reactos/dll/win32/dbghelp/cpu_i386.c
winesync 767cb4cff4 [WINESYNC] dbghelp: Add xmm and mxcsr register mapping functions for i386.
Signed-off-by: Vijay Kiran Kamuju <infyquest@gmail.com>
Signed-off-by: Alexandre Julliard <julliard@winehq.org>

wine commit id 7e965d60b542c0baa6f79605f45669a2ea9bceb8 by Vijay Kiran Kamuju <infyquest@gmail.com>
2020-09-16 10:36:02 +02:00

728 lines
27 KiB
C

/*
* File cpu_i386.c
*
* Copyright (C) 2009-2009, Eric Pouech.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <assert.h>
#ifndef DBGHELP_STATIC_LIB
#include "ntstatus.h"
#define WIN32_NO_STATUS
#include "dbghelp_private.h"
#include "wine/winbase16.h"
#include "winternl.h"
#include "wine/debug.h"
#else
#include "dbghelp_private.h"
#endif
WINE_DEFAULT_DEBUG_CHANNEL(dbghelp);
#define V86_FLAG 0x00020000
#define IS_VM86_MODE(ctx) (ctx->EFlags & V86_FLAG)
#if defined(__i386__) && !defined(DBGHELP_STATIC_LIB)
static ADDRESS_MODE get_selector_type(HANDLE hThread, const CONTEXT* ctx, WORD sel)
{
LDT_ENTRY le;
if (IS_VM86_MODE(ctx)) return AddrModeReal;
/* null or system selector */
if (!(sel & 4) || ((sel >> 3) < 17)) return AddrModeFlat;
if (hThread && GetThreadSelectorEntry(hThread, sel, &le))
return le.HighWord.Bits.Default_Big ? AddrMode1632 : AddrMode1616;
/* selector doesn't exist */
return -1;
}
static BOOL i386_build_addr(HANDLE hThread, const CONTEXT* ctx, ADDRESS64* addr,
unsigned seg, ULONG_PTR offset)
{
addr->Mode = AddrModeFlat;
addr->Segment = seg;
addr->Offset = offset;
if (seg)
{
switch (addr->Mode = get_selector_type(hThread, ctx, seg))
{
case AddrModeReal:
case AddrMode1616:
addr->Offset &= 0xffff;
break;
case AddrModeFlat:
case AddrMode1632:
break;
default:
return FALSE;
}
}
return TRUE;
}
#endif
#ifndef DBGHELP_STATIC_LIB
static BOOL i386_get_addr(HANDLE hThread, const CONTEXT* ctx,
enum cpu_addr ca, ADDRESS64* addr)
{
#ifdef __i386__
switch (ca)
{
case cpu_addr_pc: return i386_build_addr(hThread, ctx, addr, ctx->SegCs, ctx->Eip);
case cpu_addr_stack: return i386_build_addr(hThread, ctx, addr, ctx->SegSs, ctx->Esp);
case cpu_addr_frame: return i386_build_addr(hThread, ctx, addr, ctx->SegSs, ctx->Ebp);
}
#endif
return FALSE;
}
/* fetch_next_frame32()
*
* modify (at least) context.{eip, esp, ebp} using unwind information
* either out of debug info (dwarf, pdb), or simple stack unwind
*/
static BOOL fetch_next_frame32(struct cpu_stack_walk* csw,
union ctx *pcontext, DWORD_PTR curr_pc)
{
DWORD64 xframe;
struct pdb_cmd_pair cpair[4];
DWORD val32;
WOW64_CONTEXT *context = &pcontext->x86;
if (dwarf2_virtual_unwind(csw, curr_pc, pcontext, &xframe))
{
context->Esp = xframe;
return TRUE;
}
cpair[0].name = "$ebp"; cpair[0].pvalue = &context->Ebp;
cpair[1].name = "$esp"; cpair[1].pvalue = &context->Esp;
cpair[2].name = "$eip"; cpair[2].pvalue = &context->Eip;
cpair[3].name = NULL; cpair[3].pvalue = NULL;
if (!pdb_virtual_unwind(csw, curr_pc, pcontext, cpair))
{
/* do a simple unwind using ebp
* we assume a "regular" prologue in the function has been used
*/
if (!context->Ebp) return FALSE;
context->Esp = context->Ebp + 2 * sizeof(DWORD);
if (!sw_read_mem(csw, context->Ebp + sizeof(DWORD), &val32, sizeof(DWORD)))
{
WARN("Cannot read new frame offset %p\n",
(void*)(DWORD_PTR)(context->Ebp + (int)sizeof(DWORD)));
return FALSE;
}
context->Eip = val32;
/* "pop up" previous EBP value */
if (!sw_read_mem(csw, context->Ebp, &val32, sizeof(DWORD)))
return FALSE;
context->Ebp = val32;
}
return TRUE;
}
enum st_mode {stm_start, stm_32bit, stm_16bit, stm_done};
/* indexes in Reserved array */
#define __CurrentModeCount 0
#define __CurrentSwitch 1
#define __NextSwitch 2
#define curr_mode (frame->Reserved[__CurrentModeCount] & 0x0F)
#define curr_count (frame->Reserved[__CurrentModeCount] >> 4)
#define curr_switch (frame->Reserved[__CurrentSwitch])
#define next_switch (frame->Reserved[__NextSwitch])
#define set_curr_mode(m) {frame->Reserved[__CurrentModeCount] &= ~0x0F; frame->Reserved[__CurrentModeCount] |= (m & 0x0F);}
#define inc_curr_count() (frame->Reserved[__CurrentModeCount] += 0x10)
static BOOL i386_stack_walk(struct cpu_stack_walk* csw, STACKFRAME64 *frame,
union ctx *context)
{
STACK32FRAME frame32;
STACK16FRAME frame16;
char ch;
ADDRESS64 tmp;
DWORD p;
WORD val16;
DWORD val32;
BOOL do_switch;
unsigned deltapc;
union ctx _context;
/* sanity check */
if (curr_mode >= stm_done) return FALSE;
TRACE("Enter: PC=%s Frame=%s Return=%s Stack=%s Mode=%s Count=%s cSwitch=%p nSwitch=%p\n",
wine_dbgstr_addr(&frame->AddrPC),
wine_dbgstr_addr(&frame->AddrFrame),
wine_dbgstr_addr(&frame->AddrReturn),
wine_dbgstr_addr(&frame->AddrStack),
curr_mode == stm_start ? "start" : (curr_mode == stm_16bit ? "16bit" : "32bit"),
wine_dbgstr_longlong(curr_count),
(void*)(DWORD_PTR)curr_switch, (void*)(DWORD_PTR)next_switch);
/* if we're at first call (which doesn't actually unwind, it just computes ReturnPC,
* or if we're doing the first real unwind (count == 1), then we can directly use
* eip. otherwise, eip is *after* the insn that actually made the call to
* previous frame, so decrease eip by delta pc (1!) so that we're inside previous
* insn.
* Doing so, we ensure that the pc used for unwinding is always inside the function
* we want to use for next frame
*/
deltapc = curr_count <= 1 ? 0 : 1;
if (!context)
{
/* setup a pseudo context for the rest of the code (esp. unwinding) */
context = &_context;
memset(context, 0, sizeof(*context));
context->x86.ContextFlags = WOW64_CONTEXT_CONTROL | WOW64_CONTEXT_SEGMENTS;
if (frame->AddrPC.Mode != AddrModeFlat)
context->x86.SegCs = frame->AddrPC.Segment;
context->x86.Eip = frame->AddrPC.Offset;
if (frame->AddrFrame.Mode != AddrModeFlat)
context->x86.SegSs = frame->AddrFrame.Segment;
context->x86.Ebp = frame->AddrFrame.Offset;
if (frame->AddrStack.Mode != AddrModeFlat)
context->x86.SegSs = frame->AddrStack.Segment;
context->x86.Esp = frame->AddrStack.Offset;
}
if (curr_mode == stm_start)
{
THREAD_BASIC_INFORMATION info;
if ((frame->AddrPC.Mode == AddrModeFlat) &&
(frame->AddrFrame.Mode != AddrModeFlat))
{
WARN("Bad AddrPC.Mode / AddrFrame.Mode combination\n");
goto done_err;
}
/* Init done */
set_curr_mode((frame->AddrPC.Mode == AddrModeFlat) ? stm_32bit : stm_16bit);
/* cur_switch holds address of SystemReserved1[0] field in TEB in debuggee
* address space
*/
if (NtQueryInformationThread(csw->hThread, ThreadBasicInformation, &info,
sizeof(info), NULL) == STATUS_SUCCESS)
{
curr_switch = (DWORD_PTR)info.TebBaseAddress + FIELD_OFFSET(TEB, SystemReserved1[0]);
if (!sw_read_mem(csw, curr_switch, &p, sizeof(p)))
{
WARN("Can't read TEB:SystemReserved1[0]\n");
goto done_err;
}
next_switch = p;
if (!next_switch) /* no 16-bit stack */
{
curr_switch = 0;
}
else if (curr_mode == stm_16bit)
{
if (!sw_read_mem(csw, next_switch, &frame32, sizeof(frame32)))
{
WARN("Bad stack frame %p\n", (void*)(DWORD_PTR)next_switch);
goto done_err;
}
curr_switch = (DWORD)frame32.frame16;
tmp.Mode = AddrMode1616;
tmp.Segment = SELECTOROF(curr_switch);
tmp.Offset = OFFSETOF(curr_switch);
if (!sw_read_mem(csw, sw_xlat_addr(csw, &tmp), &ch, sizeof(ch)))
curr_switch = 0xFFFFFFFF;
}
else
{
tmp.Mode = AddrMode1616;
tmp.Segment = SELECTOROF(next_switch);
tmp.Offset = OFFSETOF(next_switch);
p = sw_xlat_addr(csw, &tmp);
if (!sw_read_mem(csw, p, &frame16, sizeof(frame16)))
{
WARN("Bad stack frame 0x%08x\n", p);
goto done_err;
}
curr_switch = (DWORD_PTR)frame16.frame32;
if (!sw_read_mem(csw, curr_switch, &ch, sizeof(ch)))
curr_switch = 0xFFFFFFFF;
}
}
else
/* FIXME: this will allow it to work when we're not attached to a live target,
* but the 16 <=> 32 switch facility won't be available.
*/
curr_switch = 0;
frame->AddrReturn.Mode = frame->AddrStack.Mode = (curr_mode == stm_16bit) ? AddrMode1616 : AddrModeFlat;
/* don't set up AddrStack on first call. Either the caller has set it up, or
* we will get it in the next frame
*/
memset(&frame->AddrBStore, 0, sizeof(frame->AddrBStore));
}
else
{
if (frame->AddrFrame.Mode == AddrModeFlat)
{
assert(curr_mode == stm_32bit);
do_switch = curr_switch && frame->AddrFrame.Offset >= curr_switch;
}
else
{
assert(curr_mode == stm_16bit);
do_switch = curr_switch &&
frame->AddrFrame.Segment == SELECTOROF(curr_switch) &&
frame->AddrFrame.Offset >= OFFSETOF(curr_switch);
}
if (do_switch)
{
if (curr_mode == stm_16bit)
{
if (!sw_read_mem(csw, next_switch, &frame32, sizeof(frame32)))
{
WARN("Bad stack frame %p\n", (void*)(DWORD_PTR)next_switch);
goto done_err;
}
frame->AddrPC.Mode = AddrModeFlat;
frame->AddrPC.Segment = 0;
frame->AddrPC.Offset = frame32.retaddr;
frame->AddrFrame.Mode = AddrModeFlat;
frame->AddrFrame.Segment = 0;
frame->AddrFrame.Offset = frame32.ebp;
frame->AddrStack.Mode = AddrModeFlat;
frame->AddrStack.Segment = 0;
frame->AddrReturn.Mode = AddrModeFlat;
frame->AddrReturn.Segment = 0;
next_switch = curr_switch;
tmp.Mode = AddrMode1616;
tmp.Segment = SELECTOROF(next_switch);
tmp.Offset = OFFSETOF(next_switch);
p = sw_xlat_addr(csw, &tmp);
if (!sw_read_mem(csw, p, &frame16, sizeof(frame16)))
{
WARN("Bad stack frame 0x%08x\n", p);
goto done_err;
}
curr_switch = (DWORD_PTR)frame16.frame32;
set_curr_mode(stm_32bit);
if (!sw_read_mem(csw, curr_switch, &ch, sizeof(ch)))
curr_switch = 0;
}
else
{
tmp.Mode = AddrMode1616;
tmp.Segment = SELECTOROF(next_switch);
tmp.Offset = OFFSETOF(next_switch);
p = sw_xlat_addr(csw, &tmp);
if (!sw_read_mem(csw, p, &frame16, sizeof(frame16)))
{
WARN("Bad stack frame 0x%08x\n", p);
goto done_err;
}
TRACE("Got a 16 bit stack switch:"
"\n\tframe32: %p"
"\n\tedx:%08x ecx:%08x ebp:%08x"
"\n\tds:%04x es:%04x fs:%04x gs:%04x"
"\n\tcall_from_ip:%08x module_cs:%04x relay=%08x"
"\n\tentry_ip:%04x entry_point:%08x"
"\n\tbp:%04x ip:%04x cs:%04x\n",
frame16.frame32,
frame16.edx, frame16.ecx, frame16.ebp,
frame16.ds, frame16.es, frame16.fs, frame16.gs,
frame16.callfrom_ip, frame16.module_cs, frame16.relay,
frame16.entry_ip, frame16.entry_point,
frame16.bp, frame16.ip, frame16.cs);
frame->AddrPC.Mode = AddrMode1616;
frame->AddrPC.Segment = frame16.cs;
frame->AddrPC.Offset = frame16.ip;
frame->AddrFrame.Mode = AddrMode1616;
frame->AddrFrame.Segment = SELECTOROF(next_switch);
frame->AddrFrame.Offset = frame16.bp;
frame->AddrStack.Mode = AddrMode1616;
frame->AddrStack.Segment = SELECTOROF(next_switch);
frame->AddrReturn.Mode = AddrMode1616;
frame->AddrReturn.Segment = frame16.cs;
next_switch = curr_switch;
if (!sw_read_mem(csw, next_switch, &frame32, sizeof(frame32)))
{
WARN("Bad stack frame %p\n", (void*)(DWORD_PTR)next_switch);
goto done_err;
}
curr_switch = (DWORD)frame32.frame16;
tmp.Mode = AddrMode1616;
tmp.Segment = SELECTOROF(curr_switch);
tmp.Offset = OFFSETOF(curr_switch);
if (!sw_read_mem(csw, sw_xlat_addr(csw, &tmp), &ch, sizeof(ch)))
curr_switch = 0;
set_curr_mode(stm_16bit);
}
}
else
{
if (curr_mode == stm_16bit)
{
frame->AddrPC = frame->AddrReturn;
frame->AddrStack.Offset = frame->AddrFrame.Offset + 2 * sizeof(WORD);
/* "pop up" previous BP value */
if (!frame->AddrFrame.Offset ||
!sw_read_mem(csw, sw_xlat_addr(csw, &frame->AddrFrame),
&val16, sizeof(WORD)))
goto done_err;
frame->AddrFrame.Offset = val16;
}
else
{
if (!fetch_next_frame32(csw, context, sw_xlat_addr(csw, &frame->AddrPC) - deltapc))
goto done_err;
frame->AddrStack.Mode = frame->AddrFrame.Mode = frame->AddrPC.Mode = AddrModeFlat;
frame->AddrStack.Offset = context->x86.Esp;
frame->AddrFrame.Offset = context->x86.Ebp;
if (frame->AddrReturn.Offset != context->x86.Eip)
FIXME("new PC=%s different from Eip=%x\n",
wine_dbgstr_longlong(frame->AddrReturn.Offset), context->x86.Eip);
frame->AddrPC.Offset = context->x86.Eip;
}
}
}
if (curr_mode == stm_16bit)
{
unsigned int i;
p = sw_xlat_addr(csw, &frame->AddrFrame);
if (!sw_read_mem(csw, p + sizeof(WORD), &val16, sizeof(WORD)))
goto done_err;
frame->AddrReturn.Offset = val16;
/* get potential cs if a far call was used */
if (!sw_read_mem(csw, p + 2 * sizeof(WORD), &val16, sizeof(WORD)))
goto done_err;
if (frame->AddrFrame.Offset & 1)
frame->AddrReturn.Segment = val16; /* far call assumed */
else
{
/* not explicitly marked as far call,
* but check whether it could be anyway
*/
if ((val16 & 7) == 7 && val16 != frame->AddrReturn.Segment)
{
LDT_ENTRY le;
if (GetThreadSelectorEntry(csw->hThread, val16, &le) &&
(le.HighWord.Bits.Type & 0x08)) /* code segment */
{
/* it is very uncommon to push a code segment cs as
* a parameter, so this should work in most cases
*/
frame->AddrReturn.Segment = val16;
}
}
}
frame->AddrFrame.Offset &= ~1;
/* we "pop" parameters as 16 bit entities... of course, this won't
* work if the parameter is in fact bigger than 16bit, but
* there's no way to know that here
*/
for (i = 0; i < ARRAY_SIZE(frame->Params); i++)
{
sw_read_mem(csw, p + (2 + i) * sizeof(WORD), &val16, sizeof(val16));
frame->Params[i] = val16;
}
if (context)
{
#define SET(field, seg, reg) \
switch (frame->field.Mode) \
{ \
case AddrModeFlat: context->x86.reg = frame->field.Offset; break; \
case AddrMode1616: context->x86.seg = frame->field.Segment; context->x86.reg = frame->field.Offset; break; \
default: assert(0); \
}
SET(AddrStack, SegSs, Esp);
SET(AddrFrame, SegSs, Ebp);
SET(AddrReturn, SegCs, Eip);
#undef SET
}
}
else
{
unsigned int i;
union ctx newctx = *context;
if (!fetch_next_frame32(csw, &newctx, frame->AddrPC.Offset - deltapc))
goto done_err;
frame->AddrReturn.Mode = AddrModeFlat;
frame->AddrReturn.Offset = newctx.x86.Eip;
for (i = 0; i < ARRAY_SIZE(frame->Params); i++)
{
sw_read_mem(csw, frame->AddrFrame.Offset + (2 + i) * sizeof(DWORD), &val32, sizeof(val32));
frame->Params[i] = val32;
}
}
frame->Far = TRUE;
frame->Virtual = TRUE;
p = sw_xlat_addr(csw, &frame->AddrPC);
if (p && sw_module_base(csw, p))
frame->FuncTableEntry = sw_table_access(csw, p);
else
frame->FuncTableEntry = NULL;
inc_curr_count();
TRACE("Leave: PC=%s Frame=%s Return=%s Stack=%s Mode=%s Count=%s cSwitch=%p nSwitch=%p FuncTable=%p\n",
wine_dbgstr_addr(&frame->AddrPC),
wine_dbgstr_addr(&frame->AddrFrame),
wine_dbgstr_addr(&frame->AddrReturn),
wine_dbgstr_addr(&frame->AddrStack),
curr_mode == stm_start ? "start" : (curr_mode == stm_16bit ? "16bit" : "32bit"),
wine_dbgstr_longlong(curr_count),
(void*)(DWORD_PTR)curr_switch, (void*)(DWORD_PTR)next_switch, frame->FuncTableEntry);
return TRUE;
done_err:
set_curr_mode(stm_done);
return FALSE;
}
#endif /* DBGHELP_STATIC_LIB */
static unsigned i386_map_dwarf_register(unsigned regno, const struct module* module, BOOL eh_frame)
{
unsigned reg;
switch (regno)
{
case 0: reg = CV_REG_EAX; break;
case 1: reg = CV_REG_ECX; break;
case 2: reg = CV_REG_EDX; break;
case 3: reg = CV_REG_EBX; break;
case 4:
case 5:
/* On OS X, DWARF eh_frame uses a different mapping for the registers. It's
apparently the mapping as emitted by GCC, at least at some point in its history. */
if (eh_frame && module->type == DMT_MACHO)
reg = (regno == 4) ? CV_REG_EBP : CV_REG_ESP;
else
reg = (regno == 4) ? CV_REG_ESP : CV_REG_EBP;
break;
case 6: reg = CV_REG_ESI; break;
case 7: reg = CV_REG_EDI; break;
case 8: reg = CV_REG_EIP; break;
case 9: reg = CV_REG_EFLAGS; break;
case 10: reg = CV_REG_CS; break;
case 11: reg = CV_REG_SS; break;
case 12: reg = CV_REG_DS; break;
case 13: reg = CV_REG_ES; break;
case 14: reg = CV_REG_FS; break;
case 15: reg = CV_REG_GS; break;
case 16: case 17: case 18: case 19:
case 20: case 21: case 22: case 23:
reg = CV_REG_ST0 + regno - 16; break;
case 24: reg = CV_REG_CTRL; break;
case 25: reg = CV_REG_STAT; break;
case 26: reg = CV_REG_TAG; break;
case 27: reg = CV_REG_FPCS; break;
case 28: reg = CV_REG_FPIP; break;
case 29: reg = CV_REG_FPDS; break;
case 30: reg = CV_REG_FPDO; break;
/*
reg: fop 31
*/
case 32: case 33: case 34: case 35:
case 36: case 37: case 38: case 39:
reg = CV_REG_XMM0 + regno - 32; break;
case 40: reg = CV_REG_MXCSR; break;
default:
FIXME("Don't know how to map register %d\n", regno);
return 0;
}
return reg;
}
static void *i386_fetch_context_reg(union ctx *pctx, unsigned regno, unsigned *size)
{
WOW64_CONTEXT *ctx = &pctx->x86;
switch (regno)
{
case CV_REG_EAX: *size = sizeof(ctx->Eax); return &ctx->Eax;
case CV_REG_EDX: *size = sizeof(ctx->Edx); return &ctx->Edx;
case CV_REG_ECX: *size = sizeof(ctx->Ecx); return &ctx->Ecx;
case CV_REG_EBX: *size = sizeof(ctx->Ebx); return &ctx->Ebx;
case CV_REG_ESI: *size = sizeof(ctx->Esi); return &ctx->Esi;
case CV_REG_EDI: *size = sizeof(ctx->Edi); return &ctx->Edi;
case CV_REG_EBP: *size = sizeof(ctx->Ebp); return &ctx->Ebp;
case CV_REG_ESP: *size = sizeof(ctx->Esp); return &ctx->Esp;
case CV_REG_EIP: *size = sizeof(ctx->Eip); return &ctx->Eip;
/* These are x87 floating point registers... They do not match a C type in
* the Linux ABI, so hardcode their 80-bitness. */
case CV_REG_ST0 + 0: *size = 10; return &ctx->FloatSave.RegisterArea[0*10];
case CV_REG_ST0 + 1: *size = 10; return &ctx->FloatSave.RegisterArea[1*10];
case CV_REG_ST0 + 2: *size = 10; return &ctx->FloatSave.RegisterArea[2*10];
case CV_REG_ST0 + 3: *size = 10; return &ctx->FloatSave.RegisterArea[3*10];
case CV_REG_ST0 + 4: *size = 10; return &ctx->FloatSave.RegisterArea[4*10];
case CV_REG_ST0 + 5: *size = 10; return &ctx->FloatSave.RegisterArea[5*10];
case CV_REG_ST0 + 6: *size = 10; return &ctx->FloatSave.RegisterArea[6*10];
case CV_REG_ST0 + 7: *size = 10; return &ctx->FloatSave.RegisterArea[7*10];
case CV_REG_CTRL: *size = sizeof(DWORD); return &ctx->FloatSave.ControlWord;
case CV_REG_STAT: *size = sizeof(DWORD); return &ctx->FloatSave.StatusWord;
case CV_REG_TAG: *size = sizeof(DWORD); return &ctx->FloatSave.TagWord;
case CV_REG_FPCS: *size = sizeof(DWORD); return &ctx->FloatSave.ErrorSelector;
case CV_REG_FPIP: *size = sizeof(DWORD); return &ctx->FloatSave.ErrorOffset;
case CV_REG_FPDS: *size = sizeof(DWORD); return &ctx->FloatSave.DataSelector;
case CV_REG_FPDO: *size = sizeof(DWORD); return &ctx->FloatSave.DataOffset;
case CV_REG_EFLAGS: *size = sizeof(ctx->EFlags); return &ctx->EFlags;
case CV_REG_ES: *size = sizeof(ctx->SegEs); return &ctx->SegEs;
case CV_REG_CS: *size = sizeof(ctx->SegCs); return &ctx->SegCs;
case CV_REG_SS: *size = sizeof(ctx->SegSs); return &ctx->SegSs;
case CV_REG_DS: *size = sizeof(ctx->SegDs); return &ctx->SegDs;
case CV_REG_FS: *size = sizeof(ctx->SegFs); return &ctx->SegFs;
case CV_REG_GS: *size = sizeof(ctx->SegGs); return &ctx->SegGs;
case CV_REG_XMM0 + 0: *size = 16; return &ctx->ExtendedRegisters[10*16];
case CV_REG_XMM0 + 1: *size = 16; return &ctx->ExtendedRegisters[11*16];
case CV_REG_XMM0 + 2: *size = 16; return &ctx->ExtendedRegisters[12*16];
case CV_REG_XMM0 + 3: *size = 16; return &ctx->ExtendedRegisters[13*16];
case CV_REG_XMM0 + 4: *size = 16; return &ctx->ExtendedRegisters[14*16];
case CV_REG_XMM0 + 5: *size = 16; return &ctx->ExtendedRegisters[15*16];
case CV_REG_XMM0 + 6: *size = 16; return &ctx->ExtendedRegisters[16*16];
case CV_REG_XMM0 + 7: *size = 16; return &ctx->ExtendedRegisters[17*16];
case CV_REG_MXCSR: *size = sizeof(DWORD); return &ctx->ExtendedRegisters[24];
}
FIXME("Unknown register %x\n", regno);
return NULL;
}
static const char* i386_fetch_regname(unsigned regno)
{
switch (regno)
{
case CV_REG_EAX: return "eax";
case CV_REG_EDX: return "edx";
case CV_REG_ECX: return "ecx";
case CV_REG_EBX: return "ebx";
case CV_REG_ESI: return "esi";
case CV_REG_EDI: return "edi";
case CV_REG_EBP: return "ebp";
case CV_REG_ESP: return "esp";
case CV_REG_EIP: return "eip";
case CV_REG_ST0 + 0: return "st0";
case CV_REG_ST0 + 1: return "st1";
case CV_REG_ST0 + 2: return "st2";
case CV_REG_ST0 + 3: return "st3";
case CV_REG_ST0 + 4: return "st4";
case CV_REG_ST0 + 5: return "st5";
case CV_REG_ST0 + 6: return "st6";
case CV_REG_ST0 + 7: return "st7";
case CV_REG_EFLAGS: return "eflags";
case CV_REG_ES: return "es";
case CV_REG_CS: return "cs";
case CV_REG_SS: return "ss";
case CV_REG_DS: return "ds";
case CV_REG_FS: return "fs";
case CV_REG_GS: return "gs";
case CV_REG_CTRL: return "fpControl";
case CV_REG_STAT: return "fpStatus";
case CV_REG_TAG: return "fpTag";
case CV_REG_FPCS: return "fpCS";
case CV_REG_FPIP: return "fpIP";
case CV_REG_FPDS: return "fpDS";
case CV_REG_FPDO: return "fpData";
case CV_REG_XMM0 + 0: return "xmm0";
case CV_REG_XMM0 + 1: return "xmm1";
case CV_REG_XMM0 + 2: return "xmm2";
case CV_REG_XMM0 + 3: return "xmm3";
case CV_REG_XMM0 + 4: return "xmm4";
case CV_REG_XMM0 + 5: return "xmm5";
case CV_REG_XMM0 + 6: return "xmm6";
case CV_REG_XMM0 + 7: return "xmm7";
case CV_REG_MXCSR: return "MxCSR";
}
FIXME("Unknown register %x\n", regno);
return NULL;
}
#ifndef DBGHELP_STATIC_LIB
static BOOL i386_fetch_minidump_thread(struct dump_context* dc, unsigned index, unsigned flags, const CONTEXT* ctx)
{
if (ctx->ContextFlags && (flags & ThreadWriteInstructionWindow))
{
/* FIXME: crop values across module boundaries, */
#ifdef __i386__
ULONG base = ctx->Eip <= 0x80 ? 0 : ctx->Eip - 0x80;
minidump_add_memory_block(dc, base, ctx->Eip + 0x80 - base, 0);
#endif
}
return TRUE;
}
#endif
static BOOL i386_fetch_minidump_module(struct dump_context* dc, unsigned index, unsigned flags)
{
/* FIXME: actually, we should probably take care of FPO data, unless it's stored in
* function table minidump stream
*/
return FALSE;
}
DECLSPEC_HIDDEN struct cpu cpu_i386 = {
IMAGE_FILE_MACHINE_I386,
4,
CV_REG_EBP,
#ifndef DBGHELP_STATIC_LIB
i386_get_addr,
i386_stack_walk,
#else
NULL,
NULL,
#endif
NULL,
i386_map_dwarf_register,
i386_fetch_context_reg,
i386_fetch_regname,
#ifndef DBGHELP_STATIC_LIB
i386_fetch_minidump_thread,
i386_fetch_minidump_module,
#else
NULL,
NULL,
#endif
};