mirror of
https://github.com/reactos/reactos.git
synced 2024-11-10 00:34:39 +00:00
ca60bdfbe8
Better than the one we currently have. For now in rosapps, so we can test it, if it's all working fine, we should replace the wine one. Changes by me: use pow() instead of cbrt(), as cbrt doesn't work in our tree. I imported the whole codebase, although the mpfr files are not used. I moved the localizations to "lang" and the icons to "res" subfolder. svn path=/trunk/; revision=31512
510 lines
8.8 KiB
C
510 lines
8.8 KiB
C
#include "calc.h"
|
|
#include <limits.h>
|
|
|
|
void apply_int_mask(calc_number_t *r)
|
|
{
|
|
unsigned __int64 mask;
|
|
|
|
switch (calc.size) {
|
|
case IDC_RADIO_QWORD:
|
|
mask = _UI64_MAX;
|
|
break;
|
|
case IDC_RADIO_DWORD:
|
|
mask = ULONG_MAX;
|
|
break;
|
|
case IDC_RADIO_WORD:
|
|
mask = USHRT_MAX;
|
|
break;
|
|
case IDC_RADIO_BYTE:
|
|
mask = UCHAR_MAX;
|
|
break;
|
|
default:
|
|
mask = (unsigned __int64)-1;
|
|
}
|
|
r->i &= mask;
|
|
}
|
|
|
|
double asinh(double x)
|
|
{
|
|
return log(x+sqrt(x*x+1));
|
|
}
|
|
|
|
double acosh(double x)
|
|
{
|
|
// must be x>=1, if not return Nan (Not a Number)
|
|
if(!(x>=1.0)) return sqrt(-1.0);
|
|
|
|
// return only the positive result (as sqrt does).
|
|
return log(x+sqrt(x*x-1.0));
|
|
}
|
|
|
|
double atanh(double x)
|
|
{
|
|
// must be x>-1, x<1, if not return Nan (Not a Number)
|
|
if(!(x>-1.0 && x<1.0)) return sqrt(-1.0);
|
|
|
|
return log((1.0+x)/(1.0-x))/2.0;
|
|
}
|
|
|
|
double validate_rad2angle(double a)
|
|
{
|
|
switch (calc.degr) {
|
|
case IDC_RADIO_DEG:
|
|
a = a * (180.0/CALC_PI);
|
|
break;
|
|
case IDC_RADIO_RAD:
|
|
break;
|
|
case IDC_RADIO_GRAD:
|
|
a = a * (200.0/CALC_PI);
|
|
break;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
double validate_angle2rad(calc_number_t *c)
|
|
{
|
|
switch (calc.degr) {
|
|
case IDC_RADIO_DEG:
|
|
c->f = c->f * (CALC_PI/180.0);
|
|
break;
|
|
case IDC_RADIO_RAD:
|
|
break;
|
|
case IDC_RADIO_GRAD:
|
|
c->f = c->f * (CALC_PI/200.0);
|
|
break;
|
|
}
|
|
return c->f;
|
|
}
|
|
|
|
void rpn_sin(calc_number_t *c)
|
|
{
|
|
c->f = sin(validate_angle2rad(c));
|
|
}
|
|
void rpn_cos(calc_number_t *c)
|
|
{
|
|
c->f = cos(validate_angle2rad(c));
|
|
}
|
|
void rpn_tan(calc_number_t *c)
|
|
{
|
|
c->f = tan(validate_angle2rad(c));
|
|
}
|
|
|
|
void rpn_asin(calc_number_t *c)
|
|
{
|
|
c->f = validate_rad2angle(asin(c->f));
|
|
if (_isnan(c->f))
|
|
calc.is_nan = TRUE;
|
|
}
|
|
void rpn_acos(calc_number_t *c)
|
|
{
|
|
c->f = validate_rad2angle(acos(c->f));
|
|
if (_isnan(c->f))
|
|
calc.is_nan = TRUE;
|
|
}
|
|
void rpn_atan(calc_number_t *c)
|
|
{
|
|
c->f = validate_rad2angle(atan(c->f));
|
|
if (_isnan(c->f))
|
|
calc.is_nan = TRUE;
|
|
}
|
|
|
|
void rpn_sinh(calc_number_t *c)
|
|
{
|
|
c->f = sinh(c->f);
|
|
if (_isnan(c->f))
|
|
calc.is_nan = TRUE;
|
|
}
|
|
void rpn_cosh(calc_number_t *c)
|
|
{
|
|
c->f = cosh(c->f);
|
|
if (_isnan(c->f))
|
|
calc.is_nan = TRUE;
|
|
}
|
|
void rpn_tanh(calc_number_t *c)
|
|
{
|
|
c->f = tanh(c->f);
|
|
if (_isnan(c->f))
|
|
calc.is_nan = TRUE;
|
|
}
|
|
|
|
void rpn_asinh(calc_number_t *c)
|
|
{
|
|
c->f = asinh(c->f);
|
|
if (_isnan(c->f))
|
|
calc.is_nan = TRUE;
|
|
}
|
|
void rpn_acosh(calc_number_t *c)
|
|
{
|
|
c->f = acosh(c->f);
|
|
if (_isnan(c->f))
|
|
calc.is_nan = TRUE;
|
|
}
|
|
void rpn_atanh(calc_number_t *c)
|
|
{
|
|
c->f = atanh(c->f);
|
|
if (_isnan(c->f))
|
|
calc.is_nan = TRUE;
|
|
}
|
|
|
|
void rpn_int(calc_number_t *c)
|
|
{
|
|
double int_part;
|
|
|
|
modf(calc.code.f, &int_part);
|
|
c->f = int_part;
|
|
}
|
|
|
|
void rpn_frac(calc_number_t *c)
|
|
{
|
|
double int_part;
|
|
|
|
c->f = modf(calc.code.f, &int_part);
|
|
}
|
|
|
|
void rpn_reci(calc_number_t *c)
|
|
{
|
|
if (c->f == 0)
|
|
calc.is_nan = TRUE;
|
|
else
|
|
c->f = 1./c->f;
|
|
}
|
|
|
|
void rpn_fact(calc_number_t *c)
|
|
{
|
|
double fact, mult, num;
|
|
|
|
if (calc.base == IDC_RADIO_DEC)
|
|
num = c->f;
|
|
else
|
|
num = (double)c->i;
|
|
if (num > 1000) {
|
|
calc.is_nan = TRUE;
|
|
return;
|
|
}
|
|
if (num < 0) {
|
|
calc.is_nan = TRUE;
|
|
return;
|
|
} else
|
|
if (num == 0)
|
|
fact = 1;
|
|
else {
|
|
rpn_int(c);
|
|
fact = 1;
|
|
mult = 2;
|
|
while (mult <= num) {
|
|
fact *= mult;
|
|
mult++;
|
|
}
|
|
c->f = fact;
|
|
}
|
|
if (_finite(fact) == 0)
|
|
calc.is_nan = TRUE;
|
|
else
|
|
if (calc.base == IDC_RADIO_DEC)
|
|
c->f = fact;
|
|
else
|
|
c->i = (__int64)fact;
|
|
}
|
|
|
|
__int64 logic_dbl2int(calc_number_t *a)
|
|
{
|
|
double int_part;
|
|
int width;
|
|
|
|
modf(a->f, &int_part);
|
|
width = (int_part==0) ? 1 : (int)log10(fabs(int_part))+1;
|
|
if (width > 63) {
|
|
calc.is_nan = TRUE;
|
|
return 0;
|
|
}
|
|
return (__int64)int_part;
|
|
}
|
|
|
|
void rpn_not(calc_number_t *c)
|
|
{
|
|
if (calc.base == IDC_RADIO_DEC) {
|
|
calc_number_t n;
|
|
n.i = logic_dbl2int(c);
|
|
c->f = (long double)(~n.i);
|
|
} else
|
|
c->i = ~c->i;
|
|
}
|
|
|
|
void rpn_pi(calc_number_t *c)
|
|
{
|
|
c->f = CALC_PI;
|
|
}
|
|
|
|
void rpn_2pi(calc_number_t *c)
|
|
{
|
|
c->f = CALC_PI*2;
|
|
}
|
|
|
|
void rpn_sign(calc_number_t *c)
|
|
{
|
|
if (calc.base == IDC_RADIO_DEC)
|
|
c->f = 0-c->f;
|
|
else
|
|
c->i = 0-c->i;
|
|
}
|
|
|
|
void rpn_exp2(calc_number_t *c)
|
|
{
|
|
if (calc.base == IDC_RADIO_DEC) {
|
|
c->f *= c->f;
|
|
if (_finite(c->f) == 0)
|
|
calc.is_nan = TRUE;
|
|
} else
|
|
c->i *= c->i;
|
|
}
|
|
|
|
void rpn_exp3(calc_number_t *c)
|
|
{
|
|
if (calc.base == IDC_RADIO_DEC) {
|
|
c->f = pow(c->f, 3.);
|
|
if (_finite(c->f) == 0)
|
|
calc.is_nan = TRUE;
|
|
} else
|
|
c->i *= (c->i*c->i);
|
|
}
|
|
|
|
static __int64 myabs64(__int64 number)
|
|
{
|
|
return (number < 0) ? 0-number : number;
|
|
}
|
|
|
|
static unsigned __int64 sqrti(unsigned __int64 number)
|
|
{
|
|
/* modified form of Newton's method for approximating roots */
|
|
#define NEXT(n, i) (((n) + (i)/(n)) >> 1)
|
|
unsigned __int64 n, n1;
|
|
|
|
#ifdef __GNUC__
|
|
if (number == 0xffffffffffffffffLL)
|
|
#else
|
|
if (number == 0xffffffffffffffff)
|
|
#endif
|
|
return 0xffffffff;
|
|
|
|
n = 1;
|
|
n1 = NEXT(n, number);
|
|
while (myabs64(n1 - n) > 1) {
|
|
n = n1;
|
|
n1 = NEXT(n, number);
|
|
}
|
|
while((n1*n1) > number)
|
|
n1--;
|
|
return n1;
|
|
#undef NEXT
|
|
}
|
|
|
|
void rpn_sqrt(calc_number_t *c)
|
|
{
|
|
if (calc.base == IDC_RADIO_DEC) {
|
|
if (c->f < 0)
|
|
calc.is_nan = TRUE;
|
|
else
|
|
c->f = sqrt(c->f);
|
|
} else {
|
|
c->i = sqrti(c->i);
|
|
}
|
|
}
|
|
|
|
static __int64 cbrti(__int64 x) {
|
|
__int64 s, y, b;
|
|
|
|
s = 60;
|
|
y = 0;
|
|
while(s >= 0) {
|
|
y = 2*y;
|
|
b = (3*y*(y + 1) + 1) << s;
|
|
s = s - 3;
|
|
if (x >= b) {
|
|
x = x - b;
|
|
y = y + 1;
|
|
}
|
|
}
|
|
return y;
|
|
}
|
|
|
|
void rpn_cbrt(calc_number_t *c)
|
|
{
|
|
if (calc.base == IDC_RADIO_DEC)
|
|
//#ifdef __GNUC__
|
|
#if 0
|
|
c->f = cbrt(c->f);
|
|
#else
|
|
c->f = pow(c->f,1./3.);
|
|
#endif
|
|
else {
|
|
c->i = cbrti(c->i);
|
|
}
|
|
}
|
|
|
|
void rpn_exp(calc_number_t *c)
|
|
{
|
|
c->f = exp(c->f);
|
|
if (_finite(c->f) == 0)
|
|
calc.is_nan = TRUE;
|
|
}
|
|
|
|
void rpn_exp10(calc_number_t *c)
|
|
{
|
|
double int_part;
|
|
|
|
modf(c->f, &int_part);
|
|
if (fmod(int_part, 2.) == 0.)
|
|
calc.is_nan = TRUE;
|
|
else {
|
|
c->f = pow(10., c->f);
|
|
if (_finite(c->f) == 0)
|
|
calc.is_nan = TRUE;
|
|
}
|
|
}
|
|
|
|
void rpn_ln(calc_number_t *c)
|
|
{
|
|
if (c->f <= 0)
|
|
calc.is_nan = TRUE;
|
|
else
|
|
c->f = log(c->f);
|
|
}
|
|
|
|
void rpn_log(calc_number_t *c)
|
|
{
|
|
if (c->f <= 0)
|
|
calc.is_nan = TRUE;
|
|
else
|
|
c->f = log10(c->f);
|
|
}
|
|
|
|
static double stat_sum(void)
|
|
{
|
|
double sum = 0;
|
|
statistic_t *p = calc.stat;
|
|
|
|
while (p != NULL) {
|
|
if (p->base == IDC_RADIO_DEC)
|
|
sum += p->num.f;
|
|
else
|
|
sum += p->num.i;
|
|
p = (statistic_t *)(p->next);
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
void rpn_ave(calc_number_t *c)
|
|
{
|
|
double ave = 0;
|
|
int n;
|
|
|
|
ave = stat_sum();
|
|
n = SendDlgItemMessage(calc.hStatWnd, IDC_LIST_STAT, LB_GETCOUNT, 0, 0);
|
|
|
|
if (n)
|
|
ave = ave / (double)n;
|
|
if (calc.base == IDC_RADIO_DEC)
|
|
c->f = ave;
|
|
else
|
|
c->i = (__int64)ave;
|
|
}
|
|
|
|
void rpn_sum(calc_number_t *c)
|
|
{
|
|
double sum = stat_sum();
|
|
|
|
if (calc.base == IDC_RADIO_DEC)
|
|
c->f = sum;
|
|
else
|
|
c->i = (__int64)sum;
|
|
}
|
|
|
|
static void rpn_s_ex(calc_number_t *c, int pop_type)
|
|
{
|
|
double ave = 0;
|
|
double n = 0;
|
|
double dev = 0;
|
|
double num = 0;
|
|
statistic_t *p = calc.stat;
|
|
|
|
ave = stat_sum();
|
|
n = (double)SendDlgItemMessage(calc.hStatWnd, IDC_LIST_STAT, LB_GETCOUNT, 0, 0);
|
|
|
|
if (n == 0) {
|
|
c->f = 0;
|
|
return;
|
|
}
|
|
ave = ave / n;
|
|
|
|
dev = 0;
|
|
p = calc.stat;
|
|
while (p != NULL) {
|
|
if (p->base == IDC_RADIO_DEC)
|
|
num = p->num.f;
|
|
else
|
|
num = (double)p->num.i;
|
|
dev += pow(num-ave, 2.);
|
|
p = (statistic_t *)(p->next);
|
|
}
|
|
dev = sqrt(dev/(pop_type ? n-1 : n));
|
|
if (calc.base == IDC_RADIO_DEC)
|
|
c->f = dev;
|
|
else
|
|
c->i = (__int64)dev;
|
|
}
|
|
|
|
void rpn_s(calc_number_t *c)
|
|
{
|
|
rpn_s_ex(c, 0);
|
|
}
|
|
|
|
void rpn_s_m1(calc_number_t *c)
|
|
{
|
|
rpn_s_ex(c, 1);
|
|
}
|
|
|
|
void rpn_dms2dec(calc_number_t *c)
|
|
{
|
|
double d, m, s;
|
|
|
|
m = modf(c->f, &d) * 100;
|
|
s = (modf(m, &m) * 100)+.5;
|
|
modf(s, &s);
|
|
|
|
m = m/60;
|
|
s = s/3600;
|
|
|
|
c->f = d + m + s;
|
|
}
|
|
|
|
void rpn_dec2dms(calc_number_t *c)
|
|
{
|
|
double d, m, s;
|
|
|
|
m = modf(c->f, &d) * 60;
|
|
s = ceil(modf(m, &m) * 60);
|
|
c->f = d + m/100. + s/10000.;
|
|
}
|
|
|
|
void rpn_zero(calc_number_t *c)
|
|
{
|
|
c->f = 0;
|
|
}
|
|
|
|
void rpn_copy(calc_number_t *dst, calc_number_t *src)
|
|
{
|
|
*dst = *src;
|
|
}
|
|
|
|
int rpn_is_zero(calc_number_t *c)
|
|
{
|
|
return (c->f == 0);
|
|
}
|
|
|
|
void rpn_alloc(calc_number_t *c)
|
|
{
|
|
}
|
|
|
|
void rpn_free(calc_number_t *c)
|
|
{
|
|
}
|