reactos/reactos/ntoskrnl/ke/timer.c
Eric Kohl d899ea5ca7 Set system time and update boot time and relative timers.
svn path=/trunk/; revision=11850
2004-11-28 12:59:33 +00:00

878 lines
22 KiB
C

/* $Id: timer.c,v 1.92 2004/11/28 12:59:00 ekohl Exp $
*
* COPYRIGHT: See COPYING in the top level directory
* PROJECT: ReactOS kernel
* FILE: ntoskrnl/ke/timer.c
* PURPOSE: Handle timers
* PROGRAMMER: David Welch (welch@mcmail.com)
* UPDATE HISTORY:
* 28/05/98: Created
* 12/3/99: Phillip Susi: enabled the timers, fixed spin lock
*/
/* NOTES ******************************************************************/
/*
* System time units are 100-nanosecond intervals
*/
/* INCLUDES ***************************************************************/
#include <ntoskrnl.h>
#define NDEBUG
#include <internal/debug.h>
/* GLOBALS ****************************************************************/
/*
* Current time
*/
#if defined(__GNUC__)
LARGE_INTEGER SystemBootTime = (LARGE_INTEGER)0LL;
#else
LARGE_INTEGER SystemBootTime = { 0 };
#endif
CHAR KiTimerSystemAuditing = 0;
/*
* Number of timer interrupts since initialisation
*/
volatile ULONGLONG KeTickCount = 0;
volatile ULONG KiRawTicks = 0;
/*
* The increment in the system clock every timer tick (in system time units)
*
* = (1/18.2)*10^9
*
* RJJ was 54945055
*/
#define CLOCK_INCREMENT (100000)
#ifdef __GNUC__
ULONG EXPORTED KeMaximumIncrement = 100000;
ULONG EXPORTED KeMinimumIncrement = 100000;
#else
/* Microsoft-style declarations */
EXPORTED ULONG KeMaximumIncrement = 100000;
EXPORTED ULONG KeMinimumIncrement = 100000;
#endif
/*
* PURPOSE: List of timers
*/
static LIST_ENTRY AbsoluteTimerListHead;
static LIST_ENTRY RelativeTimerListHead;
static KSPIN_LOCK TimerListLock;
static KDPC ExpireTimerDpc;
/* must raise IRQL to PROFILE_LEVEL and grab spin lock there, to sync with ISR */
extern HANDLE PsIdleThreadHandle;
#define MICROSECONDS_PER_TICK (10000)
#define TICKS_TO_CALIBRATE (1)
#define CALIBRATE_PERIOD (MICROSECONDS_PER_TICK * TICKS_TO_CALIBRATE)
#define SYSTEM_TIME_UNITS_PER_MSEC (10000)
static BOOLEAN TimerInitDone = FALSE;
/* FUNCTIONS **************************************************************/
NTSTATUS STDCALL
NtQueryTimerResolution(OUT PULONG MinimumResolution,
OUT PULONG MaximumResolution,
OUT PULONG ActualResolution)
{
UNIMPLEMENTED;
return STATUS_NOT_IMPLEMENTED;
}
NTSTATUS STDCALL
NtSetTimerResolution(IN ULONG DesiredResolution,
IN BOOLEAN SetResolution,
OUT PULONG CurrentResolution)
{
UNIMPLEMENTED;
return STATUS_NOT_IMPLEMENTED;
}
NTSTATUS STDCALL
NtQueryPerformanceCounter(IN PLARGE_INTEGER Counter,
IN PLARGE_INTEGER Frequency)
{
LARGE_INTEGER PerfCounter;
LARGE_INTEGER PerfFrequency;
NTSTATUS Status;
PerfCounter = KeQueryPerformanceCounter(&PerfFrequency);
if (Counter != NULL)
{
Status = MmCopyToCaller(&Counter->QuadPart, &PerfCounter.QuadPart, sizeof(PerfCounter.QuadPart));
if (!NT_SUCCESS(Status))
{
return(Status);
}
}
if (Frequency != NULL)
{
Status = MmCopyToCaller(&Frequency->QuadPart, &PerfFrequency.QuadPart, sizeof(PerfFrequency.QuadPart));
if (!NT_SUCCESS(Status))
{
return(Status);
}
}
return(STATUS_SUCCESS);
}
NTSTATUS STDCALL
NtDelayExecution(IN ULONG Alertable,
IN TIME* Interval)
{
NTSTATUS Status;
LARGE_INTEGER Timeout;
Status = MmCopyFromCaller(&Timeout, Interval, sizeof(Timeout));
if (!NT_SUCCESS(Status))
{
return(Status);
}
Timeout = *((PLARGE_INTEGER)Interval);
DPRINT("NtDelayExecution(Alertable %d, Internal %x) IntervalP %x\n",
Alertable, Internal, Timeout);
DPRINT("Execution delay is %d/%d\n",
Timeout.u.HighPart, Timeout.u.LowPart);
Status = KeDelayExecutionThread(UserMode, (BOOLEAN)Alertable, &Timeout);
return(Status);
}
/*
* @implemented
*/
NTSTATUS STDCALL
KeDelayExecutionThread (KPROCESSOR_MODE WaitMode,
BOOLEAN Alertable,
PLARGE_INTEGER Interval)
/*
* FUNCTION: Puts the current thread into an alertable or nonalertable
* wait state for a given internal
* ARGUMENTS:
* WaitMode = Processor mode in which the caller is waiting
* Altertable = Specifies if the wait is alertable
* Interval = Specifies the interval to wait
* RETURNS: Status
*/
{
PKTHREAD Thread = KeGetCurrentThread();
KeSetTimer(&Thread->Timer, *Interval, NULL);
return (KeWaitForSingleObject(&Thread->Timer,
(WaitMode == KernelMode) ? Executive : UserRequest, /* TMN: Was unconditionally Executive */
WaitMode, /* TMN: Was UserMode */
Alertable,
NULL));
}
/*
* @implemented
*/
ULONG STDCALL
KeQueryTimeIncrement(VOID)
/*
* FUNCTION: Gets the increment (in 100-nanosecond units) that is added to
* the system clock every time the clock interrupts
* RETURNS: The increment
*/
{
return(CLOCK_INCREMENT);
}
/*
* FUNCTION: Gets the current system time
* ARGUMENTS:
* CurrentTime (OUT) = The routine stores the current time here
* NOTE: The time is the number of 100-nanosecond intervals since the
* 1st of January, 1601.
*
* @implemented
*/
VOID STDCALL
KeQuerySystemTime(PLARGE_INTEGER CurrentTime)
{
do
{
CurrentTime->u.HighPart = SharedUserData->SystemTime.High1Time;
CurrentTime->u.LowPart = SharedUserData->SystemTime.LowPart;
}
while (CurrentTime->u.HighPart != SharedUserData->SystemTime.High2Time);
}
ULONGLONG STDCALL
KeQueryInterruptTime(VOID)
{
LARGE_INTEGER CurrentTime;
do
{
CurrentTime.u.HighPart = SharedUserData->InterruptTime.High1Time;
CurrentTime.u.LowPart = SharedUserData->InterruptTime.LowPart;
}
while (CurrentTime.u.HighPart != SharedUserData->InterruptTime.High2Time);
return CurrentTime.QuadPart;
}
/*
* @implemented
*/
ULONG
STDCALL
NtGetTickCount(VOID)
{
LARGE_INTEGER TickCount;
KeQueryTickCount(&TickCount);
return TickCount.u.LowPart;
}
/*
* @implemented
*/
BOOLEAN STDCALL
KeSetTimer (PKTIMER Timer,
LARGE_INTEGER DueTime,
PKDPC Dpc)
/*
* FUNCTION: Sets the absolute or relative interval at which a timer object
* is to be set to the signaled state and optionally supplies a
* CustomTimerDpc to be executed when the timer expires.
* ARGUMENTS:
* Timer = Points to a previously initialized timer object
* DueTimer = If positive then absolute time to expire at
* If negative then the relative time to expire at
* Dpc = If non-NULL then a dpc to be called when the timer expires
* RETURNS: True if the timer was already in the system timer queue
* False otherwise
*/
{
return(KeSetTimerEx(Timer, DueTime, 0, Dpc));
}
/*
* @implemented
*/
BOOLEAN STDCALL
KeSetTimerEx (PKTIMER Timer,
LARGE_INTEGER DueTime,
LONG Period,
PKDPC Dpc)
/*
* FUNCTION: Sets the absolute or relative interval at which a timer object
* is to be set to the signaled state and optionally supplies a
* CustomTimerDpc to be executed when the timer expires.
* ARGUMENTS:
* Timer = Points to a previously initialized timer object
* DueTimer = If positive then absolute time to expire at
* If negative then the relative time to expire at
* Dpc = If non-NULL then a dpc to be called when the timer expires
* RETURNS: True if the timer was already in the system timer queue
* False otherwise
*/
{
KIRQL oldlvl;
LARGE_INTEGER Time;
BOOLEAN AlreadyInList;
DPRINT("KeSetTimerEx(Timer %x), DueTime: \n",Timer);
ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
KeAcquireSpinLock(&TimerListLock, &oldlvl);
Timer->Dpc = Dpc;
if (DueTime.QuadPart < 0)
{
Timer->Header.Absolute = 0;
Timer->DueTime.QuadPart = KeQueryInterruptTime() - DueTime.QuadPart;
}
else
{
KeQuerySystemTime(&Time);
Timer->Header.Absolute = 1;
if (DueTime.QuadPart >= Time.QuadPart)
{
Timer->DueTime.QuadPart = DueTime.QuadPart;
}
else
{
Timer->DueTime.QuadPart = Time.QuadPart;
}
}
Timer->Period = Period;
Timer->Header.SignalState = FALSE;
AlreadyInList = (Timer->TimerListEntry.Flink == NULL) ? FALSE : TRUE;
ASSERT((Timer->TimerListEntry.Flink == NULL && Timer->TimerListEntry.Blink == NULL) ||
(Timer->TimerListEntry.Flink != NULL && Timer->TimerListEntry.Blink != NULL));
if (AlreadyInList)
{
RemoveEntryList(&Timer->TimerListEntry);
}
if (Timer->Header.Absolute)
{
InsertAscendingList(&AbsoluteTimerListHead,
KTIMER,
TimerListEntry,
Timer,
DueTime.QuadPart);
}
else
{
InsertAscendingList(&RelativeTimerListHead,
KTIMER,
TimerListEntry,
Timer,
DueTime.QuadPart);
}
KeReleaseSpinLock(&TimerListLock, oldlvl);
return AlreadyInList;
}
/*
* @implemented
*/
BOOLEAN STDCALL
KeCancelTimer (PKTIMER Timer)
/*
* FUNCTION: Removes a timer from the system timer list
* ARGUMENTS:
* Timer = timer to cancel
* RETURNS: True if the timer was running
* False otherwise
*/
{
KIRQL oldlvl;
DPRINT("KeCancelTimer(Timer %x)\n",Timer);
KeAcquireSpinLock(&TimerListLock, &oldlvl);
if (Timer->TimerListEntry.Flink == NULL)
{
KeReleaseSpinLock(&TimerListLock, oldlvl);
return(FALSE);
}
if (Timer->Header.Absolute)
{
ASSERT(&Timer->TimerListEntry != &AbsoluteTimerListHead);
}
else
{
ASSERT(&Timer->TimerListEntry != &RelativeTimerListHead);
}
ASSERT(Timer->TimerListEntry.Flink != &Timer->TimerListEntry);
RemoveEntryList(&Timer->TimerListEntry);
Timer->TimerListEntry.Flink = Timer->TimerListEntry.Blink = NULL;
KeReleaseSpinLock(&TimerListLock, oldlvl);
return(TRUE);
}
/*
* @implemented
*/
BOOLEAN STDCALL
KeReadStateTimer (PKTIMER Timer)
{
return (BOOLEAN)(Timer->Header.SignalState);
}
/*
* @implemented
*/
VOID STDCALL
KeInitializeTimer (PKTIMER Timer)
/*
* FUNCTION: Initalizes a kernel timer object
* ARGUMENTS:
* Timer = caller supplied storage for the timer
* NOTE: This function initializes a notification timer
*/
{
KeInitializeTimerEx(Timer, NotificationTimer);
}
/*
* @implemented
*/
VOID STDCALL
KeInitializeTimerEx (PKTIMER Timer,
TIMER_TYPE Type)
/*
* FUNCTION: Initializes a kernel timer object
* ARGUMENTS:
* Timer = caller supplied storage for the timer
* Type = the type of timer (notification or synchronization)
* NOTE: When a notification type expires all waiting threads are released
* and the timer remains signalled until it is explicitly reset. When a
* syncrhonization timer expires its state is set to signalled until a
* single waiting thread is released and then the timer is reset.
*/
{
ULONG IType;
if (Type == NotificationTimer)
{
IType = InternalNotificationTimer;
}
else if (Type == SynchronizationTimer)
{
IType = InternalSynchronizationTimer;
}
else
{
ASSERT(FALSE);
return;
}
KeInitializeDispatcherHeader(&Timer->Header,
IType,
sizeof(KTIMER) / sizeof(ULONG),
FALSE);
Timer->TimerListEntry.Flink = Timer->TimerListEntry.Blink = NULL;
}
/*
* @implemented
*/
VOID STDCALL
KeQueryTickCount(PLARGE_INTEGER TickCount)
/*
* FUNCTION: Returns the number of ticks since the system was booted
* ARGUMENTS:
* TickCount (OUT) = Points to storage for the number of ticks
*/
{
TickCount->QuadPart = KeTickCount;
}
/*
* @implemented
*/
ULONG
STDCALL
KeQueryRuntimeThread(
IN PKTHREAD Thread,
OUT PULONG UserTime
)
{
/* Return the User Time */
*UserTime = Thread->UserTime;
/* Return the Kernel Time */
return Thread->KernelTime;
}
/*
* @implemented
*/
VOID
STDCALL
KeSetTimeIncrement(
IN ULONG MaxIncrement,
IN ULONG MinIncrement
)
{
/* Set some Internal Variables */
/* FIXME: We use a harcoded CLOCK_INCREMENT. That *must* be changed */
KeMaximumIncrement = MaxIncrement;
KeMinimumIncrement = MinIncrement;
}
/*
* We enter this function at IRQL DISPATCH_LEVEL, and with the
* TimerListLock held.
*/
STATIC VOID
HandleExpiredTimer(PKTIMER Timer)
{
DPRINT("HandleExpiredTime(Timer %x)\n", Timer);
if (Timer->Dpc != NULL)
{
DPRINT("Timer->Dpc %x Timer->Dpc->DeferredRoutine %x\n",
Timer->Dpc, Timer->Dpc->DeferredRoutine);
KeInsertQueueDpc(Timer->Dpc,
NULL,
NULL);
DPRINT("Finished dpc routine\n");
}
ASSERT_IRQL_EQUAL(DISPATCH_LEVEL);
KeAcquireDispatcherDatabaseLockAtDpcLevel();
Timer->Header.SignalState = TRUE;
KiDispatcherObjectWake(&Timer->Header);
KeReleaseDispatcherDatabaseLockFromDpcLevel();
if (Timer->Period != 0)
{
Timer->DueTime.QuadPart +=
Timer->Period * SYSTEM_TIME_UNITS_PER_MSEC;
if (Timer->Header.Absolute)
{
InsertAscendingList(&AbsoluteTimerListHead,
KTIMER,
TimerListEntry,
Timer,
DueTime.QuadPart);
}
else
{
InsertAscendingList(&RelativeTimerListHead,
KTIMER,
TimerListEntry,
Timer,
DueTime.QuadPart);
}
}
}
VOID STDCALL
KeExpireTimers(PKDPC Dpc,
PVOID Context1,
PVOID Arg1,
PVOID Arg2)
{
PLIST_ENTRY current_entry = NULL;
PKTIMER current = NULL;
ULONG Eip = (ULONG)Arg1;
LARGE_INTEGER InterruptTime;
LARGE_INTEGER SystemTime;
LIST_ENTRY TimerList;
DPRINT("KeExpireTimers()\n");
ASSERT_IRQL_EQUAL(DISPATCH_LEVEL);
InitializeListHead(&TimerList);
KeAcquireSpinLockAtDpcLevel(&TimerListLock);
InterruptTime.QuadPart = KeQueryInterruptTime();
KeQuerySystemTime(&SystemTime);
current_entry = RelativeTimerListHead.Flink;
ASSERT(current_entry);
while (current_entry != &RelativeTimerListHead)
{
current = CONTAINING_RECORD(current_entry, KTIMER, TimerListEntry);
ASSERT(current);
ASSERT(current_entry != &RelativeTimerListHead);
ASSERT(current_entry->Flink != current_entry);
if ((ULONGLONG)InterruptTime.QuadPart < current->DueTime.QuadPart)
{
break;
}
current_entry = current_entry->Flink;
RemoveEntryList(&current->TimerListEntry);
InsertTailList(&TimerList, &current->TimerListEntry);
}
current_entry = AbsoluteTimerListHead.Flink;
ASSERT(current_entry);
while (current_entry != &AbsoluteTimerListHead)
{
current = CONTAINING_RECORD(current_entry, KTIMER, TimerListEntry);
ASSERT(current);
ASSERT(current_entry != &AbsoluteTimerListHead);
ASSERT(current_entry->Flink != current_entry);
if ((ULONGLONG)SystemTime.QuadPart < current->DueTime.QuadPart)
{
break;
}
current_entry = current_entry->Flink;
RemoveEntryList(&current->TimerListEntry);
InsertTailList(&TimerList, &current->TimerListEntry);
}
while (!IsListEmpty(&TimerList))
{
current_entry = RemoveHeadList(&TimerList);
current = CONTAINING_RECORD(current_entry, KTIMER, TimerListEntry);
current->TimerListEntry.Flink = current->TimerListEntry.Blink = NULL;
HandleExpiredTimer(current);
}
KiAddProfileEvent(ProfileTime, Eip);
KeReleaseSpinLockFromDpcLevel(&TimerListLock);
}
VOID INIT_FUNCTION
KeInitializeTimerImpl(VOID)
/*
* FUNCTION: Initializes timer irq handling
* NOTE: This is only called once from main()
*/
{
TIME_FIELDS TimeFields;
DPRINT("KeInitializeTimerImpl()\n");
InitializeListHead(&AbsoluteTimerListHead);
InitializeListHead(&RelativeTimerListHead);
KeInitializeSpinLock(&TimerListLock);
KeInitializeDpc(&ExpireTimerDpc, KeExpireTimers, 0);
/*
* Calculate the starting time for the system clock
*/
HalQueryRealTimeClock(&TimeFields);
RtlTimeFieldsToTime(&TimeFields, &SystemBootTime);
SharedUserData->TickCountLowDeprecated = 0;
SharedUserData->TickCountMultiplier = 167783691; // 2^24 * 1193182 / 119310
SharedUserData->InterruptTime.High2Time = 0;
SharedUserData->InterruptTime.LowPart = 0;
SharedUserData->InterruptTime.High1Time = 0;
SharedUserData->SystemTime.High2Time = SystemBootTime.u.HighPart;
SharedUserData->SystemTime.LowPart = SystemBootTime.u.LowPart;
SharedUserData->SystemTime.High1Time = SystemBootTime.u.HighPart;
TimerInitDone = TRUE;
DPRINT("Finished KeInitializeTimerImpl()\n");
}
/*
* @unimplemented
*/
VOID
FASTCALL
KeSetTimeUpdateNotifyRoutine(
IN PTIME_UPDATE_NOTIFY_ROUTINE NotifyRoutine
)
{
UNIMPLEMENTED;
}
/*
* NOTE: On Windows this function takes exactly one parameter and EBP is
* guaranteed to point to KTRAP_FRAME. The function is used only
* by HAL, so there's no point in keeping that prototype.
*
* @implemented
*/
VOID
STDCALL
KeUpdateRunTime(
IN PKTRAP_FRAME TrapFrame,
IN KIRQL Irql
)
{
PKPCR Pcr;
PKTHREAD CurrentThread;
PKPROCESS CurrentProcess;
#if 0
ULONG DpcLastCount;
#endif
Pcr = KeGetCurrentKPCR();
/* Make sure we don't go further if we're in early boot phase. */
if (Pcr == NULL || Pcr->PrcbData.CurrentThread == NULL)
return;
DPRINT("KernelTime %u, UserTime %u \n", Pcr->PrcbData.KernelTime, Pcr->PrcbData.UserTime);
CurrentThread = Pcr->PrcbData.CurrentThread;
CurrentProcess = CurrentThread->ApcState.Process;
/*
* Cs bit 0 is always set for user mode if we are in protected mode.
* V86 mode is counted as user time.
*/
if (TrapFrame->Cs & 0x1 ||
TrapFrame->Eflags & X86_EFLAGS_VM)
{
InterlockedIncrement((PLONG)&CurrentThread->UserTime);
InterlockedIncrement((PLONG)&CurrentProcess->UserTime);
Pcr->PrcbData.UserTime++;
}
else
{
if (Irql > DISPATCH_LEVEL)
{
Pcr->PrcbData.InterruptTime++;
}
else if (Irql == DISPATCH_LEVEL)
{
Pcr->PrcbData.DpcTime++;
}
else
{
InterlockedIncrement((PLONG)&CurrentThread->KernelTime);
InterlockedIncrement((PLONG)&CurrentProcess->KernelTime);
Pcr->PrcbData.KernelTime++;
}
}
#if 0
DpcLastCount = Pcr->PrcbData.DpcLastCount;
Pcr->PrcbData.DpcLastCount = Pcr->PrcbData.DpcCount;
Pcr->PrcbData.DpcRequestRate = ((Pcr->PrcbData.DpcCount - DpcLastCount) +
Pcr->PrcbData.DpcRequestRate) / 2;
#endif
if (Pcr->PrcbData.DpcData[0].DpcQueueDepth > 0 &&
Pcr->PrcbData.DpcRoutineActive == FALSE &&
Pcr->PrcbData.DpcInterruptRequested == FALSE)
{
HalRequestSoftwareInterrupt(DISPATCH_LEVEL);
}
/* FIXME: Do DPC rate adjustments */
/*
* If we're at end of quantum request software interrupt. The rest
* is handled in KiDispatchInterrupt.
*/
if ((CurrentThread->Quantum -= 3) <= 0)
{
Pcr->PrcbData.QuantumEnd = TRUE;
HalRequestSoftwareInterrupt(DISPATCH_LEVEL);
}
}
/*
* NOTE: On Windows this function takes exactly zero parameters and EBP is
* guaranteed to point to KTRAP_FRAME. Also [esp+0] contains an IRQL.
* The function is used only by HAL, so there's no point in keeping
* that prototype.
*
* @implemented
*/
VOID
STDCALL
KeUpdateSystemTime(
IN PKTRAP_FRAME TrapFrame,
IN KIRQL Irql
)
/*
* FUNCTION: Handles a timer interrupt
*/
{
LARGE_INTEGER Time;
ASSERT(KeGetCurrentIrql() == PROFILE_LEVEL);
KiRawTicks++;
if (TimerInitDone == FALSE)
{
return;
}
/*
* Increment the number of timers ticks
*/
KeTickCount++;
SharedUserData->TickCountLowDeprecated++;
Time.u.LowPart = SharedUserData->InterruptTime.LowPart;
Time.u.HighPart = SharedUserData->InterruptTime.High1Time;
Time.QuadPart += CLOCK_INCREMENT;
SharedUserData->InterruptTime.High2Time = Time.u.HighPart;
SharedUserData->InterruptTime.LowPart = Time.u.LowPart;
SharedUserData->InterruptTime.High1Time = Time.u.HighPart;
Time.u.LowPart = SharedUserData->SystemTime.LowPart;
Time.u.HighPart = SharedUserData->SystemTime.High1Time;
Time.QuadPart += CLOCK_INCREMENT;
SharedUserData->SystemTime.High2Time = Time.u.HighPart;
SharedUserData->SystemTime.LowPart = Time.u.LowPart;
SharedUserData->SystemTime.High1Time = Time.u.HighPart;
/* FIXME: Here we should check for remote debugger break-ins */
/* Update process and thread times */
KeUpdateRunTime(TrapFrame, Irql);
/*
* Queue a DPC that will expire timers
*/
KeInsertQueueDpc(&ExpireTimerDpc, (PVOID)TrapFrame->Eip, 0);
}
VOID
KiSetSystemTime(PLARGE_INTEGER NewSystemTime)
{
LARGE_INTEGER OldSystemTime;
LARGE_INTEGER DeltaTime;
KIRQL OldIrql;
PLIST_ENTRY current_entry = NULL;
PKTIMER current = NULL;
ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
OldIrql = KeAcquireDispatcherDatabaseLock();
do
{
OldSystemTime.u.HighPart = SharedUserData->SystemTime.High1Time;
OldSystemTime.u.LowPart = SharedUserData->SystemTime.LowPart;
}
while (OldSystemTime.u.HighPart != SharedUserData->SystemTime.High2Time);
/* Set the new system time */
SharedUserData->SystemTime.LowPart = NewSystemTime->u.LowPart;
SharedUserData->SystemTime.High1Time = NewSystemTime->u.HighPart;
SharedUserData->SystemTime.High2Time = NewSystemTime->u.HighPart;
/* Calculate the difference between the new and the old time */
DeltaTime.QuadPart = NewSystemTime->QuadPart - OldSystemTime.QuadPart;
/* Update system boot time */
SystemBootTime.QuadPart += DeltaTime.QuadPart;
/* Update all relative timers */
current_entry = RelativeTimerListHead.Flink;
ASSERT(current_entry);
while (current_entry != &RelativeTimerListHead)
{
current = CONTAINING_RECORD(current_entry, KTIMER, TimerListEntry);
ASSERT(current);
ASSERT(current_entry != &RelativeTimerListHead);
ASSERT(current_entry->Flink != current_entry);
current->DueTime.QuadPart += DeltaTime.QuadPart;
current_entry = current_entry->Flink;
}
KeReleaseDispatcherDatabaseLock(OldIrql);
/*
* NOTE: Expired timers will be processed at the next clock tick!
*/
}
/* EOF */