pfdNext = CONTAINING_RECORD(pleNext, struct FiberData, leQueue);
|
|
assert(pfdNext->pFiber != GetCurrentFiber());
|
|
assert(pfdNext->nMagic == 0x12345678);
|
|
break;
|
|
}
|
|
|
|
/* Next fiber chosen */
|
|
if(pfdNext)
|
|
{
|
|
/* Give some homework to the next fiber */
|
|
pfdNext->pfdPrev = pfdCur;
|
|
pfdNext->bExitPrev = bExit;
|
|
|
|
/* Switch to the next fiber */
|
|
SwitchToFiber(pfdNext->pFiber);
|
|
|
|
/* Complete the switch back to this fiber */
|
|
Fbt_AfterSwitch(pfdCur);
|
|
}
|
|
/* No next fiber, and current fiber exiting */
|
|
else if(bExit)
|
|
{
|
|
PVOID pCurFiber;
|
|
|
|
/* Delete the current fiber. This kills the thread and stops the simulation */
|
|
if(pfdLastStarveScan == pfdCur)
|
|
pfdLastStarveScan = NULL;
|
|
|
|
pCurFiber = pfdCur->pFiber;
|
|
free(pfdCur);
|
|
DeleteFiber(pCurFiber);
|
|
}
|
|
/* No next fiber: continue running the current one */
|
|
}
|
|
|
|
void Fbt_Exit(VOID)
|
|
{
|
|
Fbt_Dispatch(GetFiberData(), 1);
|
|
}
|
|
|
|
void Fbt_CreateFiber(int bInitial)
|
|
{
|
|
PVOID pFiber;
|
|
struct FiberData * pData;
|
|
static int s_bFiberPrioSeeded = 0;
|
|
static LONG s_nFiberIdSeed = 0;
|
|
|
|
pData = malloc(sizeof(struct FiberData));
|
|
|
|
assert(pData);
|
|
|
|
if(bInitial)
|
|
pFiber = ConvertThreadToFiber(pData);
|
|
else
|
|
pFiber = CreateFiber(0, Fbt_Startup, pData);
|
|
|
|
if(!s_bFiberPrioSeeded)
|
|
{
|
|
unsigned nFiberPrioSeed;
|
|
time_t tCurTime;
|
|
|
|
tCurTime = time(NULL);
|
|
memcpy(&nFiberPrioSeed, &tCurTime, sizeof(nFiberPrioSeed));
|
|
srand(nFiberPrioSeed);
|
|
s_bFiberPrioSeeded = 1;
|
|
}
|
|
|
|
assert(pFiber);
|
|
|
|
pData->nMagic = 0x12345678;
|
|
pData->nId = InterlockedIncrement(&s_nFiberIdSeed);
|
|
pData->nPrio = rand() % 32;
|
|
pData->pFiber = pFiber;
|
|
pData->nQuantumQueued = 0;
|
|
pData->nBoost = 0;
|
|
pData->nRealPrio = pData->nPrio;
|
|
pData->pfdPrev = NULL;
|
|
pData->bExitPrev = 0;
|
|
|
|
if(bInitial)
|
|
{
|
|
InitializeListHead(&pData->leQueue);
|
|
}
|
|
else
|
|
{
|
|
InsertTailList
|
|
(
|
|
&a_leQueues[pData->nPrio],
|
|
&pData->leQueue
|
|
);
|
|
}
|
|
}
|
|
|
|
void DoStuff(void)
|
|
{
|
|
unsigned i;
|
|
unsigned n;
|
|
unsigned nId;
|
|
|
|
n = rand() % 1000;
|
|
nId = Fbt_GetCurrentId();
|
|
|
|
_ftprintf(stderr, _T("[%u] BEGIN\n"), nId);
|
|
|
|
for(i = 0; i < n; ++ i)
|
|
{
|
|
unsigned j;
|
|
unsigned m;
|
|
|
|
_ftprintf(stderr, _T("[%u] [%u/%u]\n"), nId, i + 1, n);
|
|
|
|
m = rand() % 1000;
|
|
|
|
for(j = 0; j < m; ++ j)
|
|
Sleep(0);
|
|
|
|
Fbt_Yield();
|
|
}
|
|
|
|
_ftprintf(stderr, _T("[%u] END\n"), nId);
|
|
}
|
|
|
|
int _tmain(int argc, _TCHAR const * const * argv)
|
|
{
|
|
unsigned i;
|
|
unsigned nFibers;
|
|
|
|
if(argc > 1)
|
|
nFibers = _tcstoul(argv[1], NULL, 0);
|
|
else
|
|
nFibers = FIBERTEST_COUNT;
|
|
|
|
for(i = 0; i < 32; ++ i)
|
|
{
|
|
InitializeListHead(&a_leQueues[i]);
|
|
}
|
|
|
|
for(i = 0; i < nFibers; ++ i)
|
|
Fbt_CreateFiber(i == 0);
|
|
|
|
Fbt_Startup(GetFiberData());
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* EOF */
|