mirror of
https://github.com/reactos/reactos.git
synced 2024-11-09 16:20:37 +00:00
321bcc056d
svn path=/branches/GSoC_2016/AHCI/; revision=71203
926 lines
37 KiB
C
926 lines
37 KiB
C
/*
|
|
* Mesa 3-D graphics library
|
|
* Version: 7.0
|
|
*
|
|
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
|
|
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* Triangle Rasterizer Template
|
|
*
|
|
* This file is #include'd to generate custom triangle rasterizers.
|
|
*
|
|
* The following macros may be defined to indicate what auxillary information
|
|
* must be interpolated across the triangle:
|
|
* INTERP_Z - if defined, interpolate integer Z values
|
|
* INTERP_RGB - if defined, interpolate integer RGB values
|
|
* INTERP_ALPHA - if defined, interpolate integer Alpha values
|
|
* INTERP_INT_TEX - if defined, interpolate integer ST texcoords
|
|
* (fast, simple 2-D texture mapping, without
|
|
* perspective correction)
|
|
* INTERP_ATTRIBS - if defined, interpolate arbitrary attribs (texcoords,
|
|
* varying vars, etc) This also causes W to be
|
|
* computed for perspective correction).
|
|
*
|
|
* When one can directly address pixels in the color buffer the following
|
|
* macros can be defined and used to compute pixel addresses during
|
|
* rasterization (see pRow):
|
|
* PIXEL_TYPE - the datatype of a pixel (GLubyte, GLushort, GLuint)
|
|
* BYTES_PER_ROW - number of bytes per row in the color buffer
|
|
* PIXEL_ADDRESS(X,Y) - returns the address of pixel at (X,Y) where
|
|
* Y==0 at bottom of screen and increases upward.
|
|
*
|
|
* Similarly, for direct depth buffer access, this type is used for depth
|
|
* buffer addressing (see zRow):
|
|
* DEPTH_TYPE - either GLushort or GLuint
|
|
*
|
|
* Optionally, one may provide one-time setup code per triangle:
|
|
* SETUP_CODE - code which is to be executed once per triangle
|
|
*
|
|
* The following macro MUST be defined:
|
|
* RENDER_SPAN(span) - code to write a span of pixels.
|
|
*
|
|
* This code was designed for the origin to be in the lower-left corner.
|
|
*
|
|
* Inspired by triangle rasterizer code written by Allen Akin. Thanks Allen!
|
|
*
|
|
*
|
|
* Some notes on rasterization accuracy:
|
|
*
|
|
* This code uses fixed point arithmetic (the GLfixed type) to iterate
|
|
* over the triangle edges and interpolate ancillary data (such as Z,
|
|
* color, secondary color, etc). The number of fractional bits in
|
|
* GLfixed and the value of SUB_PIXEL_BITS has a direct bearing on the
|
|
* accuracy of rasterization.
|
|
*
|
|
* If SUB_PIXEL_BITS=4 then we'll snap the vertices to the nearest
|
|
* 1/16 of a pixel. If we're walking up a long, nearly vertical edge
|
|
* (dx=1/16, dy=1024) we'll need 4 + 10 = 14 fractional bits in
|
|
* GLfixed to walk the edge without error. If the maximum viewport
|
|
* height is 4K pixels, then we'll need 4 + 12 = 16 fractional bits.
|
|
*
|
|
* Historically, Mesa has used 11 fractional bits in GLfixed, snaps
|
|
* vertices to 1/16 pixel and allowed a maximum viewport height of 2K
|
|
* pixels. 11 fractional bits is actually insufficient for accurately
|
|
* rasterizing some triangles. More recently, the maximum viewport
|
|
* height was increased to 4K pixels. Thus, Mesa should be using 16
|
|
* fractional bits in GLfixed. Unfortunately, there may be some issues
|
|
* with setting FIXED_FRAC_BITS=16, such as multiplication overflow.
|
|
* This will have to be examined in some detail...
|
|
*
|
|
* For now, if you find rasterization errors, particularly with tall,
|
|
* sliver triangles, try increasing FIXED_FRAC_BITS and/or decreasing
|
|
* SUB_PIXEL_BITS.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Some code we unfortunately need to prevent negative interpolated colors.
|
|
*/
|
|
#ifndef CLAMP_INTERPOLANT
|
|
#define CLAMP_INTERPOLANT(CHANNEL, CHANNELSTEP, LEN) \
|
|
do { \
|
|
GLfixed endVal = span.CHANNEL + (LEN) * span.CHANNELSTEP; \
|
|
if (endVal < 0) { \
|
|
span.CHANNEL -= endVal; \
|
|
} \
|
|
if (span.CHANNEL < 0) { \
|
|
span.CHANNEL = 0; \
|
|
} \
|
|
} while (0)
|
|
#endif
|
|
|
|
|
|
static void NAME(struct gl_context *ctx, const SWvertex *v0,
|
|
const SWvertex *v1,
|
|
const SWvertex *v2 )
|
|
{
|
|
typedef struct {
|
|
const SWvertex *v0, *v1; /* Y(v0) < Y(v1) */
|
|
GLfloat dx; /* X(v1) - X(v0) */
|
|
GLfloat dy; /* Y(v1) - Y(v0) */
|
|
GLfloat dxdy; /* dx/dy */
|
|
GLfixed fdxdy; /* dx/dy in fixed-point */
|
|
GLfloat adjy; /* adjust from v[0]->fy to fsy, scaled */
|
|
GLfixed fsx; /* first sample point x coord */
|
|
GLfixed fsy;
|
|
GLfixed fx0; /* fixed pt X of lower endpoint */
|
|
GLint lines; /* number of lines to be sampled on this edge */
|
|
} EdgeT;
|
|
|
|
const SWcontext *swrast = SWRAST_CONTEXT(ctx);
|
|
#ifdef INTERP_Z
|
|
const GLint depthBits = ctx->DrawBuffer->Visual.depthBits;
|
|
const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
|
|
const GLfloat maxDepth = ctx->DrawBuffer->_DepthMaxF;
|
|
#define FixedToDepth(F) ((F) >> fixedToDepthShift)
|
|
#endif
|
|
EdgeT eMaj, eTop, eBot;
|
|
GLfloat oneOverArea;
|
|
const SWvertex *vMin, *vMid, *vMax; /* Y(vMin)<=Y(vMid)<=Y(vMax) */
|
|
GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceSign;
|
|
const GLint snapMask = ~((FIXED_ONE / (1 << SUB_PIXEL_BITS)) - 1); /* for x/y coord snapping */
|
|
GLfixed vMin_fx, vMin_fy, vMid_fx, vMid_fy, vMax_fx, vMax_fy;
|
|
|
|
SWspan span;
|
|
|
|
(void) swrast;
|
|
|
|
INIT_SPAN(span, GL_POLYGON);
|
|
span.y = 0; /* silence warnings */
|
|
|
|
#ifdef INTERP_Z
|
|
(void) fixedToDepthShift;
|
|
#endif
|
|
|
|
/*
|
|
printf("%s()\n", __FUNCTION__);
|
|
printf(" %g, %g, %g\n",
|
|
v0->attrib[FRAG_ATTRIB_WPOS][0],
|
|
v0->attrib[FRAG_ATTRIB_WPOS][1],
|
|
v0->attrib[FRAG_ATTRIB_WPOS][2]);
|
|
printf(" %g, %g, %g\n",
|
|
v1->attrib[FRAG_ATTRIB_WPOS][0],
|
|
v1->attrib[FRAG_ATTRIB_WPOS][1],
|
|
v1->attrib[FRAG_ATTRIB_WPOS][2]);
|
|
printf(" %g, %g, %g\n",
|
|
v2->attrib[FRAG_ATTRIB_WPOS][0],
|
|
v2->attrib[FRAG_ATTRIB_WPOS][1],
|
|
v2->attrib[FRAG_ATTRIB_WPOS][2]);
|
|
*/
|
|
|
|
/* Compute fixed point x,y coords w/ half-pixel offsets and snapping.
|
|
* And find the order of the 3 vertices along the Y axis.
|
|
*/
|
|
{
|
|
const GLfixed fy0 = FloatToFixed(v0->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask;
|
|
const GLfixed fy1 = FloatToFixed(v1->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask;
|
|
const GLfixed fy2 = FloatToFixed(v2->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask;
|
|
if (fy0 <= fy1) {
|
|
if (fy1 <= fy2) {
|
|
/* y0 <= y1 <= y2 */
|
|
vMin = v0; vMid = v1; vMax = v2;
|
|
vMin_fy = fy0; vMid_fy = fy1; vMax_fy = fy2;
|
|
}
|
|
else if (fy2 <= fy0) {
|
|
/* y2 <= y0 <= y1 */
|
|
vMin = v2; vMid = v0; vMax = v1;
|
|
vMin_fy = fy2; vMid_fy = fy0; vMax_fy = fy1;
|
|
}
|
|
else {
|
|
/* y0 <= y2 <= y1 */
|
|
vMin = v0; vMid = v2; vMax = v1;
|
|
vMin_fy = fy0; vMid_fy = fy2; vMax_fy = fy1;
|
|
bf = -bf;
|
|
}
|
|
}
|
|
else {
|
|
if (fy0 <= fy2) {
|
|
/* y1 <= y0 <= y2 */
|
|
vMin = v1; vMid = v0; vMax = v2;
|
|
vMin_fy = fy1; vMid_fy = fy0; vMax_fy = fy2;
|
|
bf = -bf;
|
|
}
|
|
else if (fy2 <= fy1) {
|
|
/* y2 <= y1 <= y0 */
|
|
vMin = v2; vMid = v1; vMax = v0;
|
|
vMin_fy = fy2; vMid_fy = fy1; vMax_fy = fy0;
|
|
bf = -bf;
|
|
}
|
|
else {
|
|
/* y1 <= y2 <= y0 */
|
|
vMin = v1; vMid = v2; vMax = v0;
|
|
vMin_fy = fy1; vMid_fy = fy2; vMax_fy = fy0;
|
|
}
|
|
}
|
|
|
|
/* fixed point X coords */
|
|
vMin_fx = FloatToFixed(vMin->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask;
|
|
vMid_fx = FloatToFixed(vMid->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask;
|
|
vMax_fx = FloatToFixed(vMax->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask;
|
|
}
|
|
|
|
/* vertex/edge relationship */
|
|
eMaj.v0 = vMin; eMaj.v1 = vMax; /*TODO: .v1's not needed */
|
|
eTop.v0 = vMid; eTop.v1 = vMax;
|
|
eBot.v0 = vMin; eBot.v1 = vMid;
|
|
|
|
/* compute deltas for each edge: vertex[upper] - vertex[lower] */
|
|
eMaj.dx = FixedToFloat(vMax_fx - vMin_fx);
|
|
eMaj.dy = FixedToFloat(vMax_fy - vMin_fy);
|
|
eTop.dx = FixedToFloat(vMax_fx - vMid_fx);
|
|
eTop.dy = FixedToFloat(vMax_fy - vMid_fy);
|
|
eBot.dx = FixedToFloat(vMid_fx - vMin_fx);
|
|
eBot.dy = FixedToFloat(vMid_fy - vMin_fy);
|
|
|
|
/* compute area, oneOverArea and perform backface culling */
|
|
{
|
|
const GLfloat area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy;
|
|
|
|
if (IS_INF_OR_NAN(area) || area == 0.0F)
|
|
return;
|
|
|
|
if (area * bf * swrast->_BackfaceCullSign < 0.0)
|
|
return;
|
|
|
|
oneOverArea = 1.0F / area;
|
|
}
|
|
|
|
/* Edge setup. For a triangle strip these could be reused... */
|
|
{
|
|
eMaj.fsy = FixedCeil(vMin_fy);
|
|
eMaj.lines = FixedToInt(FixedCeil(vMax_fy - eMaj.fsy));
|
|
if (eMaj.lines > 0) {
|
|
eMaj.dxdy = eMaj.dx / eMaj.dy;
|
|
eMaj.fdxdy = SignedFloatToFixed(eMaj.dxdy);
|
|
eMaj.adjy = (GLfloat) (eMaj.fsy - vMin_fy); /* SCALED! */
|
|
eMaj.fx0 = vMin_fx;
|
|
eMaj.fsx = eMaj.fx0 + (GLfixed) (eMaj.adjy * eMaj.dxdy);
|
|
}
|
|
else {
|
|
return; /*CULLED*/
|
|
}
|
|
|
|
eTop.fsy = FixedCeil(vMid_fy);
|
|
eTop.lines = FixedToInt(FixedCeil(vMax_fy - eTop.fsy));
|
|
if (eTop.lines > 0) {
|
|
eTop.dxdy = eTop.dx / eTop.dy;
|
|
eTop.fdxdy = SignedFloatToFixed(eTop.dxdy);
|
|
eTop.adjy = (GLfloat) (eTop.fsy - vMid_fy); /* SCALED! */
|
|
eTop.fx0 = vMid_fx;
|
|
eTop.fsx = eTop.fx0 + (GLfixed) (eTop.adjy * eTop.dxdy);
|
|
}
|
|
|
|
eBot.fsy = FixedCeil(vMin_fy);
|
|
eBot.lines = FixedToInt(FixedCeil(vMid_fy - eBot.fsy));
|
|
if (eBot.lines > 0) {
|
|
eBot.dxdy = eBot.dx / eBot.dy;
|
|
eBot.fdxdy = SignedFloatToFixed(eBot.dxdy);
|
|
eBot.adjy = (GLfloat) (eBot.fsy - vMin_fy); /* SCALED! */
|
|
eBot.fx0 = vMin_fx;
|
|
eBot.fsx = eBot.fx0 + (GLfixed) (eBot.adjy * eBot.dxdy);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Conceptually, we view a triangle as two subtriangles
|
|
* separated by a perfectly horizontal line. The edge that is
|
|
* intersected by this line is one with maximal absolute dy; we
|
|
* call it a ``major'' edge. The other two edges are the
|
|
* ``top'' edge (for the upper subtriangle) and the ``bottom''
|
|
* edge (for the lower subtriangle). If either of these two
|
|
* edges is horizontal or very close to horizontal, the
|
|
* corresponding subtriangle might cover zero sample points;
|
|
* we take care to handle such cases, for performance as well
|
|
* as correctness.
|
|
*
|
|
* By stepping rasterization parameters along the major edge,
|
|
* we can avoid recomputing them at the discontinuity where
|
|
* the top and bottom edges meet. However, this forces us to
|
|
* be able to scan both left-to-right and right-to-left.
|
|
* Also, we must determine whether the major edge is at the
|
|
* left or right side of the triangle. We do this by
|
|
* computing the magnitude of the cross-product of the major
|
|
* and top edges. Since this magnitude depends on the sine of
|
|
* the angle between the two edges, its sign tells us whether
|
|
* we turn to the left or to the right when travelling along
|
|
* the major edge to the top edge, and from this we infer
|
|
* whether the major edge is on the left or the right.
|
|
*
|
|
* Serendipitously, this cross-product magnitude is also a
|
|
* value we need to compute the iteration parameter
|
|
* derivatives for the triangle, and it can be used to perform
|
|
* backface culling because its sign tells us whether the
|
|
* triangle is clockwise or counterclockwise. In this code we
|
|
* refer to it as ``area'' because it's also proportional to
|
|
* the pixel area of the triangle.
|
|
*/
|
|
|
|
{
|
|
GLint scan_from_left_to_right; /* true if scanning left-to-right */
|
|
|
|
/*
|
|
* Execute user-supplied setup code
|
|
*/
|
|
#ifdef SETUP_CODE
|
|
SETUP_CODE
|
|
#endif
|
|
|
|
scan_from_left_to_right = (oneOverArea < 0.0F);
|
|
|
|
|
|
/* compute d?/dx and d?/dy derivatives */
|
|
#ifdef INTERP_Z
|
|
span.interpMask |= SPAN_Z;
|
|
{
|
|
GLfloat eMaj_dz = vMax->attrib[FRAG_ATTRIB_WPOS][2] - vMin->attrib[FRAG_ATTRIB_WPOS][2];
|
|
GLfloat eBot_dz = vMid->attrib[FRAG_ATTRIB_WPOS][2] - vMin->attrib[FRAG_ATTRIB_WPOS][2];
|
|
span.attrStepX[FRAG_ATTRIB_WPOS][2] = oneOverArea * (eMaj_dz * eBot.dy - eMaj.dy * eBot_dz);
|
|
if (span.attrStepX[FRAG_ATTRIB_WPOS][2] > maxDepth ||
|
|
span.attrStepX[FRAG_ATTRIB_WPOS][2] < -maxDepth) {
|
|
/* probably a sliver triangle */
|
|
span.attrStepX[FRAG_ATTRIB_WPOS][2] = 0.0;
|
|
span.attrStepY[FRAG_ATTRIB_WPOS][2] = 0.0;
|
|
}
|
|
else {
|
|
span.attrStepY[FRAG_ATTRIB_WPOS][2] = oneOverArea * (eMaj.dx * eBot_dz - eMaj_dz * eBot.dx);
|
|
}
|
|
if (depthBits <= 16)
|
|
span.zStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_WPOS][2]);
|
|
else
|
|
span.zStep = (GLint) span.attrStepX[FRAG_ATTRIB_WPOS][2];
|
|
}
|
|
#endif
|
|
#ifdef INTERP_RGB
|
|
span.interpMask |= SPAN_RGBA;
|
|
if (ctx->Light.ShadeModel == GL_SMOOTH) {
|
|
GLfloat eMaj_dr = (GLfloat) (vMax->color[RCOMP] - vMin->color[RCOMP]);
|
|
GLfloat eBot_dr = (GLfloat) (vMid->color[RCOMP] - vMin->color[RCOMP]);
|
|
GLfloat eMaj_dg = (GLfloat) (vMax->color[GCOMP] - vMin->color[GCOMP]);
|
|
GLfloat eBot_dg = (GLfloat) (vMid->color[GCOMP] - vMin->color[GCOMP]);
|
|
GLfloat eMaj_db = (GLfloat) (vMax->color[BCOMP] - vMin->color[BCOMP]);
|
|
GLfloat eBot_db = (GLfloat) (vMid->color[BCOMP] - vMin->color[BCOMP]);
|
|
# ifdef INTERP_ALPHA
|
|
GLfloat eMaj_da = (GLfloat) (vMax->color[ACOMP] - vMin->color[ACOMP]);
|
|
GLfloat eBot_da = (GLfloat) (vMid->color[ACOMP] - vMin->color[ACOMP]);
|
|
# endif
|
|
span.attrStepX[FRAG_ATTRIB_COL][0] = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
|
|
span.attrStepY[FRAG_ATTRIB_COL][0] = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
|
|
span.attrStepX[FRAG_ATTRIB_COL][1] = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
|
|
span.attrStepY[FRAG_ATTRIB_COL][1] = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
|
|
span.attrStepX[FRAG_ATTRIB_COL][2] = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
|
|
span.attrStepY[FRAG_ATTRIB_COL][2] = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
|
|
span.redStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL][0]);
|
|
span.greenStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL][1]);
|
|
span.blueStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL][2]);
|
|
# ifdef INTERP_ALPHA
|
|
span.attrStepX[FRAG_ATTRIB_COL][3] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
|
|
span.attrStepY[FRAG_ATTRIB_COL][3] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
|
|
span.alphaStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL][3]);
|
|
# endif /* INTERP_ALPHA */
|
|
}
|
|
else {
|
|
ASSERT(ctx->Light.ShadeModel == GL_FLAT);
|
|
span.interpMask |= SPAN_FLAT;
|
|
span.attrStepX[FRAG_ATTRIB_COL][0] = span.attrStepY[FRAG_ATTRIB_COL][0] = 0.0F;
|
|
span.attrStepX[FRAG_ATTRIB_COL][1] = span.attrStepY[FRAG_ATTRIB_COL][1] = 0.0F;
|
|
span.attrStepX[FRAG_ATTRIB_COL][2] = span.attrStepY[FRAG_ATTRIB_COL][2] = 0.0F;
|
|
span.redStep = 0;
|
|
span.greenStep = 0;
|
|
span.blueStep = 0;
|
|
# ifdef INTERP_ALPHA
|
|
span.attrStepX[FRAG_ATTRIB_COL][3] = span.attrStepY[FRAG_ATTRIB_COL][3] = 0.0F;
|
|
span.alphaStep = 0;
|
|
# endif
|
|
}
|
|
#endif /* INTERP_RGB */
|
|
#ifdef INTERP_INT_TEX
|
|
{
|
|
GLfloat eMaj_ds = (vMax->attrib[FRAG_ATTRIB_TEX][0] - vMin->attrib[FRAG_ATTRIB_TEX][0]) * S_SCALE;
|
|
GLfloat eBot_ds = (vMid->attrib[FRAG_ATTRIB_TEX][0] - vMin->attrib[FRAG_ATTRIB_TEX][0]) * S_SCALE;
|
|
GLfloat eMaj_dt = (vMax->attrib[FRAG_ATTRIB_TEX][1] - vMin->attrib[FRAG_ATTRIB_TEX][1]) * T_SCALE;
|
|
GLfloat eBot_dt = (vMid->attrib[FRAG_ATTRIB_TEX][1] - vMin->attrib[FRAG_ATTRIB_TEX][1]) * T_SCALE;
|
|
span.attrStepX[FRAG_ATTRIB_TEX][0] = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
|
|
span.attrStepY[FRAG_ATTRIB_TEX][0] = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
|
|
span.attrStepX[FRAG_ATTRIB_TEX][1] = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
|
|
span.attrStepY[FRAG_ATTRIB_TEX][1] = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
|
|
span.intTexStep[0] = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_TEX][0]);
|
|
span.intTexStep[1] = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_TEX][1]);
|
|
}
|
|
#endif
|
|
#ifdef INTERP_ATTRIBS
|
|
{
|
|
/* attrib[FRAG_ATTRIB_WPOS][3] is 1/W */
|
|
const GLfloat wMax = vMax->attrib[FRAG_ATTRIB_WPOS][3];
|
|
const GLfloat wMin = vMin->attrib[FRAG_ATTRIB_WPOS][3];
|
|
const GLfloat wMid = vMid->attrib[FRAG_ATTRIB_WPOS][3];
|
|
{
|
|
const GLfloat eMaj_dw = wMax - wMin;
|
|
const GLfloat eBot_dw = wMid - wMin;
|
|
span.attrStepX[FRAG_ATTRIB_WPOS][3] = oneOverArea * (eMaj_dw * eBot.dy - eMaj.dy * eBot_dw);
|
|
span.attrStepY[FRAG_ATTRIB_WPOS][3] = oneOverArea * (eMaj.dx * eBot_dw - eMaj_dw * eBot.dx);
|
|
}
|
|
ATTRIB_LOOP_BEGIN
|
|
if (swrast->_InterpMode[attr] == GL_FLAT) {
|
|
ASSIGN_4V(span.attrStepX[attr], 0.0, 0.0, 0.0, 0.0);
|
|
ASSIGN_4V(span.attrStepY[attr], 0.0, 0.0, 0.0, 0.0);
|
|
}
|
|
else {
|
|
GLuint c;
|
|
for (c = 0; c < 4; c++) {
|
|
GLfloat eMaj_da = vMax->attrib[attr][c] * wMax - vMin->attrib[attr][c] * wMin;
|
|
GLfloat eBot_da = vMid->attrib[attr][c] * wMid - vMin->attrib[attr][c] * wMin;
|
|
span.attrStepX[attr][c] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
|
|
span.attrStepY[attr][c] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
|
|
}
|
|
}
|
|
ATTRIB_LOOP_END
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We always sample at pixel centers. However, we avoid
|
|
* explicit half-pixel offsets in this code by incorporating
|
|
* the proper offset in each of x and y during the
|
|
* transformation to window coordinates.
|
|
*
|
|
* We also apply the usual rasterization rules to prevent
|
|
* cracks and overlaps. A pixel is considered inside a
|
|
* subtriangle if it meets all of four conditions: it is on or
|
|
* to the right of the left edge, strictly to the left of the
|
|
* right edge, on or below the top edge, and strictly above
|
|
* the bottom edge. (Some edges may be degenerate.)
|
|
*
|
|
* The following discussion assumes left-to-right scanning
|
|
* (that is, the major edge is on the left); the right-to-left
|
|
* case is a straightforward variation.
|
|
*
|
|
* We start by finding the half-integral y coordinate that is
|
|
* at or below the top of the triangle. This gives us the
|
|
* first scan line that could possibly contain pixels that are
|
|
* inside the triangle.
|
|
*
|
|
* Next we creep down the major edge until we reach that y,
|
|
* and compute the corresponding x coordinate on the edge.
|
|
* Then we find the half-integral x that lies on or just
|
|
* inside the edge. This is the first pixel that might lie in
|
|
* the interior of the triangle. (We won't know for sure
|
|
* until we check the other edges.)
|
|
*
|
|
* As we rasterize the triangle, we'll step down the major
|
|
* edge. For each step in y, we'll move an integer number
|
|
* of steps in x. There are two possible x step sizes, which
|
|
* we'll call the ``inner'' step (guaranteed to land on the
|
|
* edge or inside it) and the ``outer'' step (guaranteed to
|
|
* land on the edge or outside it). The inner and outer steps
|
|
* differ by one. During rasterization we maintain an error
|
|
* term that indicates our distance from the true edge, and
|
|
* select either the inner step or the outer step, whichever
|
|
* gets us to the first pixel that falls inside the triangle.
|
|
*
|
|
* All parameters (z, red, etc.) as well as the buffer
|
|
* addresses for color and z have inner and outer step values,
|
|
* so that we can increment them appropriately. This method
|
|
* eliminates the need to adjust parameters by creeping a
|
|
* sub-pixel amount into the triangle at each scanline.
|
|
*/
|
|
|
|
{
|
|
GLint subTriangle;
|
|
GLfixed fxLeftEdge = 0, fxRightEdge = 0;
|
|
GLfixed fdxLeftEdge = 0, fdxRightEdge = 0;
|
|
GLfixed fError = 0, fdError = 0;
|
|
#ifdef PIXEL_ADDRESS
|
|
PIXEL_TYPE *pRow = NULL;
|
|
GLint dPRowOuter = 0, dPRowInner; /* offset in bytes */
|
|
#endif
|
|
#ifdef INTERP_Z
|
|
# ifdef DEPTH_TYPE
|
|
struct gl_renderbuffer *zrb
|
|
= ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
|
|
DEPTH_TYPE *zRow = NULL;
|
|
GLint dZRowOuter = 0, dZRowInner; /* offset in bytes */
|
|
# endif
|
|
GLuint zLeft = 0;
|
|
GLfixed fdzOuter = 0, fdzInner;
|
|
#endif
|
|
#ifdef INTERP_RGB
|
|
GLint rLeft = 0, fdrOuter = 0, fdrInner;
|
|
GLint gLeft = 0, fdgOuter = 0, fdgInner;
|
|
GLint bLeft = 0, fdbOuter = 0, fdbInner;
|
|
#endif
|
|
#ifdef INTERP_ALPHA
|
|
GLint aLeft = 0, fdaOuter = 0, fdaInner;
|
|
#endif
|
|
#ifdef INTERP_INT_TEX
|
|
GLfixed sLeft=0, dsOuter=0, dsInner;
|
|
GLfixed tLeft=0, dtOuter=0, dtInner;
|
|
#endif
|
|
#ifdef INTERP_ATTRIBS
|
|
GLfloat wLeft = 0, dwOuter = 0, dwInner;
|
|
GLfloat attrLeft[FRAG_ATTRIB_MAX][4];
|
|
GLfloat daOuter[FRAG_ATTRIB_MAX][4], daInner[FRAG_ATTRIB_MAX][4];
|
|
#endif
|
|
|
|
for (subTriangle=0; subTriangle<=1; subTriangle++) {
|
|
EdgeT *eLeft, *eRight;
|
|
int setupLeft, setupRight;
|
|
int lines;
|
|
|
|
if (subTriangle==0) {
|
|
/* bottom half */
|
|
if (scan_from_left_to_right) {
|
|
eLeft = &eMaj;
|
|
eRight = &eBot;
|
|
lines = eRight->lines;
|
|
setupLeft = 1;
|
|
setupRight = 1;
|
|
}
|
|
else {
|
|
eLeft = &eBot;
|
|
eRight = &eMaj;
|
|
lines = eLeft->lines;
|
|
setupLeft = 1;
|
|
setupRight = 1;
|
|
}
|
|
}
|
|
else {
|
|
/* top half */
|
|
if (scan_from_left_to_right) {
|
|
eLeft = &eMaj;
|
|
eRight = &eTop;
|
|
lines = eRight->lines;
|
|
setupLeft = 0;
|
|
setupRight = 1;
|
|
}
|
|
else {
|
|
eLeft = &eTop;
|
|
eRight = &eMaj;
|
|
lines = eLeft->lines;
|
|
setupLeft = 1;
|
|
setupRight = 0;
|
|
}
|
|
if (lines == 0)
|
|
return;
|
|
}
|
|
|
|
if (setupLeft && eLeft->lines > 0) {
|
|
const SWvertex *vLower = eLeft->v0;
|
|
const GLfixed fsy = eLeft->fsy;
|
|
const GLfixed fsx = eLeft->fsx; /* no fractional part */
|
|
const GLfixed fx = FixedCeil(fsx); /* no fractional part */
|
|
const GLfixed adjx = (GLfixed) (fx - eLeft->fx0); /* SCALED! */
|
|
const GLfixed adjy = (GLfixed) eLeft->adjy; /* SCALED! */
|
|
GLint idxOuter;
|
|
GLfloat dxOuter;
|
|
GLfixed fdxOuter;
|
|
|
|
fError = fx - fsx - FIXED_ONE;
|
|
fxLeftEdge = fsx - FIXED_EPSILON;
|
|
fdxLeftEdge = eLeft->fdxdy;
|
|
fdxOuter = FixedFloor(fdxLeftEdge - FIXED_EPSILON);
|
|
fdError = fdxOuter - fdxLeftEdge + FIXED_ONE;
|
|
idxOuter = FixedToInt(fdxOuter);
|
|
dxOuter = (GLfloat) idxOuter;
|
|
span.y = FixedToInt(fsy);
|
|
|
|
/* silence warnings on some compilers */
|
|
(void) dxOuter;
|
|
(void) adjx;
|
|
(void) adjy;
|
|
(void) vLower;
|
|
|
|
#ifdef PIXEL_ADDRESS
|
|
{
|
|
pRow = (PIXEL_TYPE *) PIXEL_ADDRESS(FixedToInt(fxLeftEdge), span.y);
|
|
dPRowOuter = -((int)BYTES_PER_ROW) + idxOuter * sizeof(PIXEL_TYPE);
|
|
/* negative because Y=0 at bottom and increases upward */
|
|
}
|
|
#endif
|
|
/*
|
|
* Now we need the set of parameter (z, color, etc.) values at
|
|
* the point (fx, fsy). This gives us properly-sampled parameter
|
|
* values that we can step from pixel to pixel. Furthermore,
|
|
* although we might have intermediate results that overflow
|
|
* the normal parameter range when we step temporarily outside
|
|
* the triangle, we shouldn't overflow or underflow for any
|
|
* pixel that's actually inside the triangle.
|
|
*/
|
|
|
|
#ifdef INTERP_Z
|
|
{
|
|
GLfloat z0 = vLower->attrib[FRAG_ATTRIB_WPOS][2];
|
|
if (depthBits <= 16) {
|
|
/* interpolate fixed-pt values */
|
|
GLfloat tmp = (z0 * FIXED_SCALE
|
|
+ span.attrStepX[FRAG_ATTRIB_WPOS][2] * adjx
|
|
+ span.attrStepY[FRAG_ATTRIB_WPOS][2] * adjy) + FIXED_HALF;
|
|
if (tmp < MAX_GLUINT / 2)
|
|
zLeft = (GLfixed) tmp;
|
|
else
|
|
zLeft = MAX_GLUINT / 2;
|
|
fdzOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_WPOS][2] +
|
|
dxOuter * span.attrStepX[FRAG_ATTRIB_WPOS][2]);
|
|
}
|
|
else {
|
|
/* interpolate depth values w/out scaling */
|
|
zLeft = (GLuint) (z0 + span.attrStepX[FRAG_ATTRIB_WPOS][2] * FixedToFloat(adjx)
|
|
+ span.attrStepY[FRAG_ATTRIB_WPOS][2] * FixedToFloat(adjy));
|
|
fdzOuter = (GLint) (span.attrStepY[FRAG_ATTRIB_WPOS][2] +
|
|
dxOuter * span.attrStepX[FRAG_ATTRIB_WPOS][2]);
|
|
}
|
|
# ifdef DEPTH_TYPE
|
|
zRow = (DEPTH_TYPE *)
|
|
_swrast_pixel_address(zrb, FixedToInt(fxLeftEdge), span.y);
|
|
dZRowOuter = (ctx->DrawBuffer->Width + idxOuter) * sizeof(DEPTH_TYPE);
|
|
# endif
|
|
}
|
|
#endif
|
|
#ifdef INTERP_RGB
|
|
if (ctx->Light.ShadeModel == GL_SMOOTH) {
|
|
rLeft = (GLint)(ChanToFixed(vLower->color[RCOMP])
|
|
+ span.attrStepX[FRAG_ATTRIB_COL][0] * adjx
|
|
+ span.attrStepY[FRAG_ATTRIB_COL][0] * adjy) + FIXED_HALF;
|
|
gLeft = (GLint)(ChanToFixed(vLower->color[GCOMP])
|
|
+ span.attrStepX[FRAG_ATTRIB_COL][1] * adjx
|
|
+ span.attrStepY[FRAG_ATTRIB_COL][1] * adjy) + FIXED_HALF;
|
|
bLeft = (GLint)(ChanToFixed(vLower->color[BCOMP])
|
|
+ span.attrStepX[FRAG_ATTRIB_COL][2] * adjx
|
|
+ span.attrStepY[FRAG_ATTRIB_COL][2] * adjy) + FIXED_HALF;
|
|
fdrOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL][0]
|
|
+ dxOuter * span.attrStepX[FRAG_ATTRIB_COL][0]);
|
|
fdgOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL][1]
|
|
+ dxOuter * span.attrStepX[FRAG_ATTRIB_COL][1]);
|
|
fdbOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL][2]
|
|
+ dxOuter * span.attrStepX[FRAG_ATTRIB_COL][2]);
|
|
# ifdef INTERP_ALPHA
|
|
aLeft = (GLint)(ChanToFixed(vLower->color[ACOMP])
|
|
+ span.attrStepX[FRAG_ATTRIB_COL][3] * adjx
|
|
+ span.attrStepY[FRAG_ATTRIB_COL][3] * adjy) + FIXED_HALF;
|
|
fdaOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL][3]
|
|
+ dxOuter * span.attrStepX[FRAG_ATTRIB_COL][3]);
|
|
# endif
|
|
}
|
|
else {
|
|
ASSERT(ctx->Light.ShadeModel == GL_FLAT);
|
|
rLeft = ChanToFixed(v2->color[RCOMP]);
|
|
gLeft = ChanToFixed(v2->color[GCOMP]);
|
|
bLeft = ChanToFixed(v2->color[BCOMP]);
|
|
fdrOuter = fdgOuter = fdbOuter = 0;
|
|
# ifdef INTERP_ALPHA
|
|
aLeft = ChanToFixed(v2->color[ACOMP]);
|
|
fdaOuter = 0;
|
|
# endif
|
|
}
|
|
#endif /* INTERP_RGB */
|
|
|
|
|
|
#ifdef INTERP_INT_TEX
|
|
{
|
|
GLfloat s0, t0;
|
|
s0 = vLower->attrib[FRAG_ATTRIB_TEX][0] * S_SCALE;
|
|
sLeft = (GLfixed)(s0 * FIXED_SCALE + span.attrStepX[FRAG_ATTRIB_TEX][0] * adjx
|
|
+ span.attrStepY[FRAG_ATTRIB_TEX][0] * adjy) + FIXED_HALF;
|
|
dsOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_TEX][0]
|
|
+ dxOuter * span.attrStepX[FRAG_ATTRIB_TEX][0]);
|
|
|
|
t0 = vLower->attrib[FRAG_ATTRIB_TEX][1] * T_SCALE;
|
|
tLeft = (GLfixed)(t0 * FIXED_SCALE + span.attrStepX[FRAG_ATTRIB_TEX][1] * adjx
|
|
+ span.attrStepY[FRAG_ATTRIB_TEX][1] * adjy) + FIXED_HALF;
|
|
dtOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_TEX][1]
|
|
+ dxOuter * span.attrStepX[FRAG_ATTRIB_TEX][1]);
|
|
}
|
|
#endif
|
|
#ifdef INTERP_ATTRIBS
|
|
{
|
|
const GLuint attr = FRAG_ATTRIB_WPOS;
|
|
wLeft = vLower->attrib[FRAG_ATTRIB_WPOS][3]
|
|
+ (span.attrStepX[attr][3] * adjx
|
|
+ span.attrStepY[attr][3] * adjy) * (1.0F/FIXED_SCALE);
|
|
dwOuter = span.attrStepY[attr][3] + dxOuter * span.attrStepX[attr][3];
|
|
}
|
|
ATTRIB_LOOP_BEGIN
|
|
const GLfloat invW = vLower->attrib[FRAG_ATTRIB_WPOS][3];
|
|
if (swrast->_InterpMode[attr] == GL_FLAT) {
|
|
GLuint c;
|
|
for (c = 0; c < 4; c++) {
|
|
attrLeft[attr][c] = v2->attrib[attr][c] * invW;
|
|
daOuter[attr][c] = 0.0;
|
|
}
|
|
}
|
|
else {
|
|
GLuint c;
|
|
for (c = 0; c < 4; c++) {
|
|
const GLfloat a = vLower->attrib[attr][c] * invW;
|
|
attrLeft[attr][c] = a + ( span.attrStepX[attr][c] * adjx
|
|
+ span.attrStepY[attr][c] * adjy) * (1.0F/FIXED_SCALE);
|
|
daOuter[attr][c] = span.attrStepY[attr][c] + dxOuter * span.attrStepX[attr][c];
|
|
}
|
|
}
|
|
ATTRIB_LOOP_END
|
|
#endif
|
|
} /*if setupLeft*/
|
|
|
|
|
|
if (setupRight && eRight->lines>0) {
|
|
fxRightEdge = eRight->fsx - FIXED_EPSILON;
|
|
fdxRightEdge = eRight->fdxdy;
|
|
}
|
|
|
|
if (lines==0) {
|
|
continue;
|
|
}
|
|
|
|
|
|
/* Rasterize setup */
|
|
#ifdef PIXEL_ADDRESS
|
|
dPRowInner = dPRowOuter + sizeof(PIXEL_TYPE);
|
|
#endif
|
|
#ifdef INTERP_Z
|
|
# ifdef DEPTH_TYPE
|
|
dZRowInner = dZRowOuter + sizeof(DEPTH_TYPE);
|
|
# endif
|
|
fdzInner = fdzOuter + span.zStep;
|
|
#endif
|
|
#ifdef INTERP_RGB
|
|
fdrInner = fdrOuter + span.redStep;
|
|
fdgInner = fdgOuter + span.greenStep;
|
|
fdbInner = fdbOuter + span.blueStep;
|
|
#endif
|
|
#ifdef INTERP_ALPHA
|
|
fdaInner = fdaOuter + span.alphaStep;
|
|
#endif
|
|
#ifdef INTERP_INT_TEX
|
|
dsInner = dsOuter + span.intTexStep[0];
|
|
dtInner = dtOuter + span.intTexStep[1];
|
|
#endif
|
|
#ifdef INTERP_ATTRIBS
|
|
dwInner = dwOuter + span.attrStepX[FRAG_ATTRIB_WPOS][3];
|
|
ATTRIB_LOOP_BEGIN
|
|
GLuint c;
|
|
for (c = 0; c < 4; c++) {
|
|
daInner[attr][c] = daOuter[attr][c] + span.attrStepX[attr][c];
|
|
}
|
|
ATTRIB_LOOP_END
|
|
#endif
|
|
|
|
while (lines > 0) {
|
|
/* initialize the span interpolants to the leftmost value */
|
|
/* ff = fixed-pt fragment */
|
|
const GLint right = FixedToInt(fxRightEdge);
|
|
span.x = FixedToInt(fxLeftEdge);
|
|
if (right <= span.x)
|
|
span.end = 0;
|
|
else
|
|
span.end = right - span.x;
|
|
|
|
#ifdef INTERP_Z
|
|
span.z = zLeft;
|
|
#endif
|
|
#ifdef INTERP_RGB
|
|
span.red = rLeft;
|
|
span.green = gLeft;
|
|
span.blue = bLeft;
|
|
#endif
|
|
#ifdef INTERP_ALPHA
|
|
span.alpha = aLeft;
|
|
#endif
|
|
#ifdef INTERP_INT_TEX
|
|
span.intTex[0] = sLeft;
|
|
span.intTex[1] = tLeft;
|
|
#endif
|
|
|
|
#ifdef INTERP_ATTRIBS
|
|
span.attrStart[FRAG_ATTRIB_WPOS][3] = wLeft;
|
|
ATTRIB_LOOP_BEGIN
|
|
GLuint c;
|
|
for (c = 0; c < 4; c++) {
|
|
span.attrStart[attr][c] = attrLeft[attr][c];
|
|
}
|
|
ATTRIB_LOOP_END
|
|
#endif
|
|
|
|
/* This is where we actually generate fragments */
|
|
/* XXX the test for span.y > 0 _shouldn't_ be needed but
|
|
* it fixes a problem on 64-bit Opterons (bug 4842).
|
|
*/
|
|
if (span.end > 0 && span.y >= 0) {
|
|
const GLint len = span.end - 1;
|
|
(void) len;
|
|
#ifdef INTERP_RGB
|
|
CLAMP_INTERPOLANT(red, redStep, len);
|
|
CLAMP_INTERPOLANT(green, greenStep, len);
|
|
CLAMP_INTERPOLANT(blue, blueStep, len);
|
|
#endif
|
|
#ifdef INTERP_ALPHA
|
|
CLAMP_INTERPOLANT(alpha, alphaStep, len);
|
|
#endif
|
|
{
|
|
RENDER_SPAN( span );
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Advance to the next scan line. Compute the
|
|
* new edge coordinates, and adjust the
|
|
* pixel-center x coordinate so that it stays
|
|
* on or inside the major edge.
|
|
*/
|
|
span.y++;
|
|
lines--;
|
|
|
|
fxLeftEdge += fdxLeftEdge;
|
|
fxRightEdge += fdxRightEdge;
|
|
|
|
fError += fdError;
|
|
if (fError >= 0) {
|
|
fError -= FIXED_ONE;
|
|
|
|
#ifdef PIXEL_ADDRESS
|
|
pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowOuter);
|
|
#endif
|
|
#ifdef INTERP_Z
|
|
# ifdef DEPTH_TYPE
|
|
zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowOuter);
|
|
# endif
|
|
zLeft += fdzOuter;
|
|
#endif
|
|
#ifdef INTERP_RGB
|
|
rLeft += fdrOuter;
|
|
gLeft += fdgOuter;
|
|
bLeft += fdbOuter;
|
|
#endif
|
|
#ifdef INTERP_ALPHA
|
|
aLeft += fdaOuter;
|
|
#endif
|
|
#ifdef INTERP_INT_TEX
|
|
sLeft += dsOuter;
|
|
tLeft += dtOuter;
|
|
#endif
|
|
#ifdef INTERP_ATTRIBS
|
|
wLeft += dwOuter;
|
|
ATTRIB_LOOP_BEGIN
|
|
GLuint c;
|
|
for (c = 0; c < 4; c++) {
|
|
attrLeft[attr][c] += daOuter[attr][c];
|
|
}
|
|
ATTRIB_LOOP_END
|
|
#endif
|
|
}
|
|
else {
|
|
#ifdef PIXEL_ADDRESS
|
|
pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowInner);
|
|
#endif
|
|
#ifdef INTERP_Z
|
|
# ifdef DEPTH_TYPE
|
|
zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowInner);
|
|
# endif
|
|
zLeft += fdzInner;
|
|
#endif
|
|
#ifdef INTERP_RGB
|
|
rLeft += fdrInner;
|
|
gLeft += fdgInner;
|
|
bLeft += fdbInner;
|
|
#endif
|
|
#ifdef INTERP_ALPHA
|
|
aLeft += fdaInner;
|
|
#endif
|
|
#ifdef INTERP_INT_TEX
|
|
sLeft += dsInner;
|
|
tLeft += dtInner;
|
|
#endif
|
|
#ifdef INTERP_ATTRIBS
|
|
wLeft += dwInner;
|
|
ATTRIB_LOOP_BEGIN
|
|
GLuint c;
|
|
for (c = 0; c < 4; c++) {
|
|
attrLeft[attr][c] += daInner[attr][c];
|
|
}
|
|
ATTRIB_LOOP_END
|
|
#endif
|
|
}
|
|
} /*while lines>0*/
|
|
|
|
} /* for subTriangle */
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef SETUP_CODE
|
|
#undef RENDER_SPAN
|
|
|
|
#undef PIXEL_TYPE
|
|
#undef BYTES_PER_ROW
|
|
#undef PIXEL_ADDRESS
|
|
#undef DEPTH_TYPE
|
|
|
|
#undef INTERP_Z
|
|
#undef INTERP_RGB
|
|
#undef INTERP_ALPHA
|
|
#undef INTERP_INT_TEX
|
|
#undef INTERP_ATTRIBS
|
|
|
|
#undef S_SCALE
|
|
#undef T_SCALE
|
|
|
|
#undef FixedToDepth
|
|
|
|
#undef NAME
|