mirror of
https://github.com/reactos/reactos.git
synced 2025-02-23 00:45:24 +00:00
311 lines
8.4 KiB
C
311 lines
8.4 KiB
C
/*
|
|
* Mesa 3-D graphics library
|
|
* Version: 6.5.3
|
|
*
|
|
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
|
|
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Antialiased Triangle rasterizers
|
|
*/
|
|
|
|
|
|
#include "main/glheader.h"
|
|
#include "main/context.h"
|
|
#include "main/colormac.h"
|
|
#include "main/macros.h"
|
|
#include "main/imports.h"
|
|
#include "main/state.h"
|
|
#include "s_aatriangle.h"
|
|
#include "s_context.h"
|
|
#include "s_span.h"
|
|
|
|
|
|
/*
|
|
* Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
|
|
* vertices and the given Z values.
|
|
* A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
|
|
*/
|
|
static inline void
|
|
compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
|
|
GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
|
|
{
|
|
const GLfloat px = v1[0] - v0[0];
|
|
const GLfloat py = v1[1] - v0[1];
|
|
const GLfloat pz = z1 - z0;
|
|
|
|
const GLfloat qx = v2[0] - v0[0];
|
|
const GLfloat qy = v2[1] - v0[1];
|
|
const GLfloat qz = z2 - z0;
|
|
|
|
/* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
|
|
const GLfloat a = py * qz - pz * qy;
|
|
const GLfloat b = pz * qx - px * qz;
|
|
const GLfloat c = px * qy - py * qx;
|
|
/* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
|
|
on the distance of plane from origin and arbitrary "w" parallel
|
|
to the plane. */
|
|
/* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
|
|
which is equal to "-d" below. */
|
|
const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
|
|
|
|
plane[0] = a;
|
|
plane[1] = b;
|
|
plane[2] = c;
|
|
plane[3] = d;
|
|
}
|
|
|
|
|
|
/*
|
|
* Compute coefficients of a plane with a constant Z value.
|
|
*/
|
|
static inline void
|
|
constant_plane(GLfloat value, GLfloat plane[4])
|
|
{
|
|
plane[0] = 0.0;
|
|
plane[1] = 0.0;
|
|
plane[2] = -1.0;
|
|
plane[3] = value;
|
|
}
|
|
|
|
#define CONSTANT_PLANE(VALUE, PLANE) \
|
|
do { \
|
|
PLANE[0] = 0.0F; \
|
|
PLANE[1] = 0.0F; \
|
|
PLANE[2] = -1.0F; \
|
|
PLANE[3] = VALUE; \
|
|
} while (0)
|
|
|
|
|
|
|
|
/*
|
|
* Solve plane equation for Z at (X,Y).
|
|
*/
|
|
static inline GLfloat
|
|
solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
|
|
{
|
|
ASSERT(plane[2] != 0.0F);
|
|
return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
|
|
}
|
|
|
|
|
|
#define SOLVE_PLANE(X, Y, PLANE) \
|
|
((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
|
|
|
|
|
|
/*
|
|
* Return 1 / solve_plane().
|
|
*/
|
|
static inline GLfloat
|
|
solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
|
|
{
|
|
const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
|
|
if (denom == 0.0F)
|
|
return 0.0F;
|
|
else
|
|
return -plane[2] / denom;
|
|
}
|
|
|
|
|
|
/*
|
|
* Solve plane and return clamped GLchan value.
|
|
*/
|
|
static inline GLchan
|
|
solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
|
|
{
|
|
const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
|
|
#if CHAN_TYPE == GL_FLOAT
|
|
return CLAMP(z, 0.0F, CHAN_MAXF);
|
|
#else
|
|
if (z < 0)
|
|
return 0;
|
|
else if (z > CHAN_MAX)
|
|
return CHAN_MAX;
|
|
return (GLchan) IROUND_POS(z);
|
|
#endif
|
|
}
|
|
|
|
|
|
static inline GLfloat
|
|
plane_dx(const GLfloat plane[4])
|
|
{
|
|
return -plane[0] / plane[2];
|
|
}
|
|
|
|
static inline GLfloat
|
|
plane_dy(const GLfloat plane[4])
|
|
{
|
|
return -plane[1] / plane[2];
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Compute how much (area) of the given pixel is inside the triangle.
|
|
* Vertices MUST be specified in counter-clockwise order.
|
|
* Return: coverage in [0, 1].
|
|
*/
|
|
static GLfloat
|
|
compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
|
|
const GLfloat v2[3], GLint winx, GLint winy)
|
|
{
|
|
/* Given a position [0,3]x[0,3] return the sub-pixel sample position.
|
|
* Contributed by Ray Tice.
|
|
*
|
|
* Jitter sample positions -
|
|
* - average should be .5 in x & y for each column
|
|
* - each of the 16 rows and columns should be used once
|
|
* - the rectangle formed by the first four points
|
|
* should contain the other points
|
|
* - the distrubition should be fairly even in any given direction
|
|
*
|
|
* The pattern drawn below isn't optimal, but it's better than a regular
|
|
* grid. In the drawing, the center of each subpixel is surrounded by
|
|
* four dots. The "x" marks the jittered position relative to the
|
|
* subpixel center.
|
|
*/
|
|
#define POS(a, b) (0.5+a*4+b)/16
|
|
static const GLfloat samples[16][2] = {
|
|
/* start with the four corners */
|
|
{ POS(0, 2), POS(0, 0) },
|
|
{ POS(3, 3), POS(0, 2) },
|
|
{ POS(0, 0), POS(3, 1) },
|
|
{ POS(3, 1), POS(3, 3) },
|
|
/* continue with interior samples */
|
|
{ POS(1, 1), POS(0, 1) },
|
|
{ POS(2, 0), POS(0, 3) },
|
|
{ POS(0, 3), POS(1, 3) },
|
|
{ POS(1, 2), POS(1, 0) },
|
|
{ POS(2, 3), POS(1, 2) },
|
|
{ POS(3, 2), POS(1, 1) },
|
|
{ POS(0, 1), POS(2, 2) },
|
|
{ POS(1, 0), POS(2, 1) },
|
|
{ POS(2, 1), POS(2, 3) },
|
|
{ POS(3, 0), POS(2, 0) },
|
|
{ POS(1, 3), POS(3, 0) },
|
|
{ POS(2, 2), POS(3, 2) }
|
|
};
|
|
|
|
const GLfloat x = (GLfloat) winx;
|
|
const GLfloat y = (GLfloat) winy;
|
|
const GLfloat dx0 = v1[0] - v0[0];
|
|
const GLfloat dy0 = v1[1] - v0[1];
|
|
const GLfloat dx1 = v2[0] - v1[0];
|
|
const GLfloat dy1 = v2[1] - v1[1];
|
|
const GLfloat dx2 = v0[0] - v2[0];
|
|
const GLfloat dy2 = v0[1] - v2[1];
|
|
GLint stop = 4, i;
|
|
GLfloat insideCount = 16.0F;
|
|
|
|
ASSERT(dx0 * dy1 - dx1 * dy0 >= 0.0); /* area >= 0.0 */
|
|
|
|
for (i = 0; i < stop; i++) {
|
|
const GLfloat sx = x + samples[i][0];
|
|
const GLfloat sy = y + samples[i][1];
|
|
/* cross product determines if sample is inside or outside each edge */
|
|
GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0]));
|
|
/* Check if the sample is exactly on an edge. If so, let cross be a
|
|
* positive or negative value depending on the direction of the edge.
|
|
*/
|
|
if (cross == 0.0F)
|
|
cross = dx0 + dy0;
|
|
if (cross < 0.0F) {
|
|
/* sample point is outside first edge */
|
|
insideCount -= 1.0F;
|
|
stop = 16;
|
|
}
|
|
else {
|
|
/* sample point is inside first edge */
|
|
cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0]));
|
|
if (cross == 0.0F)
|
|
cross = dx1 + dy1;
|
|
if (cross < 0.0F) {
|
|
/* sample point is outside second edge */
|
|
insideCount -= 1.0F;
|
|
stop = 16;
|
|
}
|
|
else {
|
|
/* sample point is inside first and second edges */
|
|
cross = (dx2 * (sy - v2[1]) - dy2 * (sx - v2[0]));
|
|
if (cross == 0.0F)
|
|
cross = dx2 + dy2;
|
|
if (cross < 0.0F) {
|
|
/* sample point is outside third edge */
|
|
insideCount -= 1.0F;
|
|
stop = 16;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (stop == 4)
|
|
return 1.0F;
|
|
else
|
|
return insideCount * (1.0F / 16.0F);
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
rgba_aa_tri(struct gl_context *ctx,
|
|
const SWvertex *v0,
|
|
const SWvertex *v1,
|
|
const SWvertex *v2)
|
|
{
|
|
#define DO_Z
|
|
#include "s_aatritemp.h"
|
|
}
|
|
|
|
|
|
static void
|
|
general_aa_tri(struct gl_context *ctx,
|
|
const SWvertex *v0,
|
|
const SWvertex *v1,
|
|
const SWvertex *v2)
|
|
{
|
|
#define DO_Z
|
|
#define DO_ATTRIBS
|
|
#include "s_aatritemp.h"
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Examine GL state and set swrast->Triangle to an
|
|
* appropriate antialiased triangle rasterizer function.
|
|
*/
|
|
void
|
|
_swrast_set_aa_triangle_function(struct gl_context *ctx)
|
|
{
|
|
SWcontext *swrast = SWRAST_CONTEXT(ctx);
|
|
|
|
ASSERT(ctx->Polygon.SmoothFlag);
|
|
|
|
if (ctx->Texture._EnabledCoord
|
|
|| swrast->_FogEnabled
|
|
|| _mesa_need_secondary_color(ctx)) {
|
|
SWRAST_CONTEXT(ctx)->Triangle = general_aa_tri;
|
|
}
|
|
else {
|
|
SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
|
|
}
|
|
|
|
ASSERT(SWRAST_CONTEXT(ctx)->Triangle);
|
|
}
|